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ABSTRACT

With the increase in the quantity and scale of Static Random-Access Memory Field Programmable Gate Arrays
(SRAM-based FPGAs) for aerospace application, the volume of FPGA configuration bit files that must be stored
has increased dramatically. The use of compression techniques for these bitstream files is emerging as a key strategy
to alleviate the burden on storage resources. Due to the severe resource constraints of space-based electronics and
the unique application environment, the simplicity, efficiency and robustness of the decompression circuitry is
also a key design consideration. Through comparative analysis current bitstream file compression technologies,
this research suggests that the Lempel Ziv Oberhumer (LZO) compression algorithm is more suitable for satellite
applications. This paper also delves into the compression process and format of the LZO compression algorithm,
as well as the inherent characteristics of configuration bitstream files. We propose an improved algorithm based on
LZO for bitstream file compression, which optimises the compression process by refining the format and reducing
the offset. Furthermore, a low-cost, robust decompression hardware architecture is proposed based on this method.
Experimental results show that the compression speed of the improved LZO algorithm is increased by 3%, the
decompression hardware cost is reduced by approximately 60%, and the compression ratio is slightly reduced by
0.47%.
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1 Introduction

SRAM-based FPGA (Static Random-Access Memory-based Field-Programmable Gate Array) is
a field-programmable gate array that uses SRAM cells to store its configuration data. SRAM-based
FPGAs allow users to change the interconnections and behaviour of their internal logic circuits by
loading different bitstream files to implement different hardware functions. With the advantages of
rich logic resources, fast computing speed and strong parallel processing capability, SRAM-based
FPGAs are widely used in significant fields such as communications, consumer electronics, automotive
electronics, industrial control, military and aerospace applications, especially in application areas
that require rapid development and flexible adaptation to different functions. With the emergence
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of commercial space industry, SRAM-based FPGAs can meet the requirements of high performance,
low cost and many other requirements, and have been widely applied aerospace products.

In order to cope with the demand for a significant increase in the storage capacity of bitstream
files in aerospace electronic systems, bitstream file compression technology has received widespread
attention. Fig. 1 shows the architecture of space electronic equipment applying bitstream file com-
pression technology, consisting of an SRAM-based FPGA, a scrubbing engine, and non-volatile
memory. The original files can be compressed on the ground during the product development phase
and then stored in the non-volatile memory of the avionics equipment. When it is necessary to
configure or scrub the FPGA, the controller can first decompress the bitstream file and then write the
decompressed bitstream file into the FPGA’s configuration memory with a specific format. Bitstream
file compression not only significantly reduces the storage resource requirements but also decreases
the upload time from the ground to the satellite. This is particularly beneficial for the Low Earth
Orbit (LEO) Internet constellation systems, as it can greatly enhance the upgrade efficiency of the
constellation software. At the same time, considering that the bitstream file storage of the FPGA in
the spaceborne electronic system needs the master and backup to realize the on-orbit scrubbing and
configuring, the storage pressure is further increased.

Figure 1: Schematic diagram of aerospace electronic system application for bitstream file compression

In order to cope with the demand for a significant increase in the storage capacity of bitstream files
in aerospace electronic systems, bitstream file compression technology has received widespread atten-
tion. Fig. 1 shows the architecture of space electronic equipment applying bitstream file compression
technology, consisting of an SRAM-based FPGA, a scrubbing engine, and non-volatile memory. The
original files can be compressed on the ground during the product development phase and then stored
in the non-volatile memory of the avionics equipment. When the FPGA is configured or scrubbed,
the configuring and scrubbing controller first decompresses the bitstream file and then writes the
decompressed bitstream file in a specific format to the FPGA’s configuration memory. Bitstream
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file compression not only significantly reduces the storage resource requirements but also decreases
the upload time from the ground to the satellite. This is particularly beneficial for the Low Earth
Orbit (LEO) Internet constellation systems, as it can greatly enhance the upgrade efficiency of the
constellation software.

Commercial compression software can be used for bitstream file compression, but it is not suitable
for on-orbit applications. For example, FPGA device manufacturers can use the LZ77 algorithm for
bitstream file compression, but the compressed bitstream files do not support the implementation
of configuration memory (CM) scrubbing policies [1,2], which affects the on-orbit reliability of the
device. The main purpose of currently available bitstream file compression algorithms is to improve
the Compression Ratio (CR). There are two approaches to achieve this: one is to improve existing
compression algorithms, and the other is to use multiple compression algorithms in combination.
Nevertheless, both suffer from the problem of overly complex decompression, which is not suitable
for resource-constrained aerospace electronic devices.

