
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.058810

ARTICLE

Dynamic Task Offloading Scheme for Edge Computing via
Meta-Reinforcement Learning

Jiajia Liu1,*, Peng Xie2, Wei Li2, Bo Tang2 and Jianhua Liu2

1Teacher Development and Teaching Evaluation Center, Civil Aviation Flight University of China, Guanghan,
618307, China
2Institute of Electronics and Electrical Engineering, Civil Aviation Flight University of China, Guanghan,
618307, China
*Corresponding Author: Jiajia Liu. Email: cafucljj@cafuc.edu.cn
Received: 21 September 2024 Accepted: 22 November 2024 Published: 17 February 2025

ABSTRACT

As an important complement to cloud computing, edge computing can effectively reduce the workload of the
backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the
task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing
are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic
scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge
computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-
objective optimization problem aimed at minimizing both delay and energy consumption. We model the task
offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing
adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes
(MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies
responsively across diverse network environments. To achieve joint optimization of delay and energy consumption,
we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results
demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease
in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable
adaptability, responding swiftly to changes in various network environments.

KEYWORDS
Edge computing; adaptive; meta; task offloading; joint optimization

1 Introduction

Cloud computing, as a centralized computing model, provides powerful computing and storage
capabilities through remote data centers and is widely adopted [1,2]. Edge computing, as a paradigm
of cloud computing, provides distributed computing services at the network’s edge, addressing the
growing need for real-time processing and large datasets in various application scenarios [3–6]. Mobile
Edge Computing (MEC) deploys server at the network edge to handle intensive computing and data

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.058810
https://www.techscience.com/doi/10.32604/cmc.2024.058810
mailto:cafucljj@cafuc.edu.cn

2610 CMC, 2025, vol.82, no.2

processing tasks, effectively reducing backhaul link load and minimizing service delays [7–9]. However,
diverse terminal devices and task types bring challenges to task offloading decision. How to allocate
tasks reasonably to achieve efficient utilization of computing resources has become a very urgent
challenge.

The early research mainly focused on the static optimization of task offloading decision, and
determined the task allocation strategy by offline methods. However, these methods are often unable
to adapt to the dynamic network environment and task characteristics. Literature [10] proposes
a scheme based on heuristic algorithm to construct offloading strategy, but the proposed scheme
relies too much on the expert strategy of MEC system, adapting a specific heuristic algorithm
to the dynamic MEC landscape, influenced by the growing complexity of MEC applications and
architecture, can be challenging, and it is impossible to adapt the learning strategy to different network
environments. Literature [11] introduced a strategy calculation offloading algorithm utilizing a double-
depth Q-network (DKN). This algorithm learns the optimal strategy without prior knowledge of
network dynamics, but the scheme could not adapt to the new network environment. Literature [12]
introduced an offloading algorithm using deep meta reinforcement learning. This algorithm utilizes
multiple parallel deep neural networks (DNN) and Q learning to make precise decisions, swiftly
adapting to dynamic environments to obtain the optimal offloading strategy, but this scheme does not
consider the analysis of each detailed index in edge calculation. Hence, a multi-objective optimization
meta-reinforcement learning algorithm is needed to adapt to diverse network environments and
simultaneously optimize time delay and energy consumption.

This paper suggests an adaptive task offloading scheme for edge computing to address dynamic
environment task offloading challenges, utilizing the concept of meta-strategy. A novel approach is
introduced, leveraging the MRL algorithm by combining it with a seq2seq neural network. This
innovative method focuses on learning a meta-offload strategy applicable to all User Equipment
(UE), enabling the rapid derivation of efficient strategies for individual UEs through the integration
of meta-strategy and local data. To assess the dynamic task offloading meta-reinforcement learning
(DTOML)’s performance in dynamic scenarios, diverse situations are considered, involving hetero-
geneous users with distinct mobile application preferences represented as DAGs varying in height,
width, and task numbers. Additionally, the transmission rate is adjusted based on the proximity of
UEs to MEC hosts. We explore how to use machine learning and decision optimization algorithms to
adaptively adjust the task allocation strategy by learning historical data and monitoring network status
in real time. We will design and implement a meta-strategy model, and learn and update the strategy
by analyzing the task characteristics and network status, so as to provide the best task processing
performance.

In view of these observations, we propose a meta-strategy-based dynamic task offloading scheme
for distributed edge computing (DTOML), which establishes an offloading decision through DAG,
then establishes different network environment models through multiple MDPs, and then learns
and updates the offloading strategy through seq2seq network to adapt to the dynamic network
environment and task requirements. Finally, the NSGA-II is employed to optimize task scheduling
by jointly addressing delay and energy consumption. Our approach demonstrates reduced latency and
energy consumption compared to alternative schemes.

In addition, this scheme has good application value. First, it can be used in the traffic management
system. Through edge computing task offloading, traffic flow can be analyzed in real time, congestion
can be predicted, and traffic signals can be dynamically adjusted to improve urban traffic efficiency.
Secondly, it can be used in the intelligent driving system. Through edge computing task offloading,

CMC, 2025, vol.82, no.2 2611

it can quickly process the perception data of the vehicle’s surrounding environment, support the auto
drive system to make decisions, and improve safety and reaction speed.

The main contributions are as follows:

(1) This paper proposes a dynamic task offloading scheme for edge computing based on MRL.
By modeling the task offloading decision as a DAG, different edge computing network
environments are modeled by using multiple markov decision processes (MDP), and the “outer
loop” training of offloading strategy is carried out by using Proximal Policy Optimization
(PPO) strategy gradient method in deep reinforcement learning.

(2) To further improve the self-adaptability of task offloading scheme, introduces seq2seq network
to carry out self-adaptive “inner-loop” training of offloading strategy. By analyzing historical
data and real-time network status, the seq2seq network can adaptively learn and update
offloading strategies in response to dynamic changes in the network environment and task
requirements.

(3) Aiming at two important indexes, time delay and energy consumption, this paper adopts multi-
objective optimization algorithm for joint optimization. By weighing the relationship between
the two, a set of balanced offloading strategies is found.

The overall structure is as follows: The Section 2 expounds the related work of this paper; In
Section 3, the edge calculation model is put forward and the problems studied are expounded. In
Section 4, an adaptive task offloading scheme for distributed edge computing based on meta-strategy
is proposed. In Section 5, the performance is evaluated. Finally, we conclude our paper in Section 6.

2 Related Work

This section describes the related work on edge computing, meta-reinforcement learning and
multi-objective optimization.

2.1 Edge Computation

In recent years, people have recognized edge computing as an emerging network paradigm. It
alleviates the strain caused by the unprecedented surge in traffic and computing demand by offering
cloud services at the network edge. The surge of mobile devices for emerging applications such as
healthcare, media recognition, intelligent transportation systems (ITS), and drones is driving the rapid
advancement and optimization of edge computing technology [13].

MEC plays a crucial role in task offloading, specifically in computing offloading. In order to
find the best strategy, Al-Shuwaili et al. [14] proposed a scheme to model the related tasks that
organize the mobile application as a DAG, but did not solve the key problem that the offloading of the
DAG model with minimum delay in MEC system depends on tasks. To solve the resource allocation
problem in MEC systems, Lyu et al. [15] proposed a resource allocation scheme of Stackelberg
game model with multi-leaders and multi-followers. Edge nodes can set the price of edge computing
resources according to other nodes’ strategies and predict users’ behaviors. Then, end users can
choose their own optimal strategy according to the value strategy of edge nodes, but it still does
not solve the problem that the offloading strategy cannot adapt to various network environments.
To solve the problem that the offloading strategy cannot adapt to various network environments,
Wang et al. [16] introduced a task offloading approach using meta-reinforcement learning, enabling
rapid adaptation to new environments with minimal gradient updates and samples, and the learning
agent interacts with different network environments to train an offloading strategy that can quickly

2612 CMC, 2025, vol.82, no.2

adapt to new environments, unfortunately, this method only optimizes time delay. To solve the problem
of geographical dispersion of edge computing, Hu et al. [17] proposed an adaptive scheduling method
to deal with dynamic real-time computing requests, reducing the complexity of decentralization work
to minimize the energy consumption, while this method only optimizes the energy consumption.

Additionally, Dong et al. [18] proposed an algorithm based on quantum particle swarm opti-
mization (QPSO) to minimize energy consumption. Liu et al. [19] introduced a multi-master multi-
slave bi-level game model based on task offloading and pricing strategies for edge computing in
vehicular networks. Jeremiah et al. [20] achieved edge node collaboration by integrating digital twin
technology (DT).

