
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.058779

ARTICLE

Telecontext-Enhanced Recursive Interactive Attention Fusion Method for
Line-Level Defect Prediction

Haitao He1, Bingjian Yan1, Ke Xu1,* and Lu Yu1,2

1School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066000, China
2Hebei Port Group Co., Ltd., Tangshan, 063000, China
*Corresponding Author: Ke Xu. Email: xuke_kara@163.com
Received: 20 September 2024 Accepted: 04 November 2024 Published: 17 February 2025

ABSTRACT

Software defect prediction aims to use measurement data of code and historical defects to predict potential prob-
lems, optimize testing resources and defect management. However, current methods face challenges: (1) Coarse-
grained file level detection cannot accurately locate specific defects. (2) Fine-grained line-level defect prediction
methods rely solely on local information of a single line of code, failing to deeply analyze the semantic context of
the code line and ignoring the heuristic impact of line-level context on the code line, making it difficult to capture the
interaction between global and local information. Therefore, this paper proposes a telecontext-enhanced recursive
interactive attention fusion method for line-level defect prediction (TRIA-LineDP). Firstly, using a bidirectional
hierarchical attention network to extract semantic features and contextual information from the original code
lines as the basis. Then, the extracted contextual information is forwarded to the telecontext capture module to
aggregate the global context, thereby enhancing the understanding of broader code dynamics. Finally, a recursive
interaction model is used to simulate the interaction between code lines and line-level context, passing information
layer by layer to enhance local and global information exchange, thereby achieving accurate defect localization.
Experimental results from within-project defect prediction (WPDP) and cross-project defect prediction (CPDP)
conducted on nine different projects (encompassing a total of 32 versions) demonstrated that, within the same
project, the proposed methods will respectively recall at top 20% of lines of code (Recall@Top20%LOC) and
effort at top 20% recall (Effort@Top20%Recall) has increased by 11%–52% and 23%–77%. In different projects,
improvements of 9%–60% and 18%–77% have been achieved, which are superior to existing advanced methods
and have good detection performance.

KEYWORDS
Line-level defect prediction; telecontext capture; recursive interactive structure; hierarchical attention network

1 Introduction

As software projects grow in scale and the complexity of modifications increases, the timely
identification and correction of software defects become increasingly critical to maintaining software
quality and minimizing maintenance costs. If defects cannot be detected and corrected promptly,
they may have a serious impact on product quality [1]. In this context, software flaw forecasting

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.058779
https://www.techscience.com/doi/10.32604/cmc.2024.058779
mailto:xuke_kara@163.com

2078 CMC, 2025, vol.82, no.2

has emerged as a potent tool for software quality assurance, which can help quality assurance teams
identify potential problems in the early stages of development, optimize resource allocation, and ensure
that testing work is targeted and efficient. By analyzing historical data, researchers design metrics
that are strongly correlated with software defects. They then utilize statistical or artificial intelligence
methods to construct defect forecasting frameworks to predict the defect tendency and severity,
or the distribution of defects across software modules, ultimately enhancing the robustness of the
software [2].

In recent years, scholars have introduced approaches for predicting software defects that operate
across multiple levels of granularity, addressing different aspects of software reliability and main-
tenance, which are divided based on different levels of software structure, from advanced file level
[3] to more refined method level [4] and statement level [5] analysis. Xu et al. [6] used graph neural
networks to capture sub tree feature information with potential defects in abstract syntax trees, and
combined semantic information and contextual information learned based on abstract syntax tree
(AST) representation to obtain defect feature information. Later, Uddin et al. [7] used a bidirectional
long-short-term memory network (BiLSTM) to learn the contextual information in the embedded
token vector represented by the source code using the bidirectional encoder representations from
transformers (BERT) model, in order to capture the semantic features of the code and preserve
the semantic and contextual information of the source code. Abdu et al. [3] fully utilized features
extracted from different source code perspectives, using gating mechanisms to combine syntax level
features extracted from AST and semantic graph features extracted from control flow graph and data
dependency graph for defect prediction. Zhao et al. [8] proposed a multi stream graph neural network
model that combines AST and control flow graph (CFG) with data flow extended control flow graph
(ECFG) for defect prediction, utilizing the context dependency relationship and syntax structure of
the code. However, they generally face the problem that the prediction granularity is too coarse [9] to
directly point out the specific location of the defective code for developers.

To enhance prediction accuracy, the researchers further explored fine-grained defect prediction
methods. Shao et al. [10] used association rule mining techniques to simplify association rules by
considering only one feature and one class label, making the model easier to interpret and understand.
Yang et al. [4] further refined the granularity of defect prediction, down to the method level, generating
a method call sequence containing code context and semantic information. They used a transformer
model to map the method call sequence to a low dimensional vector space, extracting semantic and
syntactic features. Majd et al. [5] designed a set of statement level metrics consisting of 32 items, such
as the number of times unary and binary operators are used in a statement. Then, a long-short-term
memory (LSTM) network is used to learn and process sentence level features to identify sentence level
defects.

These methods predict defects by analyzing method and statement level features. Although finer
grained code representation improves the accuracy of defect prediction, it still cannot accurately locate
specific lines of code. This means that developers need to invest extra time reviewing files one by one
and locating erroneous lines of code, greatly reducing review efficiency.

Therefore, researchers have further explored row level defect prediction techniques, aiming to
improve code review efficiency, more accurately locate code errors, and predict potential defect
risks. Wattanakriengkrai et al. [11] used LIME technology to identify risk markers, enabling file
level models to predict defect lines in code. Zhu et al. [12] combined the BiLSTM model with
extended code syntax information to predict row level defects. The DeepLineDP model proposed by
Pornprasit et al. [13] utilized a bidirectional gated recurrent unit (Bi-GRU) network and attention

CMC, 2025, vol.82, no.2 2079

mechanism to estimate the defect probability of code lines from defective files. These advanced
methods have made significant progress in line level defect prediction, but there are still shortcomings
in gaining a deeper understanding of the connections and interactions between code lines and their
contexts. The existing row level defect prediction methods still need improvement when dealing with
complex code structures and contextual relationships.

In order to provide a clearer explanation of the issues that may arise when a line of code lacks a
global context, as well as the interaction between the line of code and its local context, we have provided
a simplified example in the figure as an illustration. Fig. 1 shows an example of motivation in our
research, with code snippets sourced from the dataset used in this study. The code in Fig. 1a contains
a flaw on Line 6: when returning null, it may cause a NullPointerException. To address this issue, the
fix code in Fig. 1b modifies it to return a Field array of length 0. Through this example, we can draw the
following two important observations: Observation 1: The occurrence of defects depends on specific
calling contexts. The code in Fig. 1a only returns null when dataList.size()==0, without considering
that the caller may not have performed a null value check. Developers often assume by default that
the fetchData method will not return null. Especially when the call to the fetchData method occurs
outside of the DataManager class, the caller often ignores the null check on the return value. This
indicates that the source code model should not be limited to a local single granularity, especially in
cross method or cross module calls, where the potential risk of defects can be hidden due to context.
Observation 2: Although these two code snippets have slight differences in details, their semantics are
significantly different. As shown in Fig. 1, the difference lies in whether the return value on the 7th
line chooses to return NOFINELDS or null. In Fig. 1b, since the reference to NODATA is an object
(as shown in Line 2 of Fig. 1b), it does not trigger an exception, while the null in Fig. 1a may cause the
caller to encounter a NullPointerException. Therefore, this distinction actually reflects the difference
between objects and null. If you only look at the local code and ignore the global context (such as how
the caller handles the return value), hidden defects may be overlooked. In this case, local code returning
null or NO-DATA can cause different behaviors at the caller and may even lead to errors. Therefore,
only by analyzing the lines of code while considering the global context can we truly understand the
impact of these changes on system behavior. The interaction between global and local is crucial in
locating and resolving potential defects.

Figure 1: The motivation example studied in this article: comparison between code snippet (a) and
code snippet (b)

In response to the above issues, this paper proposes a telecontext-enhanced recursive interactive
attention fusion method TRIA-LineDP for line-level defect prediction. Specifically, the initial step

2080 CMC, 2025, vol.82, no.2

involves utilizing a pre-trained word to vector (Word2vec) model to transform the code file into a
vector representation. This process effectively extracts the semantic content embedded within the
code. At the same time, Bi-GRU is used to extract the code line feature information and context
feature information. Subsequently, the telecontext capture module is employed to capture remote
interaction information of line-level context based on content and location across multiple dimensions.
This module effectively captures remote dependencies between lines of code, addressing the limitation
of relying solely on information from neighboring lines and neglecting remote interactions. Finally,
by using a recursive interaction structure to fuse and pass heuristic contextual information layer
by layer, combined with an attention mechanism, different importance weights are assigned to each
line of code, effectively capturing important global and local dependencies, and obtaining enhanced
representations for each line of code, thereby improving the recognition accuracy of defective code
lines. On the test dataset, the model can be used to obtain the probability of defects in each line of code
and code file, and the performance of the model can be evaluated using traditional metrics such as Area
Under the Curve (AUC), Balanced Accuracy (BA), Matthews Correlation Coefficient (MCC) and
Geometric Mean (GM). In addition, by ranking code lines using defect probability, three key metrics
can be used to evaluate model performance: Recall@Top20% proportion of defects identified within
the first 20% of LOC measurement code lines to the total number of defects, Effort@Top20%Recall
and evaluate the effort required to achieve the goal Recall@Top20%LOC and Initial False Alarm (IFA)
are used to check frequency analysis. The experimental results demonstrate that the TRIA-LineDP
method outperforms other leading defect prediction techniques, showcasing superior performance
across several key metrics. Specifically, for file-level defect prediction, the TRIA-LineDP method
achieves higher scores in the AUC (Area Under the Curve), MCC (Matthews Correlation Coefficient),
BA (Balanced Accuracy) and GM (Geometric Mean) indicators. Additionally, at the row level, it
excels in the Recall@Top20%LOC, Effort@Top20%Recall and IFA metrics, further underscoring its
effectiveness in identifying defects efficiently and accurately.