Considering the requirements of the master and backup storage of FPGA bitstream files in
spaceborne electronic systems, the compression ratio of bitstream files must be controlled within
50%, the ability of fast compression and decompression is required, and the hardware cost of the
decompression circuit must be minimized. This paper focuses mainly on low resource consumption
and high decompression speed, and conducts a comparative study of various compression algorithms.
Based on the inherent characteristics of bitstream file data formats, this paper proposes an improved
Lempel Ziv Oberhumer (LZO) compression and decompression algorithm, effectively simplifying the
compression format. Corresponding hardware implementation circuits have also been designed.

The remainder of this paper is structured as follows. Section 2 introduces related works. Section 3
describes the data format characteristics of bitstream files, proposes the refined compression and
decompression algorithms. Section 4 presents the results of experimental validation, designs a decom-
pression hardware circuit with low resource expenditure. The concluding section synthesizes the
findings of this paper.

2 Related Work

Because errors in bitstream files can result in functional anomalies and potentially severe device
damage, the use of lossless compression algorithms is imperative [3,4]. When compressing bitstream
files in aerospace electronic systems, it is necessary to meet the requirements of easy hardware
implementation, low resource overhead, and fast decompression speed. General lossless compression
algorithms employ specific encoding techniques, such as the Run-Length Encoding (RLE), Huff-
man coding and Dictionary-based Code Compression (DCC). In [5], Huffman encoding and DCC
algorithms were proposed, but the focus was on the Virtex series. One of the typical algorithms in
DCC is the LZ algorithm, which includes LZ77 and LZ78. To further improve compression ratios and
efficiency, the LZO, LZSS, and LZW algorithms have been proposed [6–10]. Reference [11] enhanced
the traditional LZW algorithm for bitstream file compression among others. The novel architecture,
as proposed in [12], utilizes an LZSS compression engine for bitstream file compression. Some
studies have shown that combining multiple compression algorithms can improve CR. Reference [13]
combined RLE and Golomb to design RG-1 and RG-2 coding to improve CR, but did not introduce
the corresponding decompression methods and did not analyze the hardware implementation cost
of decompression. Based on DCC, the authors proposed the separate split LUT algorithm and the
separate split LUT+BIT masking algorithm, which take the LUT size and the number of lines in the
LUT as inputs to segment the bitstream file [14]. The CR was improved by 23% in [15] through the
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adoption of multiple bitstream compression algorithms. Reference [16] suggested the integration of the
LZ77 algorithm with Golomb coding for FPGA bitstream compression. Some studies have found that
segmented bitstream files can be fine-grained compressed. In [17], a lossless compression technique for
FPGA cloud-based bitstream configuration files is presented. The technology divides the file into three
parts. Based on this, it uses neural networks to select the most appropriate compression algorithm for
each segment based on the characteristics of that segment.

Previous research mainly focused on reducing the CR to reduce the compressed file size and
improve the compression speed. However, due to the limited hardware resources and high reliability
requirements of aerospace electronic systems, it is necessary to investigate a compression algorithm
that is easy to implement in hardware and has the characteristics of low cost and fast decompression.
In [18], it is proposed that a low resource overhead compression and decompression circuit based on
ANS (Asymmetric Numeral Systems) lossless compression algorithm. Although the hardware circuit
overhead is significantly reduced, the compression ratio is greater than 50%.

LZO uses two rounds of hash computation to identify suboptimal matches, replacing the tra-
ditional exhaustive search for the best match. This method can effectively reduce compression time
without significantly affecting the Compression Ratio (CR). LZO is one of the fastest compression
algorithms in the LZ series, with a compression speed approximately 39 times that of LZSS and 26
times that of LZW. However, the trade-off for achieving this speed compared to LZSS and LZW is a
reduction in Compression Ratio (CR) by about 10%.