2.2 Meta-Reinforcement Learning

DRL integrates reinforcement learning (RL) with DNNs, offering a promising solution to the
mentioned challenges. DRL excels at addressing intricate problems through trial-and-error learning,
even in the absence of a precise environmental model [21–23]. In order to realize an efficient task
offloading, Zhu et al. [24] introduced a scheme to formalize the offloading problem, framing it as an
optimization challenge involving energy and time based on users’ experience. The strategy is derived
using deep Q learning (DQN), but it did not consider the adaptability of the strategy to different
network environments. The aforementioned solutions lack adaptability to unforeseen disturbances
or unknown scenarios (e.g., a new environment). Their low sample efficiency and the requirement
for extensive retraining hinder their ability to cope with changes in applications, tasks, or data rates.
Consequently, they spend a considerable amount of time learning new strategies for the updated
environment.

Meta-reinforcement learning accelerates the learning of new tasks by leveraging past experiences
in a sequence of learning tasks [25,26], and strives to acquire strategies by leveraging prior experience,
effectively tackling new tasks with minimal interaction in the environment. The application of MRL to
address the computational offloading issue yields evident advantages. We can rapidly acquire tailored
strategies for novel mobile users based on local data and meta-strategies. To address the challenge of
the offloading strategy’s lack of adaptability to the evolving network environment, Botvinick et al. [27]
introduced the “inner loop” and “outer loop” training approach for acquiring the optimal offloading
strategy. The “outer loop” leverages its experience across various task contexts to iteratively fine-tune
the parameters of the meta-strategy controlling the “inner loop.”Utilizing the meta-strategy, the “inner
loop” can rapidly adjust to new tasks with minimal gradient updates. However, this approach does
not explicitly consider its applicability in the edge computing environment. To solve the problem of
how to choose the most suitable neural network architecture among many types of deep learning
architectures and how to optimize the superparameter of the selected neural network, Thar et al. [28]
proposed a deep learning model deployment scheme based on meta-reinforcement learning to build a
suitable model for self-prediction of content popularity, and proposed a feedback mechanism to find a
prediction model, but it did not compare its performance with the latest meta-reinforcement learning
algorithm scheme. Merging deep learning for perception with reinforcement learning for decision-
making, and meta-learning’s rapid environmental adaptation, an offloading strategy can be efficiently
derived in dynamic environments. However, this approach solely focuses on offloading efficiency
without delving into a comprehensive analysis of various detailed metrics in edge computing. To solve
the problem of computing task scheduling in heterogeneous cellular systems, Niu et al. [29] proposed
a multi-agent element PPO algorithm extended to non-stationary heterogeneous edge computing
systems, so as to quickly adapt the control strategy learning to non-stationary, but this method
does not involve the joint optimization of multiple task indicators. To minimize processing delays

CMC, 2025, vol.82, no.2 2613

and energy consumption in a collaborative edge computing system with multiple users and sites,
Avgeris et al. [30] proposed a two-stage mechanism based on reinforcement learning. In the first
stage, mobile devices (MDs) autonomously decide whether to offload tasks to edge sites (ES) through
an iterative reinforcement learning mechanism, thereby reducing energy consumption for compute-
intensive tasks. In the second stage, if some ES are overloaded, task collaboration offloading between
sites is implemented using DQN, transferring tasks to less loaded sites. However, this method also
does not consider the joint optimization of multiple task metrics and relies on an offline-trained
DQN model, which may lack adaptability in dynamic network environments. To address the impact of
dynamic changes in the MEC on the generalization ability of task offloading algorithms, Li et al. [31]
proposed a MRL algorithm, can adapting faster to new environments, And dynamically adjust the
priority of the sampling task during the training process to improve the sampling efficiency of the
task, but this algorithm also does not involve how to balance and optimize multiple task indicators
for task offloading. Hence, this paper presents a dynamic method with meta-reinforcement learning.
The method integrates a directed acyclic graph, multiple Markov strategies, adaptive training network,
and a multi-objective optimization algorithm to address the mentioned challenges.

In summary, while the current MRL-based offloading strategies demonstrate many advantages,
they still have some limitations. Firstly, many existing MRL methods focus on a single performance
metric, lacking a comprehensive consideration of multi-objective optimization, which restricts their
applicability in complex environments. Secondly, many MRL methods rely on prior experience for
policy learning, but in dynamically changing environments, the initial experience may not sufficiently
cover all situations, leading to suboptimal performance in new tasks or environments. Additionally,
some MRL algorithms exhibit poor adaptability when faced with complex tasks, and their update
frequency and adaptability may not meet the demands of rapidly changing network environments.

2.3 Multi-Objective Optimization

Multi-objective optimization algorithm is to make multiple objectives to be optimized as best as
possible at the same time under given constraints, and the solution is usually a set of equilibrium solu-
tions [32–36]. To enhance the estimation accuracy of range vector jump technology, Verma et al. [36]
suggested using NSGA-II algorithm to solve the selected multi-class combinatorial optimization
problem, and elaborated the multi-class combinatorial optimization problem in detail. To reduce the
positioning error, Wang et al. [37] proposed a localization algorithm based on NSGA-II, however, the
experimental part of this scheme lacks effectiveness verification for dynamically changing topological
structures. To solve the joint optimization of reservoir operation problem and benchmark problem,
Liu et al. [38] proposed a new bi-objective algorithm based on NSGA-II algorithm, and then tested its
performance in the bi-objective optimization through benchmark problem and reservoir operation
problem, but did not apply it to practical problems, such as edge computing. To solve the task
offloading problem under 6G networks, Long et al. [39] proposed an algorithm based on the “end-
to-end cloud” architecture. However, this algorithm does not consider completely dispersed network
environments, But it is validated in a collaborative network environment with edge clouds. To solve
the workflow offloading problem in multi-objective optimization, Pan et al. [40] proposed a clustering
evolutionary algorithm to minimize the cost and energy consumption. However, the optimization
effect of this algorithm is not significantly improved.

Based on the above research, this paper proposes a distributed edge computing adaptive task
offloading solution (DTOML) based on a meta-strategy. This solution establishes offloading decisions
through DAG, builds different network environment models using multiple MDPs, and subsequently
employs a seq2seq network to learn and update offloading strategies, adapting to the dynamically

2614 CMC, 2025, vol.82, no.2

changing network environment and task demands. Seq2seq networks have been widely applied
in previous works, including in natural language processing [41] and time series prediction [42],
particularly excelling in problems that require handling continuous data or multi-step decision-
making. In reinforcement learning, seq2seq helps RL agents generate suitable action sequences [43],
effectively addressing multi-step task planning and the decomposition of complex tasks. Finally,
the NSGA-II algorithm is used to jointly optimize the delay and energy consumption during the
task scheduling process. The NSGA-II algorithm has demonstrated outstanding performance in
previous multi-objective optimization problems, particularly in scenarios such as communication
networks, resource allocation, and multi-objective task scheduling [44]. It effectively balances multiple
conflicting optimization objectives and shows high efficiency and stability in solving task offloading
problems. Compared with other solutions, this approach achieves lower latency and reduced energy
consumption.

3 System Model and Overview of the Problem
3.1 System Overview

As shown in Fig. 1, we consider two scenarios: an increase in the number of users and a decrease
in the number of users. We consider three network environments, namely, environments A, B and C,
and each environment is composed of multiple user equipments. When increasing, environment A
becomes environment B; and, when decreasing, environment B becomes environment C. For network
environment A, its composition is expressed as: NA−total = {1, 2, . . . , NA}. In time slot t, the device
generates a set of tasks, which are expressed as: At

i = {ai,1, . . . , ai,KA(i,t)}, KA(i, t) is the total number of
tasks of device i in network environment A, the each device’s task generation process can be represented
by a Poisson process. The size of task ai,k is denoted by si,k, the CPU cycle per second required for
computing task ai,k is denoted by ci,k. For task ai,k, device i can offload it to device j or process it locally.
The addition of new devices will cause changes in the network structure, and network environment A
will become network environment B.

Figure 1: System model diagram

CMC, 2025, vol.82, no.2 2615

For network environment B, its composition is expressed by NB−total = {1, 2, . . . , NB}. The device
generates a set of tasks, which are expressed as: Bt

i = {bi,1, . . . , bi,KB(i,t)}, KB(i, t) is the total number of
tasks of device i in network environment B. In network environment B, the departure of existing edge
devices will lead to network environment B being transformed into another new network environment
C. For network environment C, its composition is expressed as: NC−total = {1, 2, . . . , NC}. The device
generates a set of tasks, which are expressed as: Ct

i = {ci,1, . . . , ci,KC (i,t)}, here KC(i, t) is the total number
of tasks of device i in network environment C. A dynamic network environment is built through the
entry and exit of devices, constructing three different network environments A, B, and C with different
numbers of devices. The main symbol descriptions involved in this paper are shown in Table 1.