The main contributions of this paper are as follows:

1. The telecontext capture module was designed, and through the remote interactive attention
mechanism based on content and location, it is employed to enhance the global aggregation
capability of line-level contexts, thereby mitigating the issue of remote dependencies within
the code.

2. A recursive interaction structure is designed, which is passed and fused layer by layer through
heuristic effects between lines of code and line-level contexts, to integrate line-of-code informa-
tion with line-level contextual information, with a special focus on global and local dynamic
interactions between lines of code and their contexts. This approach enables deeper mining and
expression of core features.

3. A novel code-based telecontext-enhanced recursive interactive attention fusion method TRIA-
LineDP, is proposed for line-level defect prediction. This method combines a telecontext
capture module and recursive interaction structure, which can effectively capture and fuse
global and local interaction dependencies in the code.

4. Experiments were carried out on multiple open-source benchmark projects, and the proposed
method was compared with other advanced defect prediction techniques under both intra-
and inter-project conditions. The results indicate that the TRIA-LineDP method delivers good
prediction performance in defect prediction tasks.

The organizational structure of this paper is outlined as follows: Chapter 2 analyzes the current
related work. Chapter 3 provides a detailed introduction to the structure of TRIA-LineDP and the

CMC, 2025, vol.82, no.2 2081

functions of its modules. Chapter 4 introduces the experimental procedure and analyzes the results.
Finally, Chapter 5 summarizes the content of this article.

2 Related Work

Software defect prediction is an important research field in software engineering, with the main
purpose of helping development teams effectively allocate testing resources and improve software
quality and reliability. Scholars have proposed defect detection methods for different granularities,
which are divided according to different levels of software structure, from high-level file level [3]
to more refined method level [4] and statement level [5] for analysis. File level defect prediction is
one of the earliest and most widely researched methods in this field. Due to its fundamental role in
understanding and identifying potential defects in software systems, file level methods have received
widespread attention. This method predicts whether a file contains defects by analyzing file level
features such as code complexity, annotation density, modification history, etc.

File-level defect prediction represents one of the earliest and most extensively researched
approaches within the field of defect prediction. This method has garnered significant attention
due to its foundational role in understanding and identifying potential defects across various
software systems. The file-level approach predicts whether a file contains defects by analyzing file-
level characteristics such as code complexity, comment density, modification history, and so on.
Xu et al. [6] proposed a method of integrating semantic and contextual information to identify software
defects, combined with the use of AST to represent learning and graph neural networks to capture
subtrees with potential defect information (GNNs-DP). Through this method, effective semantic and
contextual information was extracted from the source code. Uddin et al. [7] used embedded label
vectors learned from the BERT model to process contextual information and identify key features
in nodes (SDP-BB) based on a bidirectional long short-term memory network (BiLSTM). This
model preserves the hierarchical structure and syntax relationships of the code, thereby improving
the performance of code feature representation. Abdu et al. [3] proposed a deep level convolutional
neural network (DH-CNN) that combines feature representations extracted from different source code
perspectives. word to vector (Word2vec) and node to vector (Node2vec) techniques are respectively
used to extract syntax level features from abstract syntax trees (ASTs) and semantic graph features
from Control Flow Graphs and Data Dependency Graphs for defect prediction. Liu et al. [14] using
node features and basic path features extracted separately from the program dependency graph,
highly correlated multi feature fusion (MF) is integrated with relevant contextual information, and an
optimized support vector machine (SVM) algorithm is used to design a multi feature labeling method
specifically for identifying high-risk defects. Zhao et al. [8] proposed a multi flow graph neural network
model that combines AST and CFG with data flow for defect prediction (MFGNN). In the outer
layer, an inter process extended control flow graph (ECFG) is used to depict the dependencies between
basic blocks. In the inner layer, the structure of each basic block is represented by an Abstract Syntax
Tree (AST). However, File level defect prediction can only indicate to developers which files may have
defects, but they still need to further browse the entire file to locate specific lines of defective code,
which invisibly increases the workload and reduces the efficiency of code review. Therefore, it is crucial
to study more refined line level defect prediction in order to improve the accuracy and efficiency of
code review.

With advancing research, defect prediction granularity has been refined to class and method
levels. Methods at these levels use static attributes, such as the Chidamber and Kemerer Metrics
Suite (CK) [15] and Metrics for Object-Oriented Design (MOOD) [16], primarily for class-level defect

2082 CMC, 2025, vol.82, no.2

prediction. For method-level prediction, metrics like McCabe Cyclomatic Complexity (McCabe)
[17] and Halstead Complexity Measures (Halstead) [18] are widely applied. Shao et al. [10] used
atomic association rule mining (ACAR) to explore attribute-category relationships, demonstrating
that association rules contribute significantly to defect prediction. Yang et al. [4] further refining the
granularity of defect prediction to the method level, a method call sequence defect prediction method
based on code context and semantic information is proposed. And use transformer to build a defect
prediction model that generates semantic and syntactic structural features (TSASS). Majd et al. [5]
designed a set of statement level indicators consisting of 32 different indicators was designed, covering
elements such as the frequency of use of unary and binary operators in statements. Then, a Long Short
Term Memory (LSTM) network was used to learn and process statement level static code features,
constructing a statement level deep learning model to identify statement level defects (SLDeep).
Although these prediction methods are more granular than at the file level, they still fail to pinpoint
specific defective lines of code. Developers still need to further search for potential defective code
lines within the scope of methods or classes, which increases additional workload and affects the
efficiency of defect repair. Therefore, it is crucial to develop more fine-grained defect prediction
methods, especially those that can directly identify specific defect lines of code.

Recent studies have shifted focus towards row-level defect prediction, aiming to enhance the
precision of defect detection through more detailed analysis. Wattanakriengkrai et al. [11] proposed a
new line level defect prediction framework (Line-DP) using model independent techniques (LIME).
The LIME method is used to calculate the LIME score for each label in the defect file, and labels
with positive scores are considered risk labels. The lines are ranked based on the score to identify
high-risk lines. However, as a local interpretation model, LIME may overlook global features and the
contextual relationships between lines. Mahbub et al. [19] proposed a hierarchical encoder structure
was proposed to explore code defects (a.k.a. bug) and capture code context for row level defect predic-
tion (Bugsplorer), emphasizing the importance of contextual information. Zhu et al. [12] combined a
BiLSTM model with extended syntax information for improved line-level prediction (SyntaxLineD),
leveraging bidirectional LSTM to capture code dependencies. While BiLSTM recognizes nearby
dependencies effectively, it struggles with long-range dependencies and capturing global context.
Wang et al. [20] identified bug lines by using an n-gram model to detect unnatural tags (Bugram), but its
fixed-length context limits its ability to capture extended dependencies. Thus, some defect features that
require a broader context may be missed. In addition, Pornpraset et al. [13] developed the DeepLineDP
model, which uses a Bi-GRU to capture adjacent tokens and line-level context, employing attention to
calculate vulnerability scores for each line. However, DeepLineDP focuses on a single level of context,
limiting dynamic interactions between code lines and their context.

While various methods exist for line-level defect prediction, most rely solely on a single layer
of local information from individual code lines and do not fully utilize the contextual interactions
between lines or a comprehensive consideration of global and local information, limiting prediction
accuracy. The approach in this research effectively identifies defective lines by analyzing both global
and local interaction features within the code. Its core advantage lies in capturing dynamic interactions
between code lines and their context, allowing for a deeper representation of code features. Table 1
presents a summary and comparison of relevant software defect prediction methods.

CMC, 2025, vol.82, no.2 2083

Table 1: Summary of related software defect prediction approaches

Ref. No. Published year Approach name Advantages Disadvantages

Xu et al. [6] 2020 GNNs-DP By combining AST
and GNN, the model
can learn latent defect
information from
defective subtrees and
dynamically adjust
according to the
repaired changes,
enhancing the
adaptability of
learning.

The
coarse-grained
prediction of file
level defects limits
its ability to
locate specific
defect codes,
resulting in lower
repair efficiency.

Uddin et al. [7] 2022 SDP-BB Using BiLSTM and
embedded token
vectors learned based
on BERT model to
process contextual
information can better
capture the semantic
and contextual
information of the
source code.

Abdu et al. [3] 2024 DH-CNN Multiple source code
representations
compensate for the
limitations in software
defect prediction
caused by a single
code representation.

Liu et al. [14] 2023 MFSVM By fusing multiple
strongly correlated
features and using
label generation
methods, the curse of
dimensionality that
may arise from multi
feature fusion has
been solved.

(Continued)

2084 CMC, 2025, vol.82, no.2

Table 1 (continued)

Ref. No. Published year Approach name Advantages Disadvantages

Zhao et al. [8] 2022 MFGNN Introducing the
syntactic structure of
basic blocks, namely
their corresponding
AST, can provide a
more informative
representation of
basic blocks.

Shao et al. [10] 2018 ACAR Using Atomic
Association Rule
Mining (ACAR) to
explore the
relationship between
attributes and
categories, and
improve the
prediction of defect
prone modules.

Although these
prediction
methods are more
detailed than file
level methods,
they still cannot
accurately locate
specific lines of
defective code.

Yang et al. [4] 2022 TSASS By focusing on
method call sequences
and preserving the
contextual structure
of the code, this model
is able to capture finer
grained program
behavior and
potential defects.

Majd et al. [5] 2020 SLDeep SLDeep opens new
avenues for applying
and enhancing deep
learning models in
software defect
prediction, offering
insights for defining
finer-grained
statement level code
metrics across
languages.