The CR of LZO is closely tied to the data structure of the files being compressed. The LZO
algorithm matches previously compressed data with the current data being compressed to find
duplicate patterns or data sequences. When the LZO algorithm finds a match, it records the matching
length and the number of bytes backtracked from the current position, which is called the offset. LZO
needs to transmit the matching length and the offset as the compressed file. The closer the characters
that are repeated in the original file, the smaller the offset; the longer the repeated string, the larger
the matching length. A small offset and a large matching length are favorable for the CR of LZO. The
abundance of FPGA resources often results in bitstream files with numerous ‘0’ characters, favoring
LZO’s CR. Our findings indicate that, in the context of bitstream file compression, the LZO’s CR
has increased by approximately 5% compared to LZW, which is an acceptable margin in practical
applications.

Regarding the hardware cost associated with decompression circuits, LZ77 series algorithms can
utilize text as a dictionary and employ a fixed-size sliding window for compression, without the
need for the original dictionary during decompression. Therefore, the decompression circuit is more
straightforward to implement compared to those of LZ78 and LZW. Within the LZ77 series, LZO
eschews the exhaustive string matching search, simplifying the logic of the decompression circuit and
enhancing decompression speed in comparison to LZSS.

Fig. 2 depicts the compression and decompression process of the LZO algorithm. The algorithm
operates on a byte-level basis for both its input and output. It employs a hash function constructed
using bit-wise exclusive OR (XOR) and shift operations on four-byte sequences. This mechanism is
designed to facilitate rapid data retrieval within the dictionary, ensuring efficient compression. Let’s
consider a hypothetical input of four bytes, denoted as ABCD. The corresponding hash operation, as
shown in Eq. (1), is used to generate hash values that can be quickly looked up in a hash table. This
can help determine potential matches for compression.
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Figure 2: Compression and decompression process of LZO algorithm

H = (0x21∗(((((D << 6∧C) << 5)∧B

<< 5)∧A)) >> 5)&0x3FFF
(1)

The specific compression implementation steps of LZO are shown in Table 1, with an example of
encoding the string “AAABAAABAAABADAAAB”.

Table 1: Compression example of LZO algorithm

Processed characters Processing
characters

Output characters

AAAB AAABAAABADAAAB
AAABA AABAAABADAAAB
AAABAA ABAAABADAAAB
AAABAAA BAAABADAAAB
AAABAAAB AAABADAAAB (05)hAAABAAB
AAABAAABAAAB ADAAAB (05)hAAABAAB(6C) h(00)h

AAABAAABAAABA DAAAB (05)hAAABAAB(6C)h(00)h

AAABAAABAAABAD AAAB (05)hAAABAAB(6E)h(00)hAD
AAABAAABAAABADAAAB (05)hAAABAAB (6E)h(00)hAD

(74)h(00)h

The specific decompression implementation steps of LZO are shown in Table 2, with an expamle
of decoding the string “(05)hAAABAAB (6E)h(00)hAD (74)h(00)h”.
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Table 2: Decompression example of LZO algorithm

Processed characters Processing characters Output characters
(05)h AAABAAB (6E)h(00)hAD (74)h(00)h
(05)hAAABAAAB (6E)h(00)hAD (74)h(00)h AAABAAAB
(05)hAAABAAAB (6E)h (00)hAD (74)h(00)h AAABAAAB
(05)hAAABAAAB (6E)h(00)h AD(74)h(00)h AAABAAABAAAB
(05)hAAABAAAB (6E)h(00)hA D(74)h(00)h AAABAAABAAABA
(05)hAAABAAAB (6E)h(00)hAD (74)h(00)h AAABAAABAAABAD
(05)hAAABAAAB (6E)h(00)hAD(74)h (00)h AAABAAABAAABAD
(05)hAAABAAAB (6E)h(00)hAD(74)h(00)h AAABAAABAAABADAAAB

When employing the LZO algorithm for compressing FPGA bitstream files in aerospace elec-
tronic equipment, two primary challenges arise. The first one is hardware and timing overhead needs
optimization. Based on the differences in offset and match length, the LZO algorithm’s compression
format can be divided into five types, supporting a maximum offset of 48 kB. This requires that the
decompression circuit should contain a minimum 48 kB data cache and a logic circuit capable of
parsing various compression formats. The second point is the reduction of the impact of simplified
compression formats on CR. By leveraging the intrinsic features of FPGA bitstream files to refine the
LZO algorithm, a more bitstream-tailored compression format can be engineered to ameliorate the
aforementioned issue.

