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ABSTRACT

Plant diseases present a significant threat to global agricultural productivity, endangering both crop yields and
quality. Traditional detection methods largely rely on manual inspection, a process that is not only labor-
intensive and time-consuming but also subject to subjective biases and dependent on operators’ expertise. Recent
advancements in Transformer-based architectures have shown substantial progress in image classification tasks,
particularly excelling in global feature extraction. However, despite their strong performance, the high compu-
tational complexity and large parameter requirements of Transformer models limit their practical application in
plant disease detection. To address these constraints, this study proposes an optimized Efficient Swin Transformer
specifically engineered to reduce computational complexity while enhancing classification accuracy. This model is
an improvement over the Swin-T architecture, incorporating two pivotal modules: the Selective Token Generator
and the Feature Fusion Aggregator. The Selective Token Generator minimizes the number of tokens processed,
significantly increasing computational efficiency and facilitating multi-scale feature extraction. Concurrently,
the Feature Fusion Aggregator adaptively integrates static and dynamic features, thereby enhancing the model’s
ability to capture complex details within intricate environmental contexts.Empirical evaluations conducted on the
PlantDoc dataset demonstrate the model’s superior classification performance, achieving a precision of 80.14% and
a recall of 76.27%. Compared to the standard Swin-T model, the Efficient Swin Transformer achieves approximately
20.89% reduction in parameter size while improving precision by 4.29%. This study substantiates the potential
of efficient token conversion techniques within Transformer architectures, presenting an effective and accurate
solution for plant disease detection in the agricultural sector.
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1 Introduction

Plant diseases represent one of the most significant challenges to global agricultural produc-
tion, posing serious threats to both crop yield and quality. With the global population continually
expanding, enhancing the yield and quality of staple crops has become increasingly vital. Rapid
and accurate detection of plant diseases is essential not only for ensuring healthy crop growth but
also for significantly boosting farmers’ economic returns. Thus, early detection is crucial for crop
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protection and for enhancing agricultural productivity [1,2]. Crops such as rice, maize, and tomatoes
hold substantial economic and social importance in numerous countries, including China, and their
health is directly linked to the stability of agricultural production.

Traditional plant disease detection methods rely primarily on manual observation, which is time-
consuming, labor-intensive, and demands specialized expertise. Additionally, manual detection is
prone to subjective human error, often leading to misdiagnosis [3,4]. Consequently, the development
of automated, accurate, and efficient plant disease detection technologies capable of real-time crop
health monitoring has emerged as a primary research priority, providing essential support for modern
agricultural management [5].

With the accelerated advancements in deep learning methodologies, particularly through the
extensive application of Convolutional Neural Networks (CNNs), substantial progress has been
achieved in the domain of plant disease recognition. CNN architectures have consistently demon-
strated high efficacy in tasks related to image classification and object detection, leading to their
widespread adoption in plant disease detection applications. For example, Simonyan et al. [6] proposed
VGGNet, which significantly improved image classification performance by increasing network
depth; Szegedy et al. [7] developed the Inception model, which optimized computational efficiency
and accuracy by implementing parallel operations of multi-scale convolutional kernels. Similarly,
Huang et al. [8] introduced DenseNet, a model that enhances feature transmission through densely
connected layers, thereby achieving further improvements in model performance. Such advancements
have significantly promoted the application of deep learning techniques in the field of plant disease
recognition.

In recent years, Transformer architectures have shown substantial promise in visual processing
tasks. Dosovitskiy et al. [9] introduced the Vision Transformer (ViT), a model capable of capturing
global features by segmenting images into patches and employing self-attention mechanisms. Building
on this foundation, Han et al. [10] developed the Swin Transformer, which improves computational
efficiency through hierarchical processing combined with a sliding window mechanism. Similarly,
Wang et al. [11] proposed the Pyramid Vision Transformer (PVT), which integrates a pyramid structure
and multi-scale processing to enhance performance in complex visual scenarios. Nevertheless, while
these advancements mark significant progress, further optimization is essential to fully address
computational efficiency constraints in these models.

To address these challenges, this study proposes an improved Vision Transformer model—the
Efficient Swin Transformer. This model integrates a Feature Fusion Aggregator and a Selective Token
Generator to achieve adaptive feature fusion and sparse representation, significantly reducing the
initial number of tokens. This enhancement boosts both computational efficiency and recognition
performance.