(Continued)

CMC, 2025, vol.82, no.2 2085

Table 1 (continued)

Ref. No. Published year Approach name Advantages Disadvantages

Wattana-
kriengkrai et al. [11]

2020 Line-DP The use of
explanatory LIME
technology makes this
method independent
of specific defect
prediction models and
has higher
applicability.

LIME is a local
interpretation
model that may
not fully capture
global
characteristics
when
approximating
local models, and
may overlook
contextual
relationships
between code
lines.

Mahbub et al. [19] 2024 Bugsplorer Utilizing two
Transformer models
in a hierarchical
structure can better
capture local
contextual
information of
software defects.

The complex
training process
requires adjusting
multiple
hyperparameters,
resulting in
insufficient
generalization
ability.

Zhu et al. [12] 2023 Syntax LineD Consider the code line
level representation of
syntax node coverage,
add syntax nodes to
their corresponding
coverage lines, and
fully utilize the syntax
information related to
code lines.

Although
BiLSTM can
capture before
and after
dependencies, it
still has
limitations in
capturing
long-range
dependencies and
global contextual
information.

(Continued)

2086 CMC, 2025, vol.82, no.2

Table 1 (continued)

Ref. No. Published year Approach name Advantages Disadvantages

Wang et al. [20] 2016 Bugram Identify defective code
tags based on the
probability estimated
by the n-gram model
to alleviate the
problem of relying on
frequent patterns.

The n-gram
model captures
only fixed-length
context and
misses
long-distance
dependencies.

Pornpraset et al. [13] 2022 DeepLineDP Consider utilizing
contextual
information from
surrounding tags and
lines of code in the
code.

DeepLineDP only
focuses on a
single level of
contextual
information,
making it difficult
to effectively
capture
contextual
semantics and
local interactions
between code
lines.

3 Mehod

In this section, we introduce TRIA-LineDP, a hierarchical attention fusion method based on
telecontext-enhanced recursive interaction. As shown in Fig. 2, it consists of five steps: (1) Source
code preprocessing and embedding; (2) Line of code and line level contextual feature extraction; (3)
Telecontext capture module enhances global context aggregation; (4) Recursive interaction fusion
feature construction; (5) Defect prediction at the line level.

3.1 Source Code Preprocessing and Embedding

Preprocessing is essential for applying deep learning to software defect prediction effectively.
Efficient code preprocessing removes redundant, non-logical information and reduces interference,
enabling the model to focus on structural and semantic features, thereby enhancing defect prediction
accuracy [21]. To streamline model input and focus on core code semantics, we implemented prepro-
cessing steps outlined in Table 2. This typically includes formatting, cleaning, and transforming code
for further processing. Preprocessed code better aligns with the model input requirements, as irrelevant
information that could create noise is removed-such as special characters and blank lines.

To boost generalization, we replace string constants and numbers with universal tags String
(<STR>) and Number (<NUM>). A pre-trained Word2Vec model using the Continuous Bag of
Words (CBOW) algorithm is employed to capture features related to code defects. The CBOW model
generates vector representations of tokens based on surrounding context, effectively capturing token
relationships within code. Customized language models for each project are trained with the Gensim

CMC, 2025, vol.82, no.2 2087

library. To maintain code structure, each file is converted into a sequence of code lines, represented as
L = [l1, l2, . . . , ln], where li is the embedded vector for the i-th line.

Table 2: Source code preprocessing and embedding measures

Category Method Description

Preprocessing process Formatting code Remove comments and blank
lines: Remove comments
(single-line comments and
multi-line comments) and
unnecessary blank lines from the
code.

Cleanup code Delete useless code: Remove
variables, functions, or code
snippets that are no longer in use.

Convert code 1. Split lines of code: Split
complex multi-line code into
simple single-line code for easy
processing in the future.
2. Generate code tags: Convert
code into easily analyzable tag
forms, such as tagging code as
functions, variables, operators,
etc.

Specific measures Remove special characters Remove all special characters
such as ”, ’()’, ’,’, ’;’, etc.

Remove blank lines Remove blank lines.
Improve generalization ability Replace string constants and

numbers in the code
Use String (<STR>) and
Number (<NUM>) universal
tags instead of string constants
and numbers.

Token vector representation Using pre-trained Word2Vec
models

Choose the Continuous Bag of
Words (CBOW) model in
Word2Vec as the training
algorithm.

3.2 Line of Code and Line Level Contextual Feature Extraction

To accurately extract code lines and contextual features, this section uses a Bi-GRU network to
capture the before and after dependencies and contextual information in the code lines. The detailed
implementation is illustrated in Algorithm 1.

2088 CMC, 2025, vol.82, no.2

Algorithm 1: Bidirectional GRU-based feature extraction
Input: Code file f with lines L = [l1, . . . , ln]; tokens T = [t1, . . . , tm]; embedding matrix W
Output: Line representation Vl = [hl1

, . . . , hln]; context sequence Hl = [hl1
, . . . , hln]

1: for i = 1 to n do
2: for j = 1 to len(T) do
3: Ei = [W [ti1], . . . , W [tij]]
4: end for
5: end for
6: for i = 1 to n do
7: hij = concat(forward_GRU (Ei), backward_GRU (Ei))

8: end for
9: for j = 1 to len(hij) do

10: αij = attention_weight(hij)

11: Vl.append(sum(αij × hij))

12: end for
13: for i = 1 to n do
14: Hl.append(concat(forward_GRU (Vl), backward_GRU (Vl)))

15: end for
16: Return V l, Hl

The input is a source code file that contains a series of code line representations and a word
embedding matrix, while the output includes a sequence of code lines and line level contextual
representations. Lines 1–5 iterate through each token in a code line, obtaining its vector representation
from the embedding matrix. Lines 6–8 use forward and backward gated recurrent unit (GRU)
to process these token vectors, generating different hidden states, and then connecting these two
hidden states to capture dependencies. Lines 9–12 apply attention mechanisms to hidden states to
focus on important markers, thereby generating vector representations of code lines. Lines 13–15
use bidirectional GRU to further process the code line sequence and generate line level contextual
representations. This algorithm effectively captures code lines and their contextual information,
providing a solid foundation for code analysis and understanding.

3.3 Telecontext Capture Module Enhances Global Context Aggregation

Bidirectional GRU processes sequences based on local context, capturing dependencies only
within limited windows. This restricts its ability to utilize global context and limits its focus to the
preceding and following time steps, making it challenging to capture long-range dependencies and
potentially missing important contextual details. To address these limitations, we propose a remote
context capture module. This module employs a multi-head attention mechanism to achieve remote
interactions through both content-based and location-based interactions.

Content based interaction. The row-level context is aggregated as a global background vector,
linearly projected to calculate the key (K) and value (V). Using the normalized key (K) and value
V , the content-based interaction vector Hc is derived.

Location based interaction. While content-based interaction considers context, it overlooks the
relative positions within the sequence, lack mechanisms to represent data order. To address this, the
module introduces positional embeddings to represent data order, allowing structured interactions
between query and context. This captures relationships between both adjacent and distant positions

CMC, 2025, vol.82, no.2 2089

in the sequence, enabling global content and position interactions. A matrix R for relative posi-
tional embeddings encodes all possible relative positions (n, m), which is then remapped to a three-
dimensional tensor P. The positional interaction Hp

n is calculated from the positional embedding and
value V .

Finally, content-based and location-based interactions are combined into a matrix Hn = Hc +Hp
n ,

applied to the query qn ∈ R
|k| to obtain the output, as shown in Eq. (1).

yn = (
Hc + Hp

n

)T
qn =

(
K

T
V + PT

n V
)T

qn (1)

Here, qn is derived from the input contextual sequence via a learned linear projection. Each column
of Hn represents a contextual feature that combines content and structural information. The query qn

then performs weighted allocation on these features to produce the output yn.

Algorithm 2: Telecontext capture module enhanced global context aggregation algorithm
Input: Context sequence X , global background vector G
Output: Global context sequence Y n

Initialization:
1: Initialize weight matrices W k, W q, W v

2: Initialize position embedding matrix R
3: Compute key K, value V and query Q from G and X using W k, W v and W q

4: Hc ← KT @ V
5: Compute positional tensor P from R
6: for i = 1 to n do
7: Hp

n [i] ← P[i]T @ V
8: end for
9: Hn ← Hc + Hp

n

10: Y ← []
11: for i = 1 to n do
12: qn ← Q[i]
13: yn ← HT

n [i] · Q[i]
14: Y .append(yn)

15: end for
16: return Y

As shown in Algorithm 2, the input includes a row-level contextual sequence and a global
background vector, with the output being a global row-level context sequence enhanced through
remote interaction. Lines 1–3 initialize parameters and perform linear projections to generate the key
K, value V and query Q for multi-head attention, along with matrix R for position embeddings. Line
4 compute content-based interaction vectors, while Lines 5–8 calculate and combine location-based
interaction vectors using position embeddings. Line 9 merges the content-based and location-based
interactions, and Lines 10–15 compute the final output.

As depicted in Fig. 3, In the content interaction phase, the global background G is aggregated with
row-level context, K and V are derived via linear transformations to construct the content interaction
matrix Hc. For position interaction, relative position embeddings produce Pn, used with V to compute
the position interaction matrix Hp

n . These two interactions are then fused and applied to the query
output.

2090 CMC, 2025, vol.82, no.2

Figure 2: Overview of TRIA-LineDP model

3.4 Recursive Interaction Fusion Feature Construction

In source code analysis, it’s essential to capture both global structure and local complexity,
including dependency relationships. Single-layer code line information provides limited semantics and
may overlook the global structure. To address this, we propose a high-order interactive recursive model.

The core of the model is an information exchange structure that processes and updates layer by
layer, gradually integrating features from different levels. By fusing code lines with line-level context
information, each layer enhances the contextual understanding of each code line. This recursive model
generates new code line representations and multi-scale contextual interactions using attention and
gating mechanisms, capturing both global and local information to identify defect-prone features.