Table 1: The symbol description involved in this paper

Notation Description

TUE
i,k Local execution delay of task ai,k

EUE
i,k Local execution energy consumption of task ai,k

Tup
i,k The UE sends the task ai,k delay to the MEC host through the wireless

transmission channel
Tc

i,k Execution delay of task ai,k on MEC
Tdown

i,k Receiving delay of task ai,k on UE
EUL

i,k Offloading energy consumption of task ai,k

FTUE
i,k Completion time of task ai,k on UE under DAG model

FTup
i,k Transmission time of task ai,k on wireless uplink channel under DAG model

FTMEC
i,k Completion time of task ai,k on MEC DAG model

FTdown
i,k Transmission time of task ai,k on wireless downlink channel under DAG model

ϒUE
i,k Resource availability time of task ai,k on UE

ϒ
up
i,k Resource availability time of task ai,k on wireless uplink channel

ϒMEC
i,k Resource availability time of task ai,k on MEC

ϒ down
i,k Resource availability time of task ai,k on wireless downlink channel

πθi,k
Target strategy of learning task ai,k

πθo
i,k

Sampling strategy for generating the initial trajectory of learning task ai,k

3.2 Communication and Computing Model

In distributed computing offloading, end-to-end delay includes local processing delay, uplink
transmission delay, downlink transmission delay and remote processing delay.

If the task ai,k is executed locally, the delay of processing the task ai,k is only the local execution
delay TUE

i,k , which is calculated by the following formula:

TUE
i,k = Ci,k

fUE

, (1)

where Ci,k is the CPU cycle required for computing task ai,k, fUE is the computing power of the UE. EUE
i,k

denoted the energy consumption when task ai,k is processed and calculated locally, which is calculated

2616 CMC, 2025, vol.82, no.2

by the following formula:

EUE
i,k = fUETUE

i,k . (2)

If the task ai,k is offloaded, the UE need to send the task ai,k to the MEC host through wireless
transmission channel, and the transformation delay Tup

i,k of the task ai,k is calculated by the following
formula:

Tup
i,k = ssend

i,k

Rup
, (3)

where ssend
i,k is the size of k-th subtask of ai,k. The transmission rate of wireless uplink channel is denoted

as Rup. Then, the MEC terminal executes the receiving party of ai,k, and the delay Tc
i,k executing the

task ai,k at the MEC terminal is calculated by the following formula:

Tc
i,k = Ci,k

fMEC

, (4)

where fMEC is the computing power of the MEC device. Finally, the execution result of the task ai,k is
returned to the UE, and the reception delay Tdown

i,k of the task ai,k is calculated by the following formula:

Tdown
i,k = sr

i,k

Rdown
, (5)

where sr
i,k denotes the size of the result of processing ai,k, the transmission rate of the downlink is

denoted as Rdown.

The energy consumption EUL
i,k offloading the task ai,k includes two parts:

(1) Etran
i,k of the task ai,k in the transmission process, including the transmission energy consumption

Eup
i,k of the task ai,k in the uplink and the reception energy consumption Edown

i,k in the downlink,
namely: Etran

i,k = Eup
i,k + Edown

i,k .
(2) The calculation energy consumption EMEC

i,k at the edge devices.

Therefore, the energy consumption EUL
i,k offloading the task ai,k can be calculated by the following

formula:

EUL
i,k = Etran

i,k + EMEC
i,k

= (Eup
i,k + Edown

i,k) + EMEC
i,k

= (RupTup
i,k + RdownTdown

i,k) + fMECTc
i,k.

(6)

3.3 Problem Description

We consider that the task offloading decision is a DAG offloading plan, that is, G = (A, D),
where the set of offloading tasks is denoted as A and the dependency between tasks is denoted by D.

For example,
→
d = (ai,k, aj,k) means that task ai,k is the parent task of task aj,k. Subject to dependencies,

subtasks must wait until all their parent tasks are finished.

If the task ai,k is processed locally at the UE side, the start execution time of the task ai,k depends
on the completion time of its parent task aj,k and the available time of the UE. The completion time
FTUE

i,k of task ai,k on the UE side is calculated by:

FTUE
i,k = max{ϒUE

i,k , max
j∈parent

{FTUE
j,k , Tdown

i,k }} + TUE
i,k , (7)

CMC, 2025, vol.82, no.2 2617

ϒUE
i,k = max{ϒUE

i−1,k, FTUE
i−1,k}. (8)

where the resource available time of task ai,k on the UE is denoted as ϒUE
i,k , the completion time of the

parent aj,k of ai,k on the UE side, the completion time of parent task aj,k on downlink is denoted as Tdown
i,k ,

the delay of task ai,k on UE side is denoted by TUE
i,k , the resource available time of task ai−1,k on the UE

is denoted as ϒUE
i−1,k, the completion time of task ai−1,k on UE is denoted as FTUE

i−1,k.

Therefore, the energy consumption FEUE
i,k of task ai,k in local processing is calculated by the

following formula:

FEUE
i,k = fUEFTUE

i,k . (9)

If task ai,k is offloaded to the MEC host, then ai,k can only initiate data transmission after
completing its parent tasks and ensuring the availability of the uplink channel. Therefore, the
completion time FTup

i,k on the wireless uplink can be calculated by the following formula:

FTup
i,k = max{ϒ up

i,k , max
j∈parent

{FTUE
j,k , Tdown

i,k }} + Tup
i,k , (10)

ϒ
up
i,k = max{ϒ up

i−1,k, FTup
i−1,k}. (11)

where the resource availability time of task ai,k on uplink channel is denoted as ϒ
up
i,k , the delay of task

ϒ
up
i,k on uplink channel is denoted as Tup

i,k , the resource availability time of task ai−1,k on uplink channel
is denoted as ϒ

up
i−1,k, the transmission time of task ai−1,k on uplink channel is denoted by FTup

i,k .

The completion time FTMEC
i,k of task ai,k on MEC terminal is calculated by the following formula:

FTMEC
i,k = max{ϒMEC

i,k , max
j∈parent

{FTup
j,k, TMEC

i,k }} + TMEC
i,k , (12)

ϒMEC
i,k = max{ϒMEC

i−1,k , FTMEC
i−1,k }. (13)

where ϒMEC
i,k denotes the resource availability time of task ai,k on MEC side, the transmission time of

task ai,k on uplink channel is denoted as FTup
i,k , the transmission time of parent task aj,k of task ai,k

on MEC side is denoted as FTup
j,k, the delay of task ai,k at MEC end is denoted as ϒMEC

i−1,k , the resource
availability time of task ai−1,k on MEC side is denoted as ϒMEC

i−1,k , the completion time of task ai−1,k on
MEC side is denoted as FTMEC

i−1,k , and the completion time of task ai,k on MEC side is denoted by FTMEC
i,k .

The transmission time FTdown
j,k of task ai,k on the wireless downlink channel is calculated by the

following formula:

FTdown
i,k = max{ϒ down

i,k , FTMEC
i,k } + Tdown

i,k , (14)

ϒ down
i,k = max{ϒ down

i−1,k, FTdown
i−1,k}. (15)

where the resource availability time of task ai,k on downlink channel is denoted by FTdown
i,k , the delay of

task ai,k on the downlink is denoted by Tdown
i,k .

The total energy consumption FEUL
i,k when task ai,k is offloaded is calculated by the following

formula:

FEUL
i,k = FEtran

i,k + FEMEC
i,k

= (FEup
i,k + FEdown

i,k) + FEMEC
i,k

= (RupFTup
i,k + RdownFTdown

i,k) + fMECFTc
i,k. (16)

2618 CMC, 2025, vol.82, no.2

The total delay and energy consumption are calculated using the following formulas, respectively:

FTi,k = max
ai,k∈κ

{FTUE
i,k , FTdown

i,k }, (17)

FEi,k = max
ai,k∈κ

{FEUE
i,k , FEdown

i,k }. (18)

where the exit the collection of tasks is denoted as κ, that is, the set of task ai,k that has been completed.