In light of these challenges, the key of this research is based on the LZO algorithm to investigate
the format of bitstream files, statistically analyze the distribution characteristics of offset and matching
length of bitstream files, design a simplified compression format, propose low-cost compression
and decompression algorithms suitable for aerospace electronics to improve compression speed and
reduces hardware complexity without affecting CR.

3 Algorithm Design
3.1 Algorithm of Bitstream File Format

SRAM-based FPGA can be considered as a two-layer architecture, consisting of CM and user-
programmable logic. The user-programmable logic includes Configuration Logic Blocks (CLB), IO
Blocks (IOB), Block Memories (BRAM), Digital Clock Management modules (DCM), DSP48s, and
other resources (such as processor cores, PCIe, high-speed interfaces, etc.). The CLB is interconnected
by General Routing Matrices (GRM), which is an array of routing switches located at the intersection
of horizontal and vertical routing channels [19]. One CLB is equivalent to two slices.

CM determines the specific functions and connection relationships of the user-programmable
logic. By loading the configuration bitstream file, the device can be programmed to perform specific
user-defined functions. The configuration bitstream file is a binary file that describes the usage and
interconnection relationships of FPGA resources. The FPGA bitstream file can be divided into three
parts: header file, configuration data, and end part. The header file mainly contains information
such as project name, device model, and generation date. The configuration data consists of a large
number of configuration frames, each of which contains a fixed number of configuration bits. Each
configurable resource in the FPGA is defined by one or more configuration bits [20]. The end section
contains load control words, several empty operators and some control command words. FPGA logic
resources are very abundant, whose proportion of configuration frames and configuration bits related
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to user functional circuits is relatively small. In most cases, many configuration bits in the configuration
data are 0. Taking a certain V5 FPGA design as an example, the slice resources account for 74%,
FF resources account for 26%, LUT resources account for 51%, BRAM resources account for 25%,
DSP48 resources account for 69%, and PLL resources account for 16%. However, the number of 0
bytes accounts for about 69%, indicating that a large amount of configuration frame data has similar
content.

Based on the above analysis, it can be inferred that the offset of compressible strings in bitstream
files is mostly small. To verify this conclusion, we developed a statistical analysis program based
on the traditional LZO algorithm. Five FPGA projects based on four commonly used models of
XC7VX690T, XC7K325T, XC5VFX130T, and XC4VX55 were randomly selected, which are research
subjects for verification in this paper. All these projects were applied in on-board electronic systems,
including FPGA software such as on-board communication, data transmission and processing,
system control, navigation, and attitude control. This study involved calculating the offset, which was
categorized into three different ranges: less than or equal to 2 kB, between 2 and 16 kB, and greater
than 16 kB but less than the maximum supported 48 kB. This statistical analysis is shown in Table 3.

Table 3: Statistics of offset for bitstream files of different FPGA devices

File no. File size (Byte) CONTENT FPGA type The ratio of offset

≤2 k 2 k < offset ≤ 16 k 16 k < offset ≤ 48 k

Test1 28,734,928 Navigation
reception

XC7VX690T 62.96% 26.90% 10.10%

Test2 28,734,920 Networking
route

61.38% 30.41% 8.21%

Test3 28,734,934 Acquisition and
tracking
machine

61.18% 30.29% 8.53%

Test4 28,734,922 Feed processor 62.25% 27.48% 10.26%
Test5 28,734,916 Communication

terminal
61.84% 27.26% 10.89%

Expectation 61.92% 28.47% 9.60%
Test1 11,443,720 Associative

processor
XC7K325T 64.22% 26.82% 8.96%

Test2 11,443,730 Transponder
software
reconfiguration

65.65% 25.90% 8.45%

Test3 11,443,720 Payload health
manager

60.17% 29.76% 10.07%

Test4 11,443,726 Frequency
hopping
processor

63.89% 26.49% 9.62%

Test5 11,443,718 Track receiver 63.86% 26.78% 9.35%
Expectation 63.56% 27.15% 9.29%

(Continued)
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Table 3 (continued)