For the i-th layer (i ∈ [1, 2, . . . , k]), the interaction representation combines original code lines with
context from the previous layer, recursively enhancing the contextual representation of each layer. An
element-wise gating mechanism integrates core information from the original input l and the enriched
context representation ŝ(i) from the previous layer, forming an interaction representation for layer i.
This adaptive mechanism fine-tunes inter-layer features as they are passed through each layer, as shown
in Eqs. (2) and (3).

ω(i)
1 = sigmoid([l; ŝ(i)]W g2 + bg2) (2)

l̂(i) = ω(i)
1 ◦ l + (1 − ω(i)

1) ◦ ŝ(i) (3)

During each update, the comprehensive representation ŝ(i) is merged with the prior layer heuristic
information ci−1, generating updated information ci to pass recursively to the next layer, as shown in
Eqs. (4) and (5).

ω(i)
2 = sigmoid([ci−1; ŝ(i)]W g3 + bg3) (4)

ci = ω(i)
2 ◦ ci−1 + (1 − ω(i)

2) ◦ ŝ(i) (5)

CMC, 2025, vol.82, no.2 2091

This model effectively integrates code line and contextual information, progressively building
richer relationship representations. Finally, the enhanced representations from each layer are cascaded
into a relational code line representation lr = [l(1); l(2); l(3); . . . ; l(k)], capturing both global and local
interactions.

Algorithm 3: Recursive interaction feature construction
Input: Code line sequence l, context sequence c, layers k, dimensions d and df

Output: Extended code line representation lr

Initialize: Weights W g1, W g2, W g3; Biases bg1, bg2, bg3

1: for i in range(k) do
2: 1. θl, θc = softmax(l@V), softmax(c@V)

3: sl, sc = θl@V , θc@V
4: 2. ω1 = sigmoid(concat([l, sl])@W g1 + bg1)

5: shat = ω1 ◦ sl + (1 − ω1) ◦ sc

6: 3. ω2 = sigmoid(concat([l, shat])@W g2 + bg2)

7: lhat = ω2 ◦ l + (1 − ω2) ◦ shat

8: l = LayerNorm(l + MLP(lhat))

9: 4. ω3 = sigmoid(concat([c, shat])@W g3 + bg3)

10: c = ω3 ◦ c + (1 − ω3) ◦ shat

11: 5. lr.append(l)
12: end for
13: return concat(lr, axis = 1)

As shown in Algorithm 3, the input includes the sequence of code lines Vl and line contexts Vc,
with the output is a related extended sentence representation formed by cascading enhanced code line
representations from all layers, initialized as an embedding matrix and gating weights. Lines 1–3 extract
query vectors and calculate attention scores. Lines 4–5 fuse code lines with previous layer context
using a gating mechanism. Lines 6–8 update features by merging the comprehensive representation
with original code lines. Lines 9–10 update context information, and Line 11 saves the enhanced code
line representation for the current layer.

The recursive unit, shown in Fig. 4, processes code lines l and context ci−1 from the previous
layer as inputs. Using the embedding matrix V (i), it generates relationship aggregation features for
each layer. An element-wise gating mechanism controls the fusion of code lines and context to create
a comprehensive relationship representation ŝ(i) for layer i. This representation ŝ(i) integrates into l,
producing an extended code line representation l(i) at layer i. Additionally, ŝ(i) updates the context of
the previous layer ci−1 to form the new heuristic context ci.

2092 CMC, 2025, vol.82, no.2

Figure 3: Telecontext capture module aggregates global context process

3.5 Defect Prediction at the Line Level

For each source code file F , all enhanced code lines are represented as F = [lr
1, lr

2, . . . , lr
m]. To

generate an abstract file-level vector representation f , we use attention pooling [22], which calculates
accurate representations based on the attention scores of each code line. This approach leverages multi-
level contextual semantics to ensure the attention scores reflect the importance of code lines at various
contextual scales. We calculate the attention score of each line by combining its original representation
l with the final line-level context representation ci obtained through recursive interaction fusion. This
allows the attention mechanism to assess both fundamental and contextual details when calculating
the attention score. The specific formula is as follows: A = softmax

(
[L; C]W T

att

)
, where [L;C] is the

concatenation of all code line representations and their final context representations, and Watt is a
learnable weight matrix.

Using the attention scores, we weight and combine code lines to obtain the comprehensive file-
level vector f = FA, which is passed through a fully connected layer serving as the predictor. This layer
outputs prediction scores, which are converted into defect probabilities using the Sigmoid function,
with weights W0 and biases b0. The corresponding calculation is presented in Eq. (6):

P = Sigmoid(W0f + b0) (6)

CMC, 2025, vol.82, no.2 2093

Figure 4: Recursive interaction unit

To pinpoint code lines susceptible to defects, we initially extract the attention score for each line
in the defective file. This score, computed through the attention mechanism, serves as an indicator of
code risk. These attention scores range from −1 to 1, reflecting the relative importance and risk level of
each line of code in the current context. We calculate the attention score for each code line based on the
original input representation l and the final line level context representation ci serving as the definitive
risk factor for each line of code. Among them, the final line level contextual representation ci reflects
the comprehensive characteristics of the code line in both global and local contexts, which can provide
deeper semantic information for the model. This ensures that the attention score of each line of code
reflects its importance at different contextual scales, thereby enabling a more accurate evaluation of

2094 CMC, 2025, vol.82, no.2

the importance of each line of code in weight calculations to improve the accuracy of risk assessment.
Arrange all lines within the source code document in order of their risk coefficients, and mark the
lines with higher risk coefficients as potential defect lines. These markers help developers prioritize
high-risk lines of code during code review and maintenance, thereby improving software quality and
reliability.

4 Experimental Setup and Results

In this section, we will outline the research methodology and present the experimental findings.
This will include a detailed description of the dataset used, assessment criteria, reference methods
for comparison, specifics of the experimental procedures, and a comprehensive analysis of the results
corresponding to every posed question.

4.1 Experimental Setup

Dataset selection. This study utilized the publicly available defect dataset corpus provided by
Wattanakriengkrai et al. [11] collected from Yatish et al. [23], which covers 32 software versions of
9 open source systems of the Apache open source project. We conducted a brief information analysis
on 32 versions, as shown in Table 3. The project name (Project) indicates the name of each dataset. The
count of files (#File) corresponds to the file quantity in each project across various versions, ranging
from 731 to 8846. Line of Code (#LOC) signifies the line count in each project across different versions,
with figures spanning from 74 k to 567 k. The proportion of defective files (#Defective Files) reflects
the percentage of files with defects in each project, ranging from 2% to 28% (#Defective LOC) refers
to the proportion of lines of code in each project that contain defects, ranging from 0.03% to 2.90%.
Versions list the version information contained in the dataset for each project.

Table 3: Summary information statistics of dataset

Project #File #LOC #Defective file #Defective LOC Versions

ActiveMQ 1884–3420 142–299 k 2%–7% 0.08%–0.44% 5.0.0, 5.1.0, 5.2.0, 5.3.0, 5.8.0
Camel 1515–8846 75–485 k 2%–8% 0.09%–0.24% 1.4.0, 2.9.0, 2.10.0, 2.11.0
Derby 1963–2705 412–533 k 6%–28% 0.10%–0.63% 10.2.1.6, 10.3.1.4, 10.5.1.1
Groovy 757–884 74–94 k 2%–4% 0.10%–0.17% 1.5.7, 1.6.0.Beta_1, 1.6.0.Beta_2
HBase 1059–1834 246–537 k 7%–11% 0.17%–1.02% 0.94.0, 0.95.0, 0.95.2
Hive 1416–2662 290–567 k 6%–19% 0.31%–2.90% 0.9.0, 0.10.0, 0.12.0
JRuby 731–1614 106–240 k 2%–13% 0.03%–0.09% 1.1, 1.4, 1.5, 1.7
Lucene 805–2806 101–342 k 2%–8% 0.07%–0.39% 2.3.0, 2.9.0, 3.0.0, 3.1.0
Wicket 1672–2578 106–165 k 2%–16% 0.05%–0.46% 1.3.0.beta1, 1.3.0beta2, 1.5.3

There are three main reasons for using this dataset in this study. Firstly, the dataset contains
multiple versions of data and ground truth markers, indicating which versions are affected by defects
and providing rich information on data changes between versions for research. Secondly, the dataset
comes from open-source software systems used in practical applications, which has high value for
research in the field of defect prediction. Finally, this dataset has been widely used in previous

CMC, 2025, vol.82, no.2 2095

experiments on line level software defect prediction research [11], indicating that it has been validated
and recognized, making it a reliable benchmark for evaluating the performance of TRIA-LineDP.

Evaluation Indicators. In order to rigorously evaluate the effectiveness of our file level defect
prediction method, we implemented four widely recognized evaluation metri. These include the
area under the curve (AUC), Balance accuracy (BA), Matthews correlation coefficient (MCC) and
geometric mean (GM).

1. AUC. AUC metric evaluates the overall performance of binary classification models, which
can achieve better evaluation performance when dealing with class imbalanced data. A higher
AUC value indicates that the model is highly effective in distinguishing positive and negative
samples.

2. BA. The Balanced accuracy index measures the ability of a model to distinguish between
defective and non defective instances by determining the average rate of true positives and
true negatives.

3. MCC. The Matthews correlation coefficient (MCC) evaluates classifier performance by con-
sidering true positives, true negatives, false positives, and false negatives. Its value range is −1
to 1. A score of 1 indicates a perfect prediction, 0 indicates the result is equivalent to a random
guess, and −1 indicates a completely incorrect prediction.