The ultimate goal of this article is to find a fast and effective offloading plan for DAG, which
minimizes the total time delay and total energy consumption of the entire system. Therefore, we
describe the task offloading process as a multi-objective optimization problem with two objective
functions. The total delay FTi,k of Eq. (17) and energy consumption FEi,k of Eq. (18) are reduced
to the equilibrium minimum by adding a weight factor α, so as to obtain the total target value
Q, that is: the minimization of the total delay denoted as FTi,k in Eq. (17) and the total energy
consumption denoted as FEi,k in Eq. (18) is achieved by introducing a weight factor α. This opti-
mization process aims to balance both metrics to reach an equilibrium state, ultimately resulting
in the minimization of the overall objective function denoted as Q. Mathematically, this can be
expressed as:

P1 : Q = min{αFTi,k + (1 − α)FEi,k}. (19)

s.t. fUE ≤ fUE−max, (20)

fMEC ≤ fMEC−max, (21)

FTup
i,k + FTMEC

i,k + FTdown
i,k ≤ Tmax, (22)

FEtran
i,k + FEMEC

i,k ≤ Emax. (23)

Due to the latency and energy consumption in problem P1, which are closely related to drones
and users, and will increase with the increase of users and drones, the action and state space of the
offloading strategy will grow exponentially, making it an NP hard problem that cannot be solved by
traditional methods. Therefore, this paper proposes the DTOML algorithm to solve this problem.

4 Meta-Policy-Based Distributed Edge Computing Adaptive Task Offloading Scheme (DTOML)

In this section, a scheme based on meta-strategy (DTOML) is introduced. Firstly, an overview of
the scheme is provided, and then the scheme is described in detail.

4.1 Overview of Algorithm

The DTOML algorithm is divided into two training cycles: the “inner loop” training of task-
specific strategy at UE end and the “outer loop” training of meta-strategy at MEC end.

Fig. 2 shows the architecture of integrating DTOML into an MEC system. User level encompasses
diverse user equipment (UE), edge level involves MEC provides edge computing services, with edge
hosts offering services and cloud servers at the remote level, as detailed below:

(1) At the user layer: the parser operating at the user level, transforms applications into a DAG.
The local trainer handles the “inner loop” training by receiving the parsed DAG as training
data from the parser. The trained policy network parameters are transmitted to the MEC

CMC, 2025, vol.82, no.2 2619

host. After the training process is completed, the uninstallation scheduler makes uninstallation
decisions based on policy network inference. On the other hand, any tasks that are offloaded
are transmitted to the MEC host for further processing.

(2) At the edge layer: The MEC platform utilizes modules for global training services and remote
execution services. The global training service handles “outer-loop” training by exchanging
policy network parameters with User Equipment (UE). The remote execution service manages
tasks offloaded from the UE, assigns them to the appropriate cloud, and returns the results to
the UE.

Figure 2: Edge computing system architecture

Next, we’ll outline the DTOML algorithm’s training process in the MEC system, depicted in
Fig. 3. This process comprises four steps:

(1) Initial parameter download: UE retrieves meta-policy parameters from MEC host.
(2) UE-side inner-loop training: Performing “inner-loop”training on each UE using meta-strategy

and local data to acquire task-specific strategy. Simultaneously, UE uploads task-specific
strategy parameters to the MEC host.

(3) MEC-side outer-loop training: MEC host conducts “outer-loop” training based on collected
task-specific strategy parameters, generates a new meta-strategy, and initiates a new training
round. Once a stable meta-strategy is achieved, it learns the task-specific strategy of new UEs
through “inner-loop” training. Algorithm details will be explained in Section 4.3.

(4) Target optimization: Based on the specific task strategy of the learned new UE, use the NSGA-
II algorithm to jointly optimize the delay and energy consumption.

2620 CMC, 2025, vol.82, no.2

Figure 3: The algorithm structure diagram of the design

4.2 Multiple MDP Modeling

To address the computation offloading challenge within diverse MEC environments, in this paper,
we formulat the computation offloading process as multiple MDPs. The overall learning process is
bifurcated into two segments: efficaciously acquiring meta-strategies across all MDPs and rapidly
learning a strategy for a MDP by leveraging meta-strategies. The definitions of each element in MDPs
are as follows:

(1) State S: When scheduling task ai,k, the task delay is critically dependent on several factors,
including the task configuration file (which encompasses the necessary CPU cycles and data
size), the DAG topology, the transmission rate, and MEC resources. The MEC resource status,
in particular, plays a pivotal role in the offloading decisions made prior to time ti. Thus, we
characterize the status by combining the coding DAG with offloading plan: S = {si,k|si,k =
(G(T , E), A1:i,k)}, among them, G(T , E) consists of task embedding sequence, and A1:i,k) is the
offloading plan of the first i tasks and k subtasks.

(2) Action A: Task scheduling involves making binary decisions, defining the action space as A :=
{0, 1}. In this context, the 0 indicates that the task will be executed on the UE, while the 1
signifies that the task will be offloaded.

(3) Reward R: The reward function is defined as: �Tc
i,k = Tc

A1:i,k
− Tc

A1:i−1,k
.

CMC, 2025, vol.82, no.2 2621

4.3 Inner Ring Training and Outer Ring Training

DTOML and gradient-based MRL algorithm share similar algorithm structure, and the scheme
consists of two training cycles. The objective function is defined based on near-end strategy opti-
mization (PPO). Compared with other strategy gradient methods, PPO has better exploration ability
and training stability. Initially, each sampled learning task undergoes training as an “inner loop.”
Following the completion of the “inner loop” training, the meta-strategy parameter θ is updated
using the gradient ascent method through Adam (Adaptive Moment Estimation) to achieve outer
loop training. In this scheme, the inner loop training and outer loop training complement each other
to update parameters and obtain the optimal strategy. The inner loop training is mainly based on
meta policies and local data to run “inner loop” training on each UE to obtain task specific policies,
while the outer loop training is to perform “outer loop” training on the collected task specific policy
parameters, generate new meta policies, pass them back to the inner loop, and start a new round of
training until they are optimal.

4.3.1 “Inner Ring” Training Based on PPO Strategy Gradient Method

For a learning task ai,k, initialize the policy parameters θi,k and target policy πθi,k
, generate trajectory

τi,k through sample policy πθo
i,k

sampling, then calculate the optimization objective function JPPO
τi,k

(θi,k),
and update the policy parameters θi,k through the optimization objective function JPPO

τi,k
(θi,k). During

multiple periods, update the sample policy sampling πθo
i,k

to avoid large-scale updates, and finally repeat
the training until convergence, achieving optimization of task specific policies. The objective function
for each inner loop training based on PPO is defined as the follows:

JPPO
τi,k

(θi,k) = JC
τi,k

(θi,k) − c1JVF
τi,k

(θi,k) (24)

where the objective function of the PPO algorithm is denoted as JPPO
τi,k

(θi,k), the optimization objectives
is denoted as JC

τi,k
(θi,k), the hyperparameters of the value function term in balanced optimization

objectives is denoted as c1, the value function is denoted as JVF
τi,k

(θi,k), the generated trajectory is denoted
as τi,k, the parameters of the strategy is denoted as θi,k.

Algorithm 1: Pseudocode for inner loop training based on PPO
Input: Initial policy parameters θi,k; Sample policy πθo

i,k
; Optimization objectives JC

τi,k
(θi,k); Hyperparam-

eters c1; Number of trajectories NT .
Output: Optimized strategy parameters θ ′

i,k.
1: for iterations t = 1:NT do
2: Sample policy πθo

i,k
generates trajectory τi,k.

3: Calculate optimization objectives JC
τi,k

(θi,k).
4: Calculatevalue function JVF

τi,k
(θi,k).

5: Calculate the optimization objective function:
6: JPPO

τi,k
(θi,k) = JC

τi,k
(θi,k) − c1JVF

τi,k
(θi,k)

7: Update policy parameter policy parameters θi,k.
8: Output optimized policy parameters θ ′

i,k.
9: end

10: Policy update.

The pseudocode for inner loop training based on PPO is shown in Algorithm 1.

2622 CMC, 2025, vol.82, no.2

4.3.2 “Outer Loop” Training Based on Seq2seq Network

The seq2sequence network mainly consists of an encoder and a decoder. Additionally, it incor-
porates an attention mechanism, enabling the decoder to focus on distinct segments of the encoder
input sequence during each step of output generation. This helps mitigate information loss inherent
in seq2sequence networks.

According to PPO algorithm and the objective function of inner-loop training, the objective
function of each outer-loop training is defined as the following formula:

JDTOML(θi,k) = Eai,k∼ρ(ai,k),π∼Pτi (τ ,θ ′
i,k). (25)

where the objective function of the outer loop is denoted by JDTOML(θi,k), the expected value under the
given learning task, task sampling distribution and policy distribution is denoted as Eai,k∼ρ(ai,k),π∼Pτi (τ ,θ ′

i,k),
the sampling distribution of learning task ai,k is denoted as ρ(ai,k), the strategy for learning tasks is
denoted as π , the strategy distribution for given trajectory τ and optimized strategy parameters θ ′

i,k is
denoted as Pτi(τ , θ ′

i,k).