File no. File size (Byte) CONTENT FPGA type The ratio of offset

≤2 k 2 k < offset ≤ 16 k 16 k < offset ≤ 48 k

Test1 6,154,496 Amplitude
phase controller

XC5VFX130T 63.08% 29.28% 7.64%

Test2 6,154,488 Temperature
control

61.21% 30.12% 8.66%

Test3 6,154,486 Data transfer
processor

61.28% 30.03% 8.68%

Test4 6,154,490 Signal synthesis
processor

60.43% 31.74% 7.83%

Test5 6,154,480 Image
compression
manager

60.18% 30.40% 9.42%

Expectation 61.24% 30.31% 8.45%
Test1 2,843,366 In-orbit

reconstruction
XC4VSX55 57.99% 31.61% 10.40%

Test2 2,843,242 Beam control 59.94% 31.11% 8.96%
Test3 2,843,258 PTWTA control 58.91% 32.31% 8.78%
Test4 2,843,264 High voltage

control EPC
58.13% 32.17% 9.69%

Test5 2,843,256 Configuring
control

58.27% 32.80% 8.93%

Expectation 58.65% 32.00% 9.35%

For four types of FPGAs, the proportional distribution of three different offsets was compared
and analyzed, as shown in Fig. 3. The statistical results show that the proportion of duplicate strings
with an offset greater than 16 kB but under 48 kB is less than 10%. By capping the offset to within
16 kB, it is possible to enhance both compression and decompression speeds, curtail decompression
resource expenditures, and maintain a negligible effect on the overall CR.

3.2 Compression Format Design

Fig. 4 shows the compression format of the five traditional LZO algorithm, where ‘length’ is the
matching length, ‘offset’ is the matching distance, and ‘nlen 2bit’ is the remaining 2 bits, that is, if
the length of the new character is less than or equal to 3, the position of the new character length is
recorded. The length of Format-1, Format-2, and Format-3 is less than or equal to 8 bytes. The length
of Format-4 and Format-5 is greater than 8 bytes. The offset of Format-1 is less than or equal to 2 k
the offset of Format-2 is less than or equal to 16 k, and the offset of Format-3 is 15 bits. However, since
the range of the second compression format is between 0 and 16 k, in order to increase the range of the
offset, the offset range of the third compression format is greater than 16 k and less than or equal to
48 k. The offset of Format-4 is less than or equal to 16 k, and the repetition length is not limited. The
offset of Format-5 is greater than 16 k and less than 48 k, and the repeat length is not limited, either.
The previous study explained the proportion of duplicate strings with a matching distance greater than
16 k but less than 48 k is less than 10%. Considering the existence of a large number of continuous
empty characters in the bitstream file, abandoning this part of the string in compression has minimal
impact on compression rate. The above two points provide ideas for optimizing compression formats.
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Figure 3: Proportion of back offset in bitstream files of different FPGA devices

Figure 4: Five compression formats of LZO

(1) The maximum matching distance of the traditional LZO compression algorithm is 48 k,
which requires at least 48 k deep cache storage to ensure that the compressed data is correctly
decompressed. In order to reduce the hardware resource cost of the decompression circuit and improve
the compression and decompression speed, reducing the matching distance of the storage format is
very effective. In general, the depth of a hash dictionary memory is 16 k. Considering the very small
percentage in bitstream files with matching distances between 16 and 48 k, Setting the match distance
length to 16 k can satisfy the application requirements of bitstream files, ensure the dictionary capacity,
and have a minimal impact on the compression ratio.
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(2) The matching distances of Format-3 and Format-5 are greater than 16 k and less than 48
k, so these two formats will not be adopted. The distance range of Format-2 and Format-4 is the
same, but the difference lies in the matching length. Format-4 contains more compact matching length
information compared to Format-2, but has more bytes. Therefore, to avoid wasting bits, Format-2 and
Format-4 will be merged. For the traditional LZO algorithm, when the number of new characters is
greater than 3 bytes, the first character is less than or equal to 15. Hence, in this article, the compression
Format-3 and Format-5 are eliminated from the encoding scheme, and the first character range of new
characters can be set to be less than or equal to 31, making the format more compact.

Based on the above analysis, a simplified storage format encoding for FPGA bitstream files has
been designed, with only two storage formats and a matching distance of less than or equal to 16 k.
This is a customized and more compact compression format encoding for bitstream files. Compression
Format-1, as shown in Fig. 5a, is designed for offset less than 2 k and matching length less than or equal
to 8. This format mirrors the first compression format of the traditional LZO algorithm. Compression
Format-2, as shown in Fig. 5b, accommodates offset ranging from greater than 2 k to a maximum of
16 k, without imposing any limitations on the repeat length. This format is an innovative fusion of
LZO’s compressed Format-2 and Format-4. It offers a space-saving advantage by conserving up to
one character for the encoding of identical strings, as compared to the traditional Format-4.