4. GM. The geometric mean (GM) of true positive rate (TPR) and true negative rate (TNR)
reflects the overall performance of the model in positive and negative sample classification.
The value of GM is between 0 and 1. The closer the GM value is to 1, the better the balance
of the model in identifying positive and negative instances.

For the line-level defect prediction task, we used workload-aware metrics: recall in the top 20% of
code lines (Recall@Top20%LOC) [13], effort required for the top 20% recall (Effort@Top20%Recall)
[13] and Initial False Alarm (IFA) [24].

1. Recall@Top20%LOC. This metric evaluates how well the predictive model identifies defects
within the top 20% of code lines in the software. A high value indicates that the model can
effectively identify key defect lines, while a low value indicates the need for additional effort.

2. Effort@Top20%Recall. This metric assesses the percentage of lines of code needed to achieve
the top 20% of recall, where lower figures suggest that most defects are detectable with minimal
effort. In contrast, higher figures imply that more extensive code review is necessary to uncover
these defects.

3. IFA. Initial False Alarm (IFA) counts the number of defect-free lines reviewed before finding
the first defect in a file. A low IFA value means defects are found quickly, requiring minimal
review of defect-free lines, while a high IFA value indicates that more time is spent on inspecting
non-defective lines.

Baseline method. To evaluate the TRIA-LineDP method rigorously, we benchmarked it against
leading defect prediction techniques using established evaluation metrics. Our experimental setup
follows the protocol by Pornprasit et al. [13], using the first version of each project as the training
dataset to establish a strong model foundation. The second version of each project serves as a
validation set to fine-tune model parameters for optimal performance, while subsequent versions
are used for testing.The study compares nine mainstream file-level defect prediction techniques: DH-
CNN [3], convolutional neural network (CNN) [15], MFSVM [14], Bi-LSTM [7], DeepLineDP [13],
statement-level vulnerability detection using graph neural networks (LineVD) [25], deep learning for
bug detection (DeepBugs) [26], code text-to-text transfer transformer (CodeT5) [27] and intermediate

2096 CMC, 2025, vol.82, no.2

variable detection (IVDetect) [28]. Additionally, four advanced line-level defect prediction methods
were introduced: DeepLineDP [13], ErrorProne [29], N-gram [20] and LineVD [25].

4.2 Experimental Environment and Statistical Testing

The experimental model was implemented in PyTorch and run on a server with an NVIDIA RTX
3090 GPU (24 GB RAM). Parameters were optimized using binary cross-entropy loss. A pre-trained
Word2Vec model generated 50-dimensional embeddings for code tokens. Training was performed with
mini-batches of size 16 and a learning rate of 0.001. To mitigate overfitting, a dropout rate of 0.2 and
normalization techniques were applied. The recursive hierarchy comprised 5 levels, with 4 attention
heads to capture detailed patterns. The Bi-GRU network had a hidden layer with 64 nodes, and the
model final output size was 128 dimensions. Table 4 lists the experimental parameters for our model
and the comparative models.

Table 4: Summary of model parameters

Model Parameters Model Parameters

TRIA-LineDP Embedding Size: 50
Batch Size: 16
Dropout: 0.2
Number of Recursive Layers: 5
Heads: 4
Hidden Size: 64
Learning Rate (Lr): 0.001

DH-CNN Batch Size: 128
Dimensions: 100
Window: 10
Batch Word: 4
Context Window Sizes: 5
Vector Size: 100
Batch Words: 50
Negative Sampling: 10
Minimum Word Frequency: 5

MFSVM Vector Size: 30
Window Size: 8
Learning Rate (Lr): 0.01
Iterations: 3
K: 58

CodeT5 Vocabulary Size: 32,000
Sequence Lengths: 512, 256
Batch Size: 64
Learning Rate (Lr): 2e-4

BiLSTM Number of Layers: 2
Hidden Size: 64
Dropout: 0.2
Vocabulary Size: 30,000
Sequence Length: 512
Batch Size: 32
BERT Learning Rate: 2e-5
BiLSTM Learning Rate: 1e-3

IVDetect Hidden Node: 100
Number of Layers: 3
Learning Rate (Lr): 0.001
Batch Size: 32

CNN Batch Size: 32
Embedding Size: 30
Number of Hidden Layers: 10
Hidden Node: 100
Filter Length: 5

DeepLineDP Bi-GR Hidden Size: 64
MLP Hidden Size: 64
Learning Rate (Lr): 0.001
Batch Size: 32

(Continued)

CMC, 2025, vol.82, no.2 2097

Table 4 (continued)

Model Parameters Model Parameters

LineVD Number of Layers: 3
Hidden Size: 64
Learning Rate (Lr): 0.001
Batch Size: 32
Dropout: 0.3

N-gram Gram Sizes: 3
Sequence Lengths: 3–8
Reporting Sizes: 20

To ensure robust experimental findings and enable precise comparisons between defect prediction
methods, we used the Scott-Knott Effect Size Difference (Scott-Knott ESD) test [30]. This statistical
method categorizes performance metrics, such as AUC, into groups that are statistically distinct,
highlighting meaningful differences among methods. The Scott-Knott ESD test involves two steps:
first, adjusting data to correct non-normal distribution characteristics, ensuring that data meets
statistical testing assumptions; then, combining results with small effect size differences into new
groups with statistically significant distinctions. This approach minimizes performance variation
within each group and highlights substantial differences between groups, effectively distinguishing the
performance of defect prediction methods across datasets. Further details on the Scott-Knott ESD
test are available in the literature [30].

4.3 RQ1: How Effective and Cost-Effective Is TRIA-LineDP in the Same Project Defect Prediction
(WPDP) Scenario?
Software defect prediction is crucial for helping developers detect and resolve issues early in

development, improving software quality. Despite advancements in defect prediction techniques to
optimize software quality assurance (SQA) resources, most methods focus on file-level predictions,
while line-level prediction has received less attention, creating a gap in research for more precise defect
identification. The recent DeepLineDP method leverages a bidirectional GRU network to capture code
structure and context effectively, showing strong defect prediction performance at both file and line
levels in WPDP contexts. However, this approach does not fully capture the importance of contextual
relationships and local interactions between code lines, particularly for line-level defect prediction.
Thus, this study examines whether the TRIA-LineDP approach can surpass existing techniques in
predicting defects at both the file and line levels in WPDP scenarios, with an added focus on cost-
effectiveness.

To this end, we selected twelve advanced defect prediction methods: eight focused on file-level
prediction (DN-CNN, CNN, MFSVM, Bi-LSTM, LineVD, DeepBugs, CodeT5, IVDetect) and four
on line-level prediction (DeepLineDP, ErrorProne, N-gram, LineVD). File-level performance was
evaluated using four conventional metrics: AUC, MCC, BA and GM, while line-level performance was
assessed using three workload-aware metrics: Recall@Top20%LOC, Effort@Top20%Recall and IFA,
to validate TRIA-LineDP effectiveness in online defect prediction. Our experimental setup follows
a design similar to Pornprasit et al. [13], using the initial project version as the training set, the
subsequent version for validation, and remaining versions for testing. This study evaluates TRIA-
LineDP effectiveness across both file and line levels using a comprehensive approach to training,
validation and testing, and compares its performance against other methods. To highlight statistical

2098 CMC, 2025, vol.82, no.2

differences across techniques, we used the Scott-Knott ESD test, with Figs. 5 and 6 showing Scott-
Knott ESD rankings and indicator distributions for TRIA-LineDP and other advanced methods for
defect prediction at file and line levels in WPDP scenarios.

Figure 5: (Applicable to RQ1) ScottKnott ESD evaluations are conducted to analyze the AUC, BA,
MCC and GM metrics within the context of Within-Project Defect Prediction (WPDP)

Figure 6: (Applicable to RQ1) ScottKnott ESD analysis for the metrics Recall@Top20%LOC,
Effort@Top20%Recall and IFA within the WPDP environment

Based on the results presented in Fig. 5, TRIA-LineDP performs better than other advanced
methods in file-level defect prediction. The method achieved mean AUC, BA, MCC and GM scores
of 0.807, 0.71, 0.25 and 0.669, respectively, reflecting improvements of 3% to 27%, 4% to 20%, 8% to
140% and 4% to 65% over other advanced defect prediction techniques at the file level. The reason
for this excellent performance is that TRIA-LineDP effectively captures global context and local
interaction information through a high-order interactive recursive model, thereby more accurately
extracting defect code features. These results suggest that TRIA-LineDP surpasses current advanced
methods in defect prediction at the file level. Furthermore, the Scott-Knott ESD test reinforced that
TRIA-LineDP consistently achieved the top ranking across AUC, BA and MCC metrics, highlighting
that the differences in performance are statistically meaningful.

Referring to the data illustrated in Fig. 6, it is evident that in the metrics of Recall@Top20%LOC
and Effort@Top20%Recall, the TRIA-LineDP method demonstrates a cost-effectiveness improve-
ment of 11% to 52% and 23% to 77%, respectively, when compared to other row-level defect
prediction approaches. Specifically for Recall@Top20%LOC, the mean performance value of TRIA-
LineDP stands at 0.358, indicating that TRIA-LineDP can detect the most defective rows (35.8%)
when inspecting 20% of the total LOC. In addition, TRIA-LineDP achieved an average of 0.104
in Effort@Top20%Recall, indicating that under the condition of finding 20% defective lines, TRIA-
LineDP only needs to check about 10.4% of the entire version code lines. There are two main reasons

CMC, 2025, vol.82, no.2 2099

for these outstanding performances: firstly, the Telecontext capture module, through its multi head
attention mechanism, can more accurately capture broad contextual information related to specific
lines of code, optimizing its ability to capture local context. The model can not only capture directly
related context, but also understand the long-range dependencies and interactions between codes,
which other models often overlook. By introducing positional embedding, the Telecontext capture
module can not only consider the similarity of code content, but also reflect the positional relationships
between code blocks. This structured interaction allows the model to more accurately reflect the
actual execution process and potential logical errors of the program during prediction. Secondly, high-
order interactive recursive models are designed to overcome the limitations of single level code line
information processing. By introducing a deep recursive structure, the model can effectively handle
and integrate global structure and local complexity, ensuring that the model not only focuses on the
specific information of a single line of code, but also captures contextual information throughout the
entire code body. Recursive structures allow models to re evaluate and integrate information at each
level, which can more accurately simulate the actual decision-making process in software development,
where high-level design decisions are typically based on a broader context rather than a single line of
code. Enable the model to not only capture detailed information of local code segments, but also
effectively integrate complex dependencies across multiple functions or modules, thereby showcasing
superior performance in both the Recall@Top20%LOC and Effort@Top20%Recall metrics. Based
on the outcomes from the Scott Knott ESD test, the performance differences between these two key
indicators are not only statistically significant but also demonstrate significant effect sizes, further
demonstrating the excellent performance of TRIA-LineDP.