The network structure diagram of seq2seq is shown in Fig. 4. The seq2seq network mainly includes
the following parts: (1) Input sequence encoding: The encoder is composed of an RNN, which is used
to gradually process the input task sequence and finally output a context vector that compresses the
information of the input sequence. (2) Context vector generation: The final hidden state of the encoder
is used as a context vector to represent the features of the input sequence. This vector will be used in
the decoder. (3) Output sequence decoding: The context vector is passed into the decoder, which is
also an RNN that gradually generates the output sequence. The decoder generates an output at each
step, which is the offloading decision for each task.

Figure 4: Network structure diagram of seq2seq

4.4 Joint Optimization Algorithm Based on NSGA-II Algorithm

The NSGA-II algorithm has the advantages of efficiently handling multi-objective problems
and maintaining diversity of solutions. It can not only find Pareto optimal solutions through non
dominated sorting, but also balance multiple objectives simultaneously. We also use the crowding
distance mechanism to maintain the diversity of solutions on the Pareto front. This ensures that the

CMC, 2025, vol.82, no.2 2623

optimization process can explore a wide range of potential solutions, rather than just converging to
a single solution point. Therefore, this algorithm was chosen for further optimization. Using the
time delay and energy consumption during task scheduling with the adaptive scheduling strategy
as input for the NSGA-II algorithm, efficient joint optimization results can be swiftly achieved
through operations like selection, crossover, mutation, and rapid non-dominated sorting. The NSGA-
II algorithm’s joint optimization process unfolds as follows:

Algorithm 2: NSGA-II algorithm pseudocode
Input: Cost function MOP2; Population size N; Maximum number of Iterations maxIt; Crossover
probability Pc; Mutation probability Pm.
Output: Total target value Q.
1: Initialize population Pt and individual fitness fit.
2: for iterations ts < maxIt do
3: Create an empty offspring population I(t).
4: for |I(t)| ≤ N
5: Select parent individuals from Pt

6: Perform cross operation with probability Pc and generate offspring individuals
7: Perform mutation operation with probability Pm

8: Evaluate the fitness of offspring individuals
9: Add offspring individuals to I(t).

10: end
11: Form pareto dominance sorting R(t).
12: Selecting the top N individuals in R(t) based on crowding degree.
13: The Pareto front solutions from the final generation.
14: end.

(1) Initially creating a population of size N using random generation, followed by non-dominant
sorting.

(2) From the second generation onwards, merging the parent population and offspring population
for efficient non-dominant sorting.

(3) Generate new offspring population through the basic operation of genetic algorithm, until the
constraint condition of the algorithm is met, that is, the iteration number of the algorithm it is
less than the maximum iteration number Maxit.

Algorithm 2 is pseudocode for the NSGA-II algorithm.

5 Performance Evaluation
Basic Environment Setting

This paper is conducted in Python 3.7 simulation environment. The number of users is 10–
50, the effective distance of wireless communication is 60–100 m, the data size of a single task is
2000–10,000 kB, the CPU cycle provided to each user is 8–12 MHz, and the transmission rate is
determined by Shannon formula.

Fig. 5 shows the variation of task offloading latency and energy consumption with the number of
gradient update steps in a 2 × 2 network environment (network environment A) with five algorithm
schemes. Fig. 5a can be observed that during the entire gradient step size update process, the proposed
DTOML scheme has lower task offloading latency than the Greedy scheme [16], RL scheme [27], and

2624 CMC, 2025, vol.82, no.2

DRL scheme [16] in a 2 × 2 network environment. Fig. 5b can be observed that the proposed DTOML
scheme has lower task offloading energy consumption than the Greedy scheme [16], RL scheme [27],
PSO scheme, and DRL scheme [16] in a 2 × 2 network environment throughout the entire gradient step
size update process. Due to the fact that the Greedy, RL, PSO, DRL, and DTOML schemes update
their strategies through parameter optimization iterations with increasing gradient update steps, the
poor performance of the Greedy algorithm results in a stable trend in the target value with increasing
gradient steps. In contrast, the target value in the RL scheme, DRL scheme, and DTOML scheme all
show a decreasing trend. DTOML scheme and DRL scheme are obviously superior to Greedy scheme,
PSO scheme and RL scheme, because both of them are model learning and updating strategies based
on pre training, but the optimization effect of DTOML algorithm is the best.

Figure 5: The impact of gradient update steps on task offloading latency and energy consumption in
a 2 × 2 network environment (network environment A). (a) Latency. (b) Energy consumption

Fig. 6 shows the variation of task offloading latency and energy consumption with gradient
update steps for five algorithm schemes in a 4 × 4 network environment (network environment B).
From Fig. 6a, it can be observed that the proposed DTOML scheme has lower task offloading latency
than the Greedy scheme and RL scheme in a 4 × 4 network environment throughout the entire
gradient update process. When the gradient update step size is small, there is almost no difference
in task offloading latency between the DTOML scheme and the DRL scheme. As the gradient update
step size increases, the task offloading latency of the DTOML scheme is lower than that of the DRL
scheme, exhibiting better performance. From Fig. 6b, it can be observed that the proposed DTOML
scheme has lower task offloading energy consumption than the Greedy scheme, RL scheme, and DRL
scheme in a 4 × 4 network environment throughout the entire gradient update process. Due to the fact
that the Greedy scheme, PSO scheme, RL scheme, DRL scheme, and DTOML scheme all update
their strategies through parameter optimization iterations as the gradient update step size increases,
the poor performance of the Greedy scheme results in a stable trend in target value as the gradient
step size is updated. On the other hand, the RL scheme and DTOML scheme show a decreasing
trend in target value, while the DRL scheme performs worse as it changes from a 2 × 2 network
environment to a more complex 4 × 4 network environment, causing the trend of task offloading
latency to fluctuate up and down. The DTOML scheme and DRL scheme are obviously superior to

CMC, 2025, vol.82, no.2 2625

Greedy scheme, PSO scheme and RL scheme, because both DTOML and DRL are model learning
and updating strategies based on pre training, but DTOML has the best optimization effect, because
DTOML scheme achieves the results that target value are lower than Greedy scheme, RL scheme, PSO
scheme and DRL scheme by optimizing parameter update efficiency, collaborative learning effect and
network transmission overhead.

Figure 6: The impact of gradient update steps on task offloading latency and energy consumption in
a 4 × 4 network environment (network environment A). (a) Latency. (b) Energy consumption

Fig. 7 shows the variation of task offloading latency and energy consumption with gradient
update steps for five algorithm schemes in a 3 × 3 network environment (network environment C).
From Fig. 7a, it can be observed that during the entire gradient update process, the proposed DTOML
scheme has a lower task offloading latency than the Greedy scheme, PSO scheme and RL scheme
in a 3 × 3 network environment. When the gradient update step size is small, the task offloading
delay of the DTOML scheme is higher than that of the DRL scheme, and as the gradient update
step size increases, the task offloading delay of the DTOML scheme is lower than that of the DRL
scheme, exhibiting better performance. From Fig. 7b, it can be observed that during the entire gradient
update process, the proposed DTOML scheme has lower task offloading energy consumption than the
Greedy scheme, PSO scheme, RL scheme, and DRL scheme in a 3 × 3 network environment. When the
gradient update step size is small, the task offloading energy consumption of the DTOML scheme is
higher than that of the DRL scheme, and as the gradient update step size increases, the task offloading
energy consumption of the DTOML scheme is lower than that of the DRL scheme, exhibiting better
performance.

Due to the fact that the Greedy scheme, RL scheme, PSO scheme, DRL scheme, and DTOML
scheme update their strategies through parameter optimization iterations with increasing gradient
update step size, the performance of the Greedy algorithm is poor as the gradient step size is updated,
resulting in a stable trend in target value. When the network environment changes from 4 × 4 to
3 × 3, the performance of the DRL scheme improves, causing the trend of task offloading latency
to fluctuate up and down. The DTOML scheme and DRL scheme are obviously superior to Greedy
scheme and RL scheme, because both DTOML and DRL are model learning and updating strategies
based on pre training, but the optimization effect of DTOML is the best, because DTOML scheme

2626 CMC, 2025, vol.82, no.2

achieves the effect that target value are lower than Greedy scheme, RL scheme and DRL scheme
by optimizing parameter update efficiency, collaborative learning effect and network transmission
overhead. The three different network environments A, B, and C are formed by the dynamic changes
in the network environment caused by the entry and exit of edge devices. According to Figs. 5–7, it
can be observed that the proposed DTOML scheme has lower task offloading latency and energy
consumption compared to the Greedy scheme, RL scheme, PSO scheme and DRL scheme. This
indicates that the proposed DTOML scheme always ensures better adaptability in different network
environments (A, B, C).