Figure 5: Simplified compression formats of LZO-ours

The compressed bitstream file is interspersed with segments of new and compressed characters.
The LZO algorithm delineates two formats for new characters, as illustrated in Fig. 6. In comparison,
the proposed compact character compression format is designed to counteract any potential reduction
in CR that may result from limiting the offset. Fig. 7 introduces a novel character format, comprising a
count of new characters and the specific characters themselves. In Fig. 7, ‘character’ is an 8-bit binary
number, and ‘num’ represents the number of bits. The meanings of length and offset are the same as
those in Fig. 5. The first new character format is applicable when the count of new characters does not
exceed 3. In this scenario, the count is embedded within the last two bits of the penultimate byte of the
preceding compressed format. The second new character format imposes no restrictions on the length
of the new characters. A distinctive feature of this format is that the first byte value of the character
must be less than 31, serving as a delimiter to differentiate between the new character format and the
compressed format segments. In comparison to the LZO compression format, which utilizes a first
byte value less than 15, the format introduced in this article offers a more compact representation.
This innovation is aimed at enhancing the space efficiency of the compressed bitstream files.
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Figure 6: The new character format of LZO

Figure 7: The new character format of LZO-ours

3.3 Our New LZO Algorithm

The compression algorithm presented in this article consists of a set of five core functions, each
carefully designed to facilitate the compression process of bitstream files. These functions include
bitstream input, hash table management, new character processing, duplicate character processing,
and data output. The specific encoding process is shown in Fig. 8. The characteristic of this algorithm
is its ability to quickly determine the appropriate encoding type, which is achieved by utilizing dual-
hash operations and character comparison techniques. After determining the encoding type, the
algorithm proceeds to encode the data according to the previously described compression format and
the new character format.
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Figure 8: Compression algorithm design flowchart

The key step in the compression process of bitstream files is to determine the character type,
that is, to determine whether the input character is a new character. The specific method involves
performing the first hash operation on the input data, using the resulting hash value as an index to
access the hash table, and then using the data retrieved from the hash table as an address to read the
corresponding data from the bitstream file. If the data matches with the input data, it means that the
input data is in the hash table and not a new character; otherwise, the process performs a second hash
operation and retrieves the data based on the result of the second hash operation. If the data retrieved
for the second time matches, it means it is not a new character; otherwise, it is determined to be a
new character. Once determined to be a new character, update the index of that character in the hash
table and continue reading data in byte units. Subsequently, repeat the above operation until the input
data is in the hash table indicating the end of the new character. After that, calculate the length of
the new character and encode it according to the new character format. If it is a duplicate character,
update the index of the character in the hash table and continue reading data in bytes. Repeat the above
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operation until the input data is no longer in the hash table, indicating the end of the repeated character.
Calculate the matching length and the matching distance. If the matching length is less than or equal to
3 and the matching distance is greater than 2 k, it is considered a new character and encoded according
to the new character format; otherwise, calculate the matching length and the matching distance, and
compress the data according to the compression format.

Decompression serves as the antonym to compression and involves a quartet of functions that
work together to reconstruct the original data from its compressed form. The constituent functions
of this process include reading compressed bitstream files, determining character types, caching a 16
kB dictionary, and decoding and outputting data. A schematic representation of the overall data flow
during the decompression process is shown in Fig. 9.

Figure 9: Decompression algorithm design flowchart
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In the decompression process, the first character type judgement is made first. Each time a
character is read. The data currently being read can be expressed as t(i), where i represents the index of
the decompression file corresponding to the current character. If the first character satisfies 0 ≤ t(i) <

32, it is judged as a new character, otherwise it is judged as a duplicate character. For a new character,
the length of the new character must be calculated. If 16 < t(i) < 32, the length of the new character
is t(i) + 3; if t(i) = 16 and t(i+1) �= 0, the length of the new character is 34 + t(i+1); if t(i) = 16 and
t(i+1) = 0, continue reading the following characters until the t(i+n) is not 0, then the length of the
new character is (n-1) × 255 + 34 + t(i+n). Follow that, the new character is outputted continuously
based on the calculated length. After the data has been outputted completely, the process returns to
the judgment mechanism.