We observed that under WDPD conditions, for the ranking of risk lines in defect files, the
initial average false alarm value of TRIA-LineDP was 104, which was slightly inferior to LineVD
and DeepLineDP. This means that it may rank some non defective lines before the truly defective
lines. However, in actual development, developers are more focused on identifying as many defect
lines as possible throughout the entire version. TRIA-LineDP is available Recall@Top20%Recall
and Effort@Top20%, the excellent performance on the Recall metric demonstrates its high cost-
effectiveness in comprehensive code reviews.

Answer to RQ1: The experimental results under WPDP conditions illustrate that the proposed
TRIA-LineDP method exceeds the capabilities of existing defect prediction techniques at the file
level, as well as line-level metrics such as Recall@Top20%LOC and Effort@Top20%Recall, ranking
first in performance. TRIA-LineDP not only excels in predictive performance but also achieves better
cost-effectiveness and lower overhead. This indicates that TRIA-LineDP has significant advantages
in WPDP scenarios, enabling more effective allocation of SQA resources and improving software
quality.Although not as good as LineVD and DeepLineDP in terms of IFA metrics, the reason for
their higher IFA values may be due to the wide attention range of the hierarchical attention network.
Compared to the total number of lines of code in the entire version, this result is still within an
acceptable range.

4.4 RQ2: What Is the Effectiveness and Cost-Efficiency of TRIA-LineDP within the CPDP
Framework?

Although many defect prediction methods perform well in the same project defect prediction
(WPDP), practical applications often face challenges due to limitations in sample availability for
new projects and differences in structure and complexity between projects. Therefore, it is necessary
to evaluate the applicability and efficiency of these methods in the context of cross-project defect
prediction (CPDP). This subsection compares the TRIA-LineDP method with other advanced

2100 CMC, 2025, vol.82, no.2

document-level and row-level defect methods in a CPDP environment to evaluate the ability and cost-
effectiveness of TRIA-LineDP to transfer learning between different projects.

For this purpose, this paper examines eight methods for predicting defects at the file level,
including (DH-CNN, CNN, MFSVM, Bi-LSTM, LineVD, DeepBugs, CodeT5, IVDetect) and four-
line level defect prediction methods (DeepLineDP, ErrorProne, N-gram, LineVD) for comparative
analysis. Among them, the performance of defect prediction at the file level is evaluated using four
conventional metrics: AUC, MCC, BA and GM, while the row-level defect prediction performance
is evaluated using Recall@Top20%LOC, Effort@Top20%Recall and IFA, three workload percep-
tions for measurement. When conducting tests in the CPDP environment, we employ this dataset
partitioning strategy: the initial release of each project serves as the training dataset, the subsequent
release functions as the validation dataset, and testing is ultimately performed on a different project.
This cross-project testing method can simulate transfer learning requirements in practical application
scenarios. Through this approach, we compared the TRIA-LineDP method with the aforementioned
defect prediction methods. To statistically evaluate the performance variances among various methods,
we employed the Scott Knott ESD test once more. Figs. 7 and 8 offer a comprehensive depiction of
the Scott Knott ESD rankings and associated metrics for TRIA-LineDP, along with additional defect
prediction approaches at both file and line levels within the context of Cross Project Defect Prediction
(CPDP).

(a) AUC-ROC() (b) Balanced Accuracy() (c) MCC() (d) GM()

Figure 7: (Applicable to RQ2) ScottKnott ESD evaluations are conducted to analyze the AUC, BA,
MCC and GM metrics within the context of Cross-Project Defect Prediction (CPDP)

Figure 8: (Applicable to RQ2) ScottKnott ESD analysis for the metrics Recall@Top20%LOC,
Effort@Top20%Recall and IFA across the CPDP environment

Based on the results in Fig. 7, the mean AUC, BA, MCC and GM scores of TRIA-LineDP are
0.775, 0.687, 0.199 and 0.613, respectively, representing improvements of 4%–27%, 5%–27%, 13%–
362% and 5%–91% over other advanced file-level defect prediction methods. These results indicate

CMC, 2025, vol.82, no.2 2101

that TRIA-LineDP outperforms other file-level SDP techniques in Cross Project Defect Prediction
(CPDP) environments. This strong performance is attributed to the model multi-level recursive
processing, which enhances the interactive representation of code lines layer by layer, retaining core
information from the original input while adding contextual insights to enable feedback and adaptive
adjustment across layers. This layered strategy improves the model ability to recognize complex code
relationships. Additionally, Scott-Knott ESD testing has confirmed that TRIA-LineDP consistently
achieves top ranks across AUC, BA, MCC and GM metrics, indicating not only statistically significant
performance differences but also substantial effect sizes.

Moreover, Fig. 8 shows that TRIA-LineDP significantly enhances cost-efficiency in line-level
defect prediction, surpassing other methods by 9%–60% for Recall@Top20%LOC and 18%–77%
for Effort@Top20%Recall. The average Recall@Top20%LOC of TRIA-LineDP is 0.366, meaning
it can detect 36.6% of defective lines within the top 20% of LOC. Additionally, with an average
Effort@Top20%Recall of 0.114, TRIA-LineDP requires reviewing only 11.4% of total code lines
to identify 20% of defects. These results demonstrate the strong performance of TRIA-LineDP on
workload-related metrics.

There are two main reasons for these outstanding performances: firstly, the multi head attention
mechanism adopted by the Telecontext capture module can simultaneously focus on multiple different
contextual information, capture a wider range of features that are not dependent on a single project
specific context, and improve the generalization ability of the model. The Telecontext capture module
can not only capture the local context of each code entity, but also consider remote contextual
information. In the context of CPDP, there may be significant differences in code organization
and style between projects. Telecontext capture module can generate more comprehensive code
representations by integrating these remote and local contextual information, Secondly, recursive
structures enable the model to reprocess and adjust the received information at each level through
their multi-level processing approach, continuously adjusting and optimizing the representation of
information. This layer by layer information processing and fusion process enables the model to
more effectively integrate knowledge from various levels and adapt to data features from different
projects. This structure is particularly suitable for handling diverse data, as it can capture common
features at the initial level and adapt and optimize specific features at higher levels, thus adapting to
the specific style and structure of new projects. Based on the outcomes from the Scott Knott ESD
test, the difference in performance between these two key indicators is not only statistically significant
but also demonstrates significant effect sizes, further demonstrating the outstanding performance of
TRIA-LineDP.

Under CPDP conditions, although TRIA-LineDP initial average false alarm value (IFA) for
ranking risk lines in defect files is 123, slightly higher than DeepLineDP, TRIA-LineDP superior per-
formance in Recall@Top20%Recall and Effort@Top20%Recall highlights its high cost-effectiveness
in comprehensive code reviews.

Answer to RQ2: Under CPDP conditions, the experimental findings indicate that the TRIA-
LineDP approach proposed in this study excels in file-level metrics such as AUC, BA, MCC and GM,
as well as in row-level indicators like Recall@Top20%LOC and Effort@Top20%Recall. It surpasses
existing defect prediction methods and secures a leading position. TRIA-LineDP not only shows
outstanding predictive accuracy but also delivers superior cost-effectiveness and reduced expense.
These results highlight the considerable benefits of TRIA-LineDP in the CPDP scenario, facilitat-
ing effective cross-project transfer learning and enhancing both software quality and development
efficiency. Although not as good as DeepLineDP in terms of IFA metrics, the reason for their higher

2102 CMC, 2025, vol.82, no.2

IFA values may be due to the wide attention range of the hierarchical attention network. Compared
to the total number of lines of code in the entire version, this result is still within an acceptable range.

4.5 Discussion

4.5.1 The Impact of Key Modules in TRIA-LineDP

This subsection uses ablation studies to highlight the contributions of key components in
enhancing model performance. We focus on three critical components: the Bi-GRU, the telecontext
capture module, and the Recursive Interaction Module, each playing a vital role in capturing defect
semantics in code lines, including global line-level context and interactions at both global and local
levels. This analysis emphasizes line-level defect prediction due to its higher practical value compared
to file-level prediction.

The data presented in Table 5 demonstrate the specific effects of removing each key component on
model performance across different scenarios (WPDP and CPDP) through ablation studies. Signifi-
cantly, variations in the mean Recall@Top20%LOC and Effort@Top20%Recall metrics underscore
the effects of omitting specific components. In this context, ”AbI” refers to the performance of
a simplified TRIA-LineDP iteration, while ”Diff.” indicates the performance difference relative to
the full TRIA-LineDP model. This analysis provides valuable insights into the significance of each
component within the overall model, serving as a foundation for further optimization efforts.