Figure 7: The impact of gradient update steps on task offloading latency and energy consumption in
a 3 × 3 network environment (network environment A). (a) Latency. (b) Energy consumption

5.1.1 Influence of Transmission Rate

Learning the offloading strategy for each transmission rate is considered a separate learning task,
and the trained meta strategy is evaluated at transmission rates of 6, 9, and 12 Mbps. From Fig. 8a,c,e,
it can be observed that as the channel transmission rate increases, the overall task offloading delay
shows a downward trend. That is, when the rate is 9 Mbps, the task offloading delay is generally smaller
than when the rate is 6 Mbps, and when the rate is 12 Mbps, the task offloading delay is basically
smaller than when the rate is 9 Mbps. As shown in Fig. 8a, when the rate is 6 Mbps, it can be seen
from the trend of the task offloading delay of the five algorithm schemes with the number of gradient
update steps that the proposed DTOML scheme has a higher task offloading delay than the DRL
scheme at the initial gradient update step, and a lower task offloading delay than the Greedy scheme,
RL scheme, and DRL scheme at other gradient update steps. From Fig. 8c,e, it can be observed that
when the channel transmission rate increases from 6 to 9 and 12 Mbps, even in the initial update steps,
the DTOML scheme achieves the lowest task offloading delay among the five algorithm schemes.
This proves that the proposed DTOML scheme has better delay optimization ability than the Greedy
scheme, PSO scheme, RL scheme, and DRL scheme.

CMC, 2025, vol.82, no.2 2627

Figure 8: The influence of different transmission rates on task offload delay and energy consumption

5.1.2 Impact of the Number of Tasks

From Fig. 8b,d,f, it can be observed that as the channel transmission rate increases, the overall
energy consumption of task offloading shows an upward trend. That is, when the channel transmission

2628 CMC, 2025, vol.82, no.2

rate is 9 Mbps, the energy consumption of task offloading is generally higher than that when
the channel transmission rate is 6 Mbps, and when the channel transmission rate is 12 Mbps, the
energy consumption of task offloading is basically higher than that when the channel transmission
rate is 9 Mbps. The trend of task offloading energy consumption with gradient step updates for
the five algorithm schemes shows that although the task offloading energy consumption increases
with the increase of gradient update steps, the proposed DTOML scheme consistently has lower
task offloading energy consumption than the Greedy scheme, RL scheme, PSO scheme and DRL
scheme, demonstrating good performance. From Fig. 8d,f, it can be observed that when the channel
transmission rate increases from 6 to 9 and 12 Mbps, the DTOML scheme also has the lowest task
offloading energy consumption among the five algorithm schemes. This proves that the proposed
DTOML scheme has better energy optimization ability than the Greedy scheme, RL scheme, PSO
scheme and DRL scheme.

Fig. 9 shows the variation of task offloading latency and energy consumption with gradient
update steps for five algorithm schemes under different task quantities. From Fig. 9a,c,e, it can be
observed that as the number of tasks increases, the overall trend of task offloading delay shows an
increasing trend, that is, the task offloading delay when the quantity is 40 is greater than that when
the quantity is 30, and the task offloading delay when the quantity is 50 is greater than that when the
quantity is 40. As shown in Fig. 9a, the trend of task offloading delay of the five algorithm schemes
with the update of gradient steps can be observed that during the entire update process of gradient
steps, the DTOML scheme proposed has a lower task offloading delay than the Greedy scheme when
the quantity is 30. The DTOML scheme proposed has a higher task offloading delay than the DRL
scheme at the initial gradient update steps, but at other gradient update steps, the DTOML scheme
has a lower task offloading delay than the Greedy scheme, RL scheme, PSO scheme and DRL scheme.
From Fig. 9a,c,e, it can be observed that when the quantity increases from 30 to 50, the task offloading
delay of the DTOML scheme is only slightly higher than the other three schemes at the initial update
step. As the gradient update step increases, the task offloading delay of the DTOML scheme is lower
than the other three schemes, proving that the proposed DTOML scheme has better delay optimization
ability than the Greedy scheme, RL scheme, PSO scheme and DRL scheme.

From Fig. 9b,d,f, it can be observed that as the number of tasks increases, the overall energy
consumption of task offloading shows an upward trend. The trend of task offloading energy
consumption with gradient step updates for the five algorithm schemes shows that although the task
offloading energy consumption increases with the increase of gradient update steps, the proposed
DTOML scheme has overall lower task offloading energy consumption than the Greedy scheme, RL
scheme, and DRL scheme, demonstrating good performance. From Fig. 9d,f, it can be observed that
when the quantity increases from 30 to 40 and 50, the DTOML scheme is also the scheme with the
lowest overall task offloading energy consumption among the five algorithm schemes. This proves
that the proposed DTOML scheme has better energy optimization ability than the Greedy scheme,
RL scheme, PSO scheme and DRL scheme.

The scheme proposed in this article obtains task specific strategies through inner loop training
of PPO algorithm. Compared with reinforcement learning, particle swarm optimization and other
algorithms, it has the advantages of handling high-dimensional state space and adapting to dynamic
environments that reinforcement learning, particle swarm optimization and other algorithms do not
have. In addition, this scheme models multiple Markov decision processes (MDPs), processes sequence
data through seq2seq network, and uses NSGA-II algorithm for Pareto optimization, which can more
comprehensively capture the dynamic features of different tasks and environments. It has stronger
accuracy, effectiveness, adaptability, and flexibility than deep reinforcement learning algorithms, and

CMC, 2025, vol.82, no.2 2629

can better reduce energy consumption and latency while ensuring performance, and improve overall
system efficiency.

Figure 9: The impact of different task quantities on task offloading latency and energy consumption

Tables 2 and 3 compare the average task offloading latency and energy consumption of five algo-
rithm schemes under different network environments, channel transmission rates, and task volumes.

2630 CMC, 2025, vol.82, no.2

It can be observed that under different comparison indicators, the proposed DTOML scheme has
lower average latency and energy consumption compared to the Greedy scheme, RL scheme, and DRL
scheme. In different network environments, the lower the average latency and energy consumption of
task offloading in the DTOML scheme, the better its adaptability. At different channel transmission
rates and task volumes, the lower the average task offloading delay and average energy consumption
of the DTOML scheme, the better the joint optimization ability.

Table 2: The average time delay of five algorithm schemes under different conditions

Data Greedy
scheme/(ms)

RL
scheme/(ms)

PSO
scheme/(ms)

DRL
scheme/(ms)

DTOML
scheme/(ms)

Network
environment A

848.0 847.8 845.2 824.4 812.2

Network
environment B

848.0 843.0 843.1 687.5 675.2

Network
environment C

860.0 857.9 857.1 784.2 758.7

Rup = Rdown = 6 990.0 988.3 986.9 962.8 935.6
Rup = Rdown = 9 762.0 758.2 760.6 758.7 717.8
Rup = Rdown = 12 683.0 657.9 661.4 615.4 577.4
Task number = 30 892.0 845.8 855.4 843.6 835.6
Task number = 40 1278.0 1220.6 1225.6 1211.1 1208.3
Task number = 50 1592.0 1523.9 1528.9 1522.2 1507.2
CPU cycles 1118.2 1049.1 1052.3 966.4 930.9

Table 3: The average energy consumption of five algorithm schemes under different conditions

Data Greedy
scheme/(J)

RL scheme/(J) PSO
scheme/(ms)

DRL
scheme/(J)

DTOML
scheme/(J)

Network
environment A

948.0 948.4 942.6 925.2 913.8

Network
environment B

1050.8 1054.6 1043.2 897.4 888.8

Network
environment C

1240.0 1238.6 1228.8 1164.0 1140.2

Rup = Rdown = 6 1090.0 1089.2 1085.2 1063.2 1036.4
Rup = Rdown = 9 1262.0 1258.6 1254.4 1261.2 1220.8
Rup = Rdown = 12 1483.0 1458.6 1462.4 1415.8 1378.0
Task number = 30 1042.0 996.6 992.4 995.6 989.6
Task number = 40 1488.0 1430.6 1444.6 1423.2 1421.0

(Continued)

CMC, 2025, vol.82, no.2 2631

Table 3 (continued)

Data Greedy
scheme/(J)

RL scheme/(J) PSO
scheme/(ms)

DRL
scheme/(J)

DTOML
scheme/(J)

Task number = 50 1912.0 1843.0 1846.2 1841.2 1829.2
CPU cycles 1460.6 1423.2 1420.8 1395.4 1396.3

From Fig. 10, it can be observed that as the number of CPU cycles allocated to each user increases,
the time delay and energy consumption of each algorithm gradually decrease, but the decrease in time
delay will be more pronounced. This is because as the allocated CPU cycles increase, there are more
available computing resources, and tasks are processed faster, resulting in an obvious reduction in
time delay. The system energy consumption includes two parts: transmission and computation energy
consumption. Although more computing resources are allocated, the task offloading process involves
two processes: transmission and computation, both of which consume energy. Therefore, the reduction
in energy consumption is not as significant.