For repeated characters, it is necessary to judge the compression format. If t(i) ≥ 64, calculate the
matching length and matching distance according to the compression format 1, and then perform the
judgment of the new character information in the compression format 1. If the last two digits of t(i+1)
are not 0, it is the length of the new character, and after the decompression of the data is completed, the
new character is output. Otherwise, determine whether compression is finished, the end of the output
data and the data length, otherwise continue reading the data and repeat the above operation. If 32 ≤
t(i) < 64, calculate the matching length and matching distance according to compression format 2, and
then perform the new character information judgment in compression format 2. If the last two bytes
of the penultimate byte are not 0, it is the length of the new character, and after decompression of the
data is completed, the new character is output. Otherwise, judge whether the compressed bitstream
file has completed all processing, if not, continue reading the data and repeat the above operation.

4 Experimental Verification

This experiment uses a Windows 10 64-bit platform and Intel(R)Core(TM)i7-8750H 2.21 GHz
CPU. The development tool of the test algorithm is Microsoft Visual Studio 2010, which is realized
by C language. We use the LZ4 [21,22], which is used in Xilinx’s Bitstream file dealing, original LZO,
LZO-ours, and LZW algorithms to compress the bit-stream file in Table 3. The comparison results of
compression time and compression rate are shown in Table 4.

Table 4: Comparison of 4 compression algorithms

File
no.

Device type Compression time (ms) CR

LZO LZO-ours LZW Xilinx LZO LZO-ours LZW Xilinx

Test1 XC7VX690T 830 814 21,478 572 41.32% 41.18% 37.98% 65.86%
Test2 894 860 23,625 634 48.64% 48.04% 43.90% 72.49%
Test3 924 845 23,843 646 46.05% 45.26% 39.82% 75.89%
Test4 793 780 19,987 539 28.03% 27.55% 23.18% 49.45%
Test5 762 752 17,769 510 13.96% 13.74% 10.09% 34.14%
Test6 XC7K325T 346 341 8954 228 38.69% 38.37% 33.76% 73.27%
Test7 338 332 8527 246 32.74% 32.37% 25.44% 60.02%
Test8 321 321 7922 224 19.83% 19.63% 17.47% 48.13%
Test9 317 315 8176 206 16.73% 16.67% 13.82% 36.39%
Test10 360 317 9405 273 19.96% 19.70% 16.83% 47.52%
Test11 XC5VFX130T 180 178 4528 124 9.21% 8.96% 7.72% 29.10%

(Continued)
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Table 4 (continued)

File
no.

Device type Compression time (ms) CR

LZO LZO-ours LZW Xilinx LZO LZO-ours LZW Xilinx

Test12 195 193 4937 144 33.34% 33.14% 27.30% 70.96%
Test13 202 197 5071 135 38.81% 38.57% 34.23% 63.51%
Test14 204 204 5293 138 45.45% 44.86% 39.05% 70.21%
Test15 199 190 4956 149 25.51% 25.23% 21.94% 49.02%
Test16 XC4VSX55 103 100 2777 79 22.65% 21.98% 15.99% 37.96%
Test17 105 102 2830 76 34.59% 33.66% 26.40% 45.10%
Test18 111 107 2995 77 42.78% 41.81% 37.63% 64.71%
Test19 104 102 2612 71 26.16% 25.34% 21.84% 51.82%
Test20 106 105 2861 75 44.52% 43.63% 34.51% 67.32%

The CR comparison of different serial FPGA bitstream files is shown in Fig. 10a. The data
indicates the CR of LZO, LZO-ours and LZW is less than 50%, with that of LZW is the lowest. And the
CR of the LZO-ours is lower than that of the traditional LZO algorithm, with an average reduction of
0.47%. As shown in Fig. 10b, Xilinx has the lowest compression time, but it has no absolute advantage
compared with LZO and LZO-ours, while the compression time of LZW is almost 30 times that of
them. Compared with the traditional LZO algorithm, the average compression time of LZO-ours
algorithm is reduced by 11.95 ms.