Table 5: Results of TRIA-LineDP Ablation Study (WPDP and CPDP)

Approach WPDP (Line-Level) CPDP (Line-Level)

Recall@Top20%LOC Effort@Top20%Recall Recall@Top20%LOC Effort@Top20%Recall

AbI Diff. AbI Diff. AbI Diff. AbI Diff.
Bi-GRU 0.315 −12% 0.121 +16.3% 0.336 −8.2% 0.117 +2.6%
Telecontext
capture module

0.326 −8.9% 0.118 +13.4% 0.317 −13.3% 0.125 +9.6%

Recursive
Interaction

0.307 −14.2% 0.136 +30.7% 0.293 −19.9% 0.151 +32.4%

TRIA-LineDP 0.358 – 0.104 – 0.366 – 0.114 –

Eliminate Bi-GRU. The elimination of the Bi-GRU module was conducted to assess the impact of
contextual information in code lines on model performance. Without the Bi-GRU, the model no longer
had the capability to extract contextual information. As reflected in the data, the model performance
experienced a significant decline in both WPDP and CPDP scenarios, with a decrease in economic
performance for predicting defects at the line granularity by 12% and 8.2%, respectively. This finding
underscores the critical role of the Bi-GRU in capturing the contextual information of code lines, and
its removal leads to a substantial decrease in prediction effectiveness, accompanied by an increase in
cost overhead. Specifically, the cost expenditure increased by 16.3% in WPDP and 2.6% in CPDP.

Eliminate telecontext capture module. The removal of the telecontext capture module was con-
ducted to evaluate the importance of capturing global line-level context. Without the telecontext
capture module, the model no longer enhances single-line context information. The data shows that the
model performance significantly declines in both WPDP and CPDP scenarios, indicating the critical
role of the telecontext capture module in capturing global line-level context. The absence of this module

CMC, 2025, vol.82, no.2 2103

leads to a substantial decrease in cost-effectiveness, with reductions of 8.9% and 13.3%, respectively,
and increases in WPDP and CPDP costs by 13.4% and 9.6%. The removal of the telecontext capture
module not only diminishes prediction performance but also significantly increases cost overhead.

To illustrate the impact of losing global context processing, Fig. 9 provides an example. In this
case, the OrderProcessing service must verify user authentication status to process orders, relying
on the validateToken method of the SessionManager service, which checks the user session token.
If SessionManager implementation changes (e.g., altering validation logic or token format) without
corresponding updates to OrderProcessing, it could lead to authentication errors or security vulner-
abilities. The telecontext capture module monitors changes in SessionManager, such as updates to
token validation logic or format, treating them as global state updates. Through multi-head attention,
the module focuses on information flows from multiple points, allowing a comprehensive view of
the impact of these changes on other parts, like OrderProcessing. In this process, changes in Session-
Manager are mapped to key information points, while session token demands in OrderProcessing
form queries. By calculating attention scores between these keys and queries, the module identifies
critical changes for OrderProcessing to consider. The telecontext capture module also uses positional
embedding to understand the spatial relationship between method calls and logical flow in code. This
integration of positional information enables it to account for content changes and the effects of
changes in method call order. For instance, if the validation logic order changes in SessionManager, the
module can detect this and evaluate its impact on OrderProcessing. Overall, the telecontext capture
module ensures synchronization and consistency across system components during code and logic
updates, reducing errors and vulnerabilities due to inconsistent information between components.

Eliminate recursive interaction module. To assess the impact of the recursive interaction module
on the TRIA-LineDP model, this module was removed. The recursive interaction module is essential
for gathering both global and nearby interaction details among code lines and their environments.
Data indicate a significant performance decline in both WPDP and CPDP scenarios after its removal,
highlighting the critical role of the module in integrating code lines with their context. Without the
recursive interaction module, cost-effectiveness dropped by 14.2% and 19.9%, with WPDP costs rising
by 30.7% and CPDP costs by 32.4%. Removing this module severely impairs prediction accuracy and
significantly increases costs.

Similarly, we use the example in Fig. 9 to illustrate the global and local interaction issues between
the lack of code lines and the global line level context. The user authentication check performed in
the processOrder method of OrderProcessing, although seemingly correct in local logic, is highly
dependent on the global context, that is, how the SessionManager handles validateToken. If the
token verification logic of the SessionManager becomes stricter or looser, it may affect the behavior
of the OrderProcessing service, especially when dealing with boundary situations. A single level of
code analysis may not be able to capture such dynamic dependencies and changes in global context.
The high-order interactive recursive model can effectively capture and integrate the actual impact of
changes in the verification logic of the SessionManager on OrderProcessing by fusing information
layer by layer through its multi-layer structure. Each layer of the model not only processes individual
lines of code information, but also comprehensively considers contextual information from the
previous layer, so that the entire model can reflect changes in global logic. Allow the model to evaluate
globally how these changes affect the behavior of OrderProcessing. After each layer is processed, the
generated contextual information is passed on to the next layer, gradually building and enhancing the
understanding of global validation logic changes. This inter layer information transfer and recursive
structure ensure a gradual comprehensive analysis from local to global. Through the application of
this high-order interactive recursive model, the impact caused by the verification logic changes of

2104 CMC, 2025, vol.82, no.2

the SessionManager can be more effectively handled and adapted, ensuring that OrderProcessing can
accurately reflect the latest verification strategies and global context requirements when processing
orders. By better integrating global and local contextual information, errors and security issues caused
by information silos and logical inconsistencies can be reduced.

Figure 9: Examples of the impact of Telecontext capture module and Recursive interaction module on
actual code

In conclusion, the integration of the Bi-GRU, telecontext capture module, and recursive interac-
tion module substantially improves both the precision and efficiency of defect prediction at the line
level. These elements are crucial for capturing essential features including the semantics of individual
code statements, the overarching context at the line level, and the dynamics between global and local
information within code lines. Their combined effectiveness makes the software quality assurance
process more efficient and cost-effective, thereby alleviating the burden on development teams when
addressing defects.

4.5.2 Threat to Effectiveness

(a) Model parameter selection: Choosing appropriate hyperparameters is essential for achieving
optimal predictive performance. While hyperparameter weights were manually adjusted during the
experiment, this approach may not yield the best possible settings. Fine-tuning parameters in deep
learning is computationally intensive, and variations in hyperparameter choices can lead to fluctua-
tions in model performance.

CMC, 2025, vol.82, no.2 2105

(b) Implementation of comparative methods: To minimize the impact of implementation errors,
several precautions were taken. For benchmark methods like DeepLineDP and ErrorProne, publicly
available code was used directly, reducing variations due to implementation differences and ensuring
reliable results. For other comparison methods lacking open-source code, we strictly followed the
methodologies outlined in published papers during reproduction and experimentation. Despite this
careful approach, minor differences in implementation may still influence results, potentially causing
slight deviations from the actual outcomes.

(c) Diversity of experimental data: This study uses data from nine projects for experimentation.
While these projects cover different types of software, they do not fully represent the diversity of all
software projects. Open-source datasets typically come from smaller, structurally independent projects,
whereas real-world software often involves larger, more complex dependencies. Although datasets with
multiple versions and rich labeling offer some generalizability, future applications may need to adapt
further to the complexity of various project scales. Differences in coding styles and defect patterns
between open-source and real-world projects can also impact model performance. While the dataset
from Yatish et al. includes real open-source system projects with common coding styles, future work
could introduce model fine-tuning and data preprocessing to better accommodate commercial code
styles. Consequently, model effectiveness may vary across different software project types.

(d) Limitations of evaluation indicators: This study used various metrics, including AUC, MCC,
BA, GM, Recall@Top20%LOC, Effort@Top20%Recall and IFA, to assess model performance.
However, these metrics may not fully capture model effectiveness in practical applications. Although
widely used in academic research, the true effectiveness of the model must ultimately be evaluated
within specific real-world scenarios and requirements.

4.5.3 Limitation

While the TRIA-LineDP model is effective at capturing complex dependencies in code and
improving defect prediction accuracy, it has certain limitations in practical applications, mainly
concerning model scalability, handling of complex code libraries, and challenges in deployment.

(a) Scalability issues: As project size grows, the model must handle an increasing number of code
files and complex dependencies simultaneously. Expanding recursive models does not always scale
linearly, which may lead to performance degradation.

(b) The challenge of handling complex code libraries: Software projects often involve multiple
programming languages and styles, and code repositories may be frequently updated. Recursive
models require constant updates and retraining to adapt to these changes, increasing maintenance
costs and potentially lowering predictive accuracy within certain periods.

(c) Challenges of actual deployment: Integrating recursive models into existing development tools
and workflows can be complex, often requiring additional development and maintenance work. This
integration may also face compatibility issues with existing systems.

5 Conclusion

This article proposes a telecontext-enhanced recursive interactive attention fusion method (TRIA-
LineDP) for line-level defect prediction. This method fully utilizes the heuristic relationship between
code lines and line-level context, taking into account the context at the line level, and the dynamics
interaction between global and local information within code lines to pinpoint defects in code files

2106 CMC, 2025, vol.82, no.2

and individual lines. Experimental results from within-project defect prediction (WPDP) and cross-
project defect prediction (CPDP) conducted on nine different projects (encompassing a total of 32
versions) demonstrated that TRIA-LineDP had accuracy rates 3%–27%, 4%–20%, 8%–140% and 4%–
65% higher than existing methods on the traditional indicators of AUC, BA, MCC and GM within
the project, respectively. Compared with recent line-level defect prediction methods, improvements in
detecting defects at the line granularity ranged from 11%–52% for Recall@Top20%LOC and 23%–
77% for Effort@Top20%Recall. In cross-project tests, AUC, BA, MCC and GM accuracy increased
by 4%–27%, 5%–27%, 13%–362% and 5%–90%, respectively, with further improvements of 9%–60%
in Recall@Top20%LOC and 18%–77% in Effort@Top20%Recall. These results indicate that TRIA-
LineDP outperforms existing methods for both file-level and line-level defect prediction, making it an
effective and economical tool for software quality assurance teams.