Figure 10: The impact of the CPU cycle for each user on task offloading latency and energy
consumption. (a) Latency. (b) Energy consumption

6 Conclusion

In this paper, to solve the problem that the learning task offloading strategy cannot have
good adaptability in different network environments, a distributed edge computing adaptive task
offloading scheme based on MRL is proposed, which simultaneously realizes the joint optimization
of delay and energy consumption in edge computing networks. In this paper, we first establish various
network environment models and formulate the task offloading strategy using DAGs. Subsequently,
we employ meta reinforcement learning MDP and seq2seq for adaptive training of task scheduling
strategies. To jointly optimize delay and energy consumption, we integrate the NSGA-II algorithm.
Simulation results reveal that the proposed distributed edge computing adaptive task offloading

2632 CMC, 2025, vol.82, no.2

scheme (DTOML), which utilizes a meta strategy, exhibits remarkable advantages across various
network environments, transmission rates, and task sequences. From the average values in Tables 2 and
3, it can be observed that our algorithm performs the best. In comparison to other edge computing
adaptive task offloading schemes, the DTOML achieves a 21% reduction in delay and a 19% reduction
in energy consumption.

For more dynamic or resource constrained environments, the number and layers of neurons in
the PPO actor network and critic network during inner loop training can be increased to enhance the
model’s expressive power. In the future, multi-agent collaborative offloading strategy will be further
studied to enable multiple edge computing nodes to work in coordination and further improve the
efficiency and robustness of the overall system.

Acknowledgement: The authors gratefully acknowledge the helpful comments and suggestions of the
reviewers and editors, which have improved the presentation.

Funding Statement: This research was funded by the Fundamental Research Funds for the Central
Universities (J2023-024, J2023-027).

Author Contributions: Conceptualization, Jiajia Liu and Jianhua Liu; methodology, Jiajia Liu and
Jianhua Liu; validation, Jiajia Liu, Peng Xie, Wei Li, Bo Tang and Jianhua Liu; investigation,
Jiajia Liu, Peng Xie and Wei Li; writing—original draft preparation, Wei Li and Jianhua Liu;
writing—review and editing, Jiajia Liu, Peng Xie, Wei Li, Bo Tang and Jianhua Liu; supervision,
Jiajia Liu and Jianhua Liu; project administration, Jianhua Liu. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] M. -R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall and R. Govindan, “Odessa: Enabling interactive

perception applications on mobile devices,”Commun. Biol., pp. 43–56, 2011. doi: 10.1145/1999995.2000000.
[2] Z. Liu et al., “PPRU: A privacy-preserving reputation updating scheme for cloud-assisted vehicular

networks,” IEEE Trans. Vehicular Technol., pp. 1–16, 2023. doi: 10.1109/TVT.2023.3340723.
[3] D. Sabella et al., “Developing software for multi-access edge computing,” ETSI White Paper, vol. 20, pp.

1–38, 2019. Accessed: Aug. 26, 2024. [Online]. Available: https://www.etsi.org.
[4] J. B. da Costa et al., “Mobility-aware vehicular cloud formation mechanism for vehicular edge computing

environments,” Ad Hoc Netw., vol. 151, no. 1, 2023, Art. no. 103300. doi: 10.1016/j.adhoc.2023.103300.
[5] Z. Liu et al., “PPTM: A privacy-preserving trust management scheme for emergency message dissemination

in space–air–ground-integrated vehicular networks,” IEEE Internet Things J., vol. 9, no. 8, pp. 5943–5956,
2022. doi: 10.1109/JIOT.2021.3060751.

[6] Q. Tang, C. Dai, Z. Yu, D. Cao, and J. Wang, “An UAV and EV based mobile edge computing
system for total delay minimization,” Comput. Commun., vol. 212, no. 1, pp. 104–115, 2023. doi:
10.1016/j.comcom.2023.09.025.

[7] J. Liu, Z. Wu, J. Liu, and X. Tu, “Distributed location-aware task offloading in multi-UAVs enabled edge
computing,” IEEE Access, vol. 10, no. 2, pp. 72416–72428, 2022. doi: 10.1109/ACCESS.2022.3189682.

https://doi.org/10.1145/1999995.2000000
https://doi.org/10.1109/TVT.2023.3340723
https://www.etsi.org
https://doi.org/10.1016/j.adhoc.2023.103300
https://doi.org/10.1109/JIOT.2021.3060751
https://doi.org/10.1016/j.comcom.2023.09.025
https://doi.org/10.1109/ACCESS.2022.3189682

CMC, 2025, vol.82, no.2 2633

[8] J. Liu, P. Xie, J. Liu, and X. Tu, “Task offloading and trajectory optimization in UAV networks: A deep
reinforcement learning method based on SAC and A-star,” Comput. Model. Eng. Sci., vol. 141, no. 2, pp.
1243–1273, 2024. doi: 10.32604/cmes.2024.054002.

[9] J. Liu, Z. Wu, J. Liu, and Y. Zou, “Cost research of internet of things service architecture for random
mobile users based on edge computing,” Int. J. Web Inf. Syst., vol. 18, no. 4, pp. 217–235, 2022. doi:
10.1108/IJWIS-02-2022-0039.

[10] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with dynamic voltage and frequency scaling
for energy minimization in the mobile cloud computing environment,” IEEE Trans. Serv. Comput., vol. 8,
no. 2, pp. 175–186, 2015. doi: 10.1109/TSC.2014.2381227.

[11] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji and M. Bennis, “Optimized computation offloading performance
in virtual edge computing systems via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, 2019. doi: 10.1109/JIOT.2018.2876279.

[12] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement learning-based task offloading
framework for edge-cloud computing,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 3, pp. 3448–3459,
2021. doi: 10.1109/TNSM.2021.3087258.

[13] S. Dong et al., “Task offloading strategies for mobile edge computing: A survey,” Comput. Netw., vol. 254,
no. 6, 2024, Art. no. 110791. doi: 10.1016/j.comnet.2024.110791.

[14] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation for mobile edge computing-based
augmented reality applications,” IEEE Wirel. Commun. Lett., vol. 6, no. 3, pp. 398–401, 2017. doi:
10.1109/LWC.2017.2696539.

[15] T. Lyu, H. Xu, and Z. Han, “Multi-leader multi-follower stackelberg game based resource allocation
in multi-access edge computing,” in ICC 2022–IEEE Int. Conf. Commun., 2022, pp. 4306–4311. doi:
10.1109/ICC45855.2022.9838425.

[16] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive task offloading in edge computing
based on meta reinforcement learning,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242–253, 2021.
doi: 10.1109/TPDS.2020.3014896.

[17] B. Hu, Y. Shi, and Z. Cao, “Adaptive energy-minimized scheduling of real-time applications in
vehicular edge computing,” IEEE Trans. Ind. Inform., vol. 19, no. 5, pp. 6895–6906, 2023. doi:
10.1109/TII.2022.3207754.

[18] S. Dong, Y. Xia, and J. Kamruzzaman, “Quantum particle swarm optimization for task offload-
ing in mobile edge computing,” IEEE Trans. Ind. Inform., vol. 19, no. 8, pp. 9113–9122, 2023. doi:
10.1109/TII.2022.3225313.

[19] J. Liu, J. Wei, R. Luo, G. Yuan, J. Liu and X. Tu, “Computation offloading in edge computing for
internet of vehicles via game theory,” Comput. Mater. Contin., vol. 81, no. 1, pp. 1337–1361, 2024. doi:
10.32604/cmc.2024.056286.

[20] S. R. Jeremiah, L. T. Yang, and J. H. Park, “Digital twin-assisted resource allocation framework based on
edge collaboration for vehicular edge computing,” Future Gener. Comput. Syst., vol. 150, no. 3, pp. 243–254,
2024. doi: 10.1016/j.future.2023.09.001.

[21] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application partitioning algorithm in
mobile environments,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 7, pp. 1464–1480, 2019. doi:
10.1109/TPDS.2019.2891695.