Figure 10: Statistics of CR and compression time for traditional LZO and ours improved LZO

Based on the analysis above, this paper proposes a decompression hardware circuit architecture,
as shown in Fig. 11. This circuit architecture comprises several integral modules: a Character Type
Judgment Module, a New Character Decoding Module, a Compressed Character Decoding Module,
an SRAM Controller Module, a Data Caching Module, and a Data Output Control Module. And
this systematic approach ensures an efficient decompression process. Upon receiving input data, the
Character Type Judgment Module initially ascertains whether the data corresponds to a new or a
duplicate character. In the case of new characters, the New Character Decoding Module calculates the
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character length, which is then directly outputted via the Data Output Control Module and cached
for subsequent use. These characters are sequentially written to the SRAM starting from address zero,
with the cached data stored in the Data Caching Module. Duplicate characters are processed by the
Compressed Character Decoding Module, which identifies the compression format and computes
the offset and matching length. These values are utilized to extract and decompress the data from
the SRAM, which is then outputted and written into the Data Cache Module, overwriting from
address zero. Concurrently, the Data Cache Module updates the address pointers for the previously
written new characters. The SRAM Controller Module oversees the operational, generation, and
control mechanisms for data and address read/write functions. The Data Caching Module integrates a
SRAM16384x8 block alongside associated control cache logic. Given the variability in decompressed
data length and the count of new characters, the Data Output Control Module incorporates a valid
decision signal for output data. A feedback circuit is also engineered to govern the input signal,
allowing character input to proceed only after the decompression of a specific segment of compressed
characters. The decompression process adeptly compresses the matching length, offset, and previously
decompressed data within the format.

Figure 11: Decompression circuit architecture

The decompression hardware circuit proposed within this article has been meticulously imple-
mented and validated using XC4VSX55 devices. A comprehensive assessment of the resource utiliza-
tion rates is represented in Table 5. And the operating frequency is 138.1 MHz. When comparing the
LZO-ours algorithm with the LZO algorithm, it can be observed that the resource consumption is
about 40% of the LZO algorithm, except for the IO resources.
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Table 5: Decompression circuit hardware costs

Logic utilization Used Utilization

LZO-ours LZO LZO-ours LZO

Number of slices 486 1209 2.0% 4.9%
Number of slice flip
flops

310 754 0.6% 1.5%

Number of 4 input
LUTS

903 2158 1.8% 4.4%

Number of bonded
IOBs

20 20 3.1% 3.1%

Number of
FIFO16/RAMB16s

8 22 2.5% 6.9%

Number of GCLKs 1 1 3.1% 3.1%

In FPGA/ASIC design, the access time of SRAM increases with the depth. The SRAM depth used
in the decompression hardware circuit is only 30% of that used in the LZO compression algorithm,
which improves the maximum operating frequency of the circuit. In addition, although the data stored
in the SRAM is updated in real time, the data as a whole is updated every 16,384 clock cycles, which
is three times the SRAM update rate of the LZO algorithm. Thus, this can further reduce the risk of
Single Event Upset (SEU) in the SRAM storage data for space utilization.

5 Conclusions

The research objective of this paper is to design a bitstream file compression algorithm tailored for
space applications, aiming to increase the speed of compression and decompression processes while
achieving minimal or no loss in CR, and emphasizing the minimization of resource consumption. After
conducting an in-depth comparative study of mainly several bitstream file compression technologies,
it has been determined that the LZO compression algorithm is more suitable for the research
objectives. However, the LZO algorithm has certain limitations in space applications. To address these
issues, this paper analyzes these limitations and proposes an improved scheme that utilizes a custom
compression format leveraging the unique characteristics of bitstream files. Utilizing a statistical
analysis program, the research reveals that configuration data contains a significant number of
redundant bits. Furthermore, it finds that during the compression process of configuration bitstream
files, the proportion of repeated strings with an anagram distance between 16 and 48 k is less than 10%.
Capitalizing on this insight, the paper introduces an optimized LZO algorithm and its corresponding
decompression hardware design. These are intended to enhance the compression rate and curtail the
resource requirements of the decompression circuit, without compromising the compression ratio.
The experimental results demonstrate that the refined LZO algorithm achieves a 3% increase in
compression speed, a 0.47% reduction in the compression ratio, and a reduction in the decompression
hardware cost by approximately 35% compared to the original algorithm. This makes the algorithm
exceptionally suitable for FPGA reconstruction systems in space-based electronic equipment, where
resource constraints are stringent.
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Building on the above research findings, future work plans will focus on the robust design of
decompression circuits-resistant SEUs. This endeavor aims to enhance the stability and reliability
of decompression circuits in the challenging environment of space, thereby providing more robust
technical support for space electronics.
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