While the proposed model shows promise for line-level defect prediction, current research
primarily relies on static code datasets, and the model has yet to be tested in dynamic, real-time
development environments. However, TRIA-LineDP has potential for integration into dynamic and
real-time settings. For example, in a dynamic execution environment, the model could utilize runtime
data (such as performance logs or anomaly information) to improve defect prediction accuracy,
capturing potential defects during software runtime and assisting developers with real-time feedback
for system repair and optimization. In continuous integration (CI/CD) pipelines, defect prediction can
be applied to each code submission or incorporated into code review tools to help developers detect
potential issues in real-time. Future research could further explore combining static and dynamic
analysis to support complex real-time feedback mechanisms.

Acknowledgement: We are grateful to the valuable comments and suggestions from all the reviewers
and editors for proof reading and making corrections to this article. Without their support, it would
have not been possible to submit this in the current form.

Funding Statement: This work was supported by National Natural Science Foundation of China (no.
62376240).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Bingjian Yan, Haitao He, Ke Xu; data collection: Bingjian Yan, Lu Yu; analysis and
interpretation of results: Bingjian Yan, Lu Yu; draft manuscript preparation: Bingjian Yan, Haitao He,
Ke Xu; manuscript final layout and preparation for submission: Bingjian Yan, Ke Xu; supervision:
Haitao He. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] F. Meng, W. Cheng, and J. Wang, “Semi-supervised software defect prediction model based on tri-training,”

KSII Trans. Internet Inform. Syst. (TIIS), vol. 15, no. 11, pp. 4028–4042, 2021.
[2] E. N. Akimova et al., “A survey on software defect prediction using deep learning,” Mathematics, vol. 9,

no. 11. 2021, Art. no. 1180. doi: 10.3390/math9111180.

https://doi.org/10.3390/math9111180

CMC, 2025, vol.82, no.2 2107

[3] A. Abdu, Z. Zhai, H. A. Abdo, and R. Algabri, “Software defect prediction based on deep representation
learning of source code from contextual syntax and semantic graph,” IEEE Trans. Reliab., vol. 73, no. 2,
pp. 820–834, 2024. doi: 10.1109/TR.2024.3354965.

[4] F. Yang, Y. Huang, H. Xu, P. Xiao, and W. Zheng, “Fine-grained software defect prediction based
on the method-call sequence,” Comput. Intell. Neurosci., vol. 2022, no. 1, 2022, Art. no. 4311548. doi:
10.1155/2022/4311548.

[5] A. Majd, M. Vahidi-Asl, A. Khalilian, P. Poorsarvi-Tehrani, and H. Haghighi, “SLDeep: Statement-level
software defect prediction using deep-learning model on static code features,” Expert. Syst. Appl., vol. 147,
no. 2, 2020, Art. no. 113156. doi: 10.1016/j.eswa.2019.113156.

[6] J. Xu, F. Wang, and J. Ai, “Defect prediction with semantics and context features of codes based
on graph representation learning,” IEEE Trans. Reliab., vol. 70, no. 2, pp. 613–625, 2020. doi:
10.1109/TR.2020.3040191.

[7] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan and I. Zada, “Software defect prediction employing
BiLSTM and BERT-based semantic feature,” Soft Comput., vol. 26, no. 16, pp. 7877–7891, 2022. doi:
10.1007/s00500-022-06830-5.

[8] Z. Zhao, B. Yang, G. Li, H. Liu, and Z. Jin, “Precise learning of source code contextual semantics via
hierarchical dependence structure and graph attention networks,” J. Syst. Softw., vol. 184, no. 1, 2022, Art.
no. 111108. doi: 10.1016/j.jss.2021.111108.

[9] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin and X. Yang, “Perceptions, expectations, and chal-
lenges in defect prediction,” IEEE Trans. Softw. Eng., vol. 46, no. 11, pp. 1241–1266, 2018. doi:
10.1109/TSE.2018.2877678.

[10] Y. Shao, B. Liu, S. Wang, and G. Li, “A novel software defect prediction based on atomic class-association
rule mining,” Expert. Syst. Appl., vol. 114, no. 2, pp. 237–254, 2018. doi: 10.1016/j.eswa.2018.07.042.

[11] S. Wattanakriengkrai, P. Thongtanunam, C. Tantithamthavorn, H. Hata, and K. Matsumoto, “Predicting
defective lines using a model-agnostic technique,” IEEE Trans. Softw. Eng., vol. 48, no. 5, pp. 1480–1496,
2020. doi: 10.1109/TSE.2020.3023177.

[12] J. Zhu, Y. Huang, X. Chen, R. Wang, and Z. Zheng, “SyntaxLineDP: A line-level software defect
prediction model based on extended syntax information,” in 2023 IEEE 23rd Int. Conf. Softw. Qual. Reliab.
Secur.(QRS), IEEE, 2023, pp. 83–94.

[13] C. Pornprasit and C. K. Tantithamthavorn, “DeepLineDP: Towards a deep learning approach for line-level
defect prediction,” IEEE Trans. Softw. Eng., vol. 49, no. 1, pp. 84–98, 2022. doi: 10.1109/TSE.2022.3144348.

[14] J. Liu et al., “A multi-feature fusion-based automatic detection method for high-severity defects,” Electron-
ics, vol. 12, no. 14, 2023, Art. no. 3075. doi: 10.3390/electronics12143075.

[15] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via convolutional neural network,” in 2017
IEEE Int. Conf. Softw. Qual. Reliab. Secur. (QRS), IEEE, 2017, pp. 318–328.

[16] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “DeepJIT: An end-to-end deep learning
framework for just-in-time defect prediction,” in 2019 IEEE/ACM 16th Int. Conf. Min. Softw. Repos.
(MSR), IEEE, 2019, pp. 34–45.

[17] M. Nevendra and P. Singh, “Software defect prediction using deep learning,” Acta Polytechn. Hung., vol.
18, no. 10, pp. 173–189, 2021. doi: 10.12700/APH.18.10.2021.10.9.

[18] G. Gharibi, V. Walunj, R. Nekadi, R. Marri, and Y. Lee, “Automated end-to-end management of
the modeling lifecycle in deep learning,” Empir. Softw. Eng., vol. 26, no. 2, pp. 1–33, 2021. doi:
10.1007/s10664-020-09894-9.

[19] P. Mahbub and M. M. Rahman, “Predicting line-level defects by capturing code contexts with hierarchical
transformers,” in 2024 IEEE Int. Conf. Softw. Anal. Evol. Reeng. (SANER), IEEE, 2024, pp. 308–319.

[20] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram: Bug detection with n-gram language
models,” in Proc. 31st IEEE/ACM Int. Conf. Autom. Softw. Engi., 2016, pp. 708–719.

[21] M. Rahman, D. Palani, and P. C. Rigby, “Natural software revisited,” in 2019 IEEE/ACM 41st Int. Conf.
Softw. Eng. (ICSE), IEEE, 2019, pp. 37–48.

[22] Z. Lin et al., “A structured self-attentive sentence embedding,” 2017, arXiv:1703.03130.

https://doi.org/10.1109/TR.2024.3354965
https://doi.org/10.1155/2022/4311548
https://doi.org/10.1016/j.eswa.2019.113156
https://doi.org/10.1109/TR.2020.3040191
https://doi.org/10.1007/s00500-022-06830-5
https://doi.org/10.1016/j.jss.2021.111108
https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1016/j.eswa.2018.07.042
https://doi.org/10.1109/TSE.2020.3023177
https://doi.org/10.1109/TSE.2022.3144348
https://doi.org/10.3390/electronics12143075
https://doi.org/10.12700/APH.18.10.2021.10.9
https://doi.org/10.1007/s10664-020-09894-9

2108 CMC, 2025, vol.82, no.2

[23] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C. Tantithamthavorn, “Mining software defects: Should
we consider affected releases?,” in 2019 IEEE/ACM 41st Int. Conf. Soft. Eng. (ICSE), IEEE, 2019, pp.
654–665.

[24] Q. Huang, X. Xia, and D. Lo, “Supervised vs unsupervised models: A holistic look at effort-aware just-in-
time defect prediction,” in 2017 IEEE Int. Conf. Softw. Maint. Evol. (ICSME), IEEE, 2017, pp. 159–170.

[25] D. Hin, A. Kan, H. Chen, and M. A. Babar, “LineVD: Statement-level vulnerability detection using graph
neural networks,” in Proc. 19th Int. Conf. Min. Softw. Repos., 2022, pp. 596–607.

[26] M. Pradel and K. Sen, “DeepBugs: A learning approach to name-based bug detection,” in Proc. ACM
Program. Lang., vol. 2, no. OOPSLA, pp. 1–25, 2018. doi: 10.1145/3276517.

[27] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation,” 2021, arXiv:2109.00859.

[28] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-grained interpretations,” in Proc. 29th
ACM Joint Meet. Europ. Soft. Eng. Conf. Symp. Found. Softw. Eng., 2021, pp. 292–303.

[29] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, “Building useful program analysis tools using an
extensible java compiler,” in 2012 IEEE 12th Int. Work. Conf. Source Code Anal. Manipulation, IEEE,
2012, pp. 14–23.

[30] S. Herbold, “Comments on ScottKnottESD in response to “An empirical comparison of model validation
techniques for defect prediction models”,” IEEE Trans. Softw. Eng., vol. 43, no. 11, pp. 1091–1094, 2017.
doi: 10.1109/TSE.2017.2748129.

https://doi.org/10.1145/3276517
https://doi.org/10.1109/TSE.2017.2748129

	Telecontext-Enhanced Recursive Interactive Attention Fusion Method for Line-Level Defect Prediction
	1 Introduction
	2 Related Work
	3 Mehod
	4 Experimental Setup and Results
	5 Conclusion
	References