[22] D. Silver et al., “Mastering the game of go without human knowledge,” Nature, vol. 550, no. 7676, pp.
354–359, 2017. doi: 10.1038/nature24270.

[23] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” 2015. doi:
10.48550/arXiv.1509.02971.

[24] A. Zhu et al., “Computation offloading for workflow in mobile edge computing based on deep Q-learning,”
in 2019 28th Wirel. Opt. Commun. Conf. (WOCC), 2019, pp. 1–5. doi: 10.1109/WOCC.2019.8770689.

[25] J. Vanschoren, “Meta-learning: A survey,” 2018. doi: 10.48550/arXiv.1810.03548.
[26] H. Fu, H. Tang, J. Hao, W. Liu, and C. Chen, “MGHRL: Meta goal-generation for hierarchical reinforce-

ment learning,” 2019. doi: 10.48550/arXiv.1909.13607.

https://doi.org/10.32604/cmes.2024.054002
https://doi.org/10.1108/IJWIS-02-2022-0039
https://doi.org/10.1109/TSC.2014.2381227
https://doi.org/10.1109/JIOT.2018.2876279
https://doi.org/10.1109/TNSM.2021.3087258
https://doi.org/10.1016/j.comnet.2024.110791
https://doi.org/10.1109/LWC.2017.2696539
https://doi.org/10.1109/ICC45855.2022.9838425
https://doi.org/10.1109/TPDS.2020.3014896
https://doi.org/10.1109/TII.2022.3207754
https://doi.org/10.1109/TII.2022.3225313
https://doi.org/10.32604/cmc.2024.056286
https://doi.org/10.1016/j.future.2023.09.001
https://doi.org/10.1109/TPDS.2019.2891695
https://doi.org/10.1038/nature24270
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1109/WOCC.2019.8770689
https://doi.org/10.48550/arXiv.1810.03548
https://doi.org/10.48550/arXiv.1909.13607

2634 CMC, 2025, vol.82, no.2

[27] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell and D. Hassabis, “Reinforcement
learning, fast and slow,” Trends Cogn. Sci., vol. 23, no. 5, pp. 408–422, 2019. doi: 10.1016/j.tics.2019.02.006.

[28] K. Thar, T. Z. Oo, Z. Han, and C. S. Hong, “Meta-learning-based deep learning model deployment
scheme for edge caching,” in 2019 15th Int. Conf. Netw. Serv. Manag. (CNSM), 2019, pp. 1–6. doi:
10.23919/CNSM46954.2019.9012733.

[29] L. Niu et al., “Multiagent meta-reinforcement learning for optimized task scheduling in heteroge-
neous edge computing systems,” IEEE Internet Things J., vol. 10, no. 12, pp. 10519–10531, 2023. doi:
10.1109/JIOT.2023.3241222.

[30] M. Avgeris, M. Mechennef, A. Leivadeas, and I. Lambadaris, “A two-stage cooperative reinforcement
learning scheme for energy-aware computational offloading,” in 2023 IEEE 24th Int. Conf. High Perfor-
mance Switching Routing (HPSR), 2023, pp. 179–184. doi: 10.1109/HPSR57248.2023.10147932.

[31] Y. Li, J. Li, Z. Lv, H. Li, Y. Wang and Z. Xu, “GASTO: A fast adaptive graph learning framework for
edge computing empowered task offloading,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 2, pp. 932–944,
2023. doi: 10.1109/TNSM.2023.3250395.

[32] H. Xie, D. Ding, L. Zhao, K. Kang, and Q. Liu, “A two-stage preference driven multi-objective evolutionary
algorithm for workflow scheduling in the cloud,”Expert. Syst. Appl., vol. 238, no. 18, 2024, Art. no. 122009.
doi: 10.1016/j.eswa.2023.122009.

[33] P. L. Manikowski, D. J. Walker, and M. J. Craven, “Multi-objective optimisation of the benchmark wind
farm layout problem,” J. Mar. Sci. Eng., vol. 9, no. 12, 2021. doi: 10.3390/jmse9121376.

[34] N. Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz, and S. Mirjalili, “A comparative study of recent multi-
objective metaheuristics for solving constrained truss optimisation problems,” Arch. Computat. Methods
Eng., vol. 28, no. 5, pp. 4031–4047, 2021. doi: 10.1007/s11831-021-09531-8.

[35] M. Chen and Z. Jun, “Research on layered microgrid operation optimization based on NSGA-II
algorithm,” in 2018 Int. Conf. Power Syst. Technol. (POWERCON), IEEE, 2018, pp. 2149–2156. doi:
10.1109/POWERCON.2018.8602169.

[36] S. Verma, M. Pant, and V. Snasel, “A comprehensive review on NSGA-II for multi-objective combinatorial
optimization problems,” IEEE Access, vol. 9, pp. 57757–57791, 2021. doi: 10.1109/ACCESS.2021.3070634.

[37] P. Wang, F. Xue, H. Li, Z. Cui, L. Xie and J. Chen, “A multi-objective DV-hop localization algorithm based
on NSGA-II in internet of things,”Mathematics, vol. 7, no. 2, 2019, Art. no. 184. doi: 10.3390/math7020184.

[38] D. Liu, Q. Huang, Y. Yang, D. Liu, and X. Wei, “Bi-objective algorithm based on NSGA-II frame-
work to optimize reservoirs operation,” J. Hydrol., vol. 585, no. 3, 2020, Art. no. 124830. doi:
10.1016/j.jhydrol.2020.124830.

[39] S. Long, Y. Zhang, Q. Deng, T. Pei, J. Ouyang and Z. Xia, “An efficient task offloading approach based on
multi-objective evolutionary algorithm in cloud-edge collaborative environment,” IEEE Trans. Netw. Sci.
Eng., vol. 10, no. 2, pp. 645–657, 2022. doi: 10.1109/TNSE.2022.3217085.

[40] L. Pan, X. Liu, Z. Jia, J. Xu, and X. Li, “A multi-objective clustering evolutionary algorithm for multi-
workflow computation offloading in mobile edge computing,” IEEE Trans. Cloud Comput., vol. 11, no. 2,
pp. 1334–1351, 2021. doi: 10.1109/TCC.2021.3132175.

[41] K. Palasundram, N. Mohd Sharef, K. A. Kasmiran, and A. Azman, “Enhancements to the sequence-
to-sequence-based natural answer generation models,” IEEE Access, vol. 8, pp. 45738–45752, 2020. doi:
10.1109/ACCESS.2020.2978551.

[42] Z. Masood, R. Gantassi, and Y. A. Choi, “A multi-step time-series clustering-based seq2seq lstm learning
for a single household electricity load forecasting,” Energies, vol. 15, no. 7, 2022, Art. no. 2623. doi:
10.3390/en15072623.

https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.23919/CNSM46954.2019.9012733
https://doi.org/10.1109/JIOT.2023.3241222
https://doi.org/10.1109/HPSR57248.2023.10147932
https://doi.org/10.1109/TNSM.2023.3250395
https://doi.org/10.1016/j.eswa.2023.122009
https://doi.org/10.3390/jmse9121376
https://doi.org/10.1007/s11831-021-09531-8
https://doi.org/10.1109/POWERCON.2018.8602169
https://doi.org/10.1109/ACCESS.2021.3070634
https://doi.org/10.3390/math7020184
https://doi.org/10.1016/j.jhydrol.2020.124830
https://doi.org/10.1109/TNSE.2022.3217085
https://doi.org/10.1109/TCC.2021.3132175
https://doi.org/10.1109/ACCESS.2020.2978551
https://doi.org/10.3390/en15072623

CMC, 2025, vol.82, no.2 2635

[43] Y. Keneshloo, T. Shi, N. Ramakrishnan, and C. K. Reddy, “Deep reinforcement learning for sequence-
to-sequence models,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2469–2489, 2020. doi:
10.1109/TNNLS.2019.2929141.

[44] H. Ma, Y. Zhang, S. Sun, and Y. Shan, “A comprehensive survey on NSGA-II for multi-objective
optimization and applications,” Artif. Intell. Rev., vol. 56, no. 12, pp. 15217–15270, 2023. doi:
10.1007/s10462-023-10526-z.

https://doi.org/10.1109/TNNLS.2019.2929141
https://doi.org/10.1007/s10462-023-10526-z

	Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning
	1 Introduction
	2 Related Work
	3 System Model and Overview of the Problem
	4 Meta-Policy-Based Distributed Edge Computing Adaptive Task Offloading Scheme DTOML
	5 Performance Evaluation
	6 Conclusion
	References