2 Related Work

In computer vision, the prompt and precise recognition of objects in images remains a foun-
dational objective. Traditional image recognition methods primarily depend on manual feature
extraction, a process that is inherently complex, time-intensive, and heavily reliant on the quality of
extracted features [12,13]. In recent years, deep learning approaches, especially Convolutional Neural
Networks (CNNs), have become integral to image classification and object detection due to their
superior capability for automatic feature learning [14–17].
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Within supervised learning frameworks, CNNs serve as end-to-end solutions for classification
and detection tasks and have seen extensive application in plant disease recognition. For instance,
Atila et al. [18] achieved notable improvements in classification performance by refining CNN
architectures and incorporating innovative modules. Similarly, Ferentinos [19] conducted systematic
comparisons across various CNN models, underscoring the advantages of deep networks in feature
extraction. Furthermore, Brahimi et al. [20] enhanced detection accuracy by integrating AlexNet and
VGG models with traditional machine learning methods, while Picon et al. [21] developed a hybrid
model that combined deep learning with classical machine learning to increase model robustness
and detection precision. Other notable contributions include the work of Li et al. [22], who achieved
stable disease recognition in complex environments by employing data augmentation alongside deep
learning, and Zhang et al. [23], who optimized the ResNet architecture and hyperparameters on the
PlantVillage dataset, thereby enhancing overall model performance. Abade et al. [24] proposed a
DenseNet-based detection framework that improved feature representation, whereas Chen et al. [25]
combined CNNs with Bayesian inference for efficient disease detection. Lastly, Jiang et al. [26]
introduced an adaptive CNN model featuring dynamic feature weight adjustment mechanisms,
significantly advancing detection accuracy in complex disease contexts. Collectively, these studies
underscore the exceptional performance and continuous evolution of CNN-based methods in plant
disease recognition.

Despite the substantial advancements made by convolutional neural networks (CNNs) in plant
disease detection, they are inherently limited by their focus on local features, which constrains
their capacity to capture broader contextual information effectively. To overcome these limitations,
researchers have increasingly turned to Transformer-based architectures, which utilize self-attention
mechanisms to better capture global information and manage complex image backgrounds. Recently,
Transformer variants such as the Vision Transformer (ViT) and Swin Transformer have demonstrated
exceptional performance in image classification tasks and are progressively being adopted for plant
disease and pest recognition.For instance, Fu et al. [27] introduced an enhanced Vision Transformer
(ViT) model specifically for crop disease and pest image recognition, significantly increasing recog-
nition accuracy through the model’s multi-scale feature extraction capabilities. In another study,
Li et al. [28] developed an automated method for plant disease and pest recognition using Vision Trans-
former, effectively addressing overfitting issues with self-attention mechanisms, yielding impressive
results across diverse datasets. Additionally, Barman et al. [29] designed the ViT-SmartAgri system,
which integrates Vision Transformer with smartphone technology to enable precise and convenient
plant disease detection in smart agriculture applications.Furthermore, Karthik et al. [30] proposed
a crop disease and pest classification approach that combines the Swin Transformer with a dual-
attention multi-scale fusion network, accurately identifying diseased regions in complex multi-scale
settings by employing Swin Transformer’s sliding window attention mechanism. Expanding on this
work, Karthik et al. [31] introduced a dual-stream deep fusion network that incorporates grouped
random depth feature pyramids with the Swin Transformer, enhancing both accuracy and efficiency
in the classification of citrus diseases. Collectively, these methods have demonstrated remarkable
effectiveness in real-world applications, underscoring the practical utility of Transformer architectures
in plant disease detection tasks.

While considerable progress has been made in visual processing tasks by prior methods, conven-
tional models continue to face inherent limitations in computational efficiency and the precision of
feature extraction. In response to these challenges, this study introduces an optimized Efficient Swin
Transformer model, with the following primary contributions:
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• The Selective Token Generator module is designed to automatically identify representative
tokens within images while filtering out redundant information, thus significantly reducing
computational complexity without compromising performance. This module enhances the
model’s computational efficiency, making it particularly suitable for visual tasks that require
rapid processing.

• The Feature Fusion Aggregator facilitates the adaptive integration of static and dynamic
features, enabling the model to accurately capture subtle details within complex backgrounds.
This adaptation enhances both recognition and classification performance, particularly in
visually challenging scenarios.

• In addition to maintaining high accuracy, the model achieves an optimized parameter structure,
reducing parameter count by approximately 20.89% and enhancing precision by 4.29% com-
pared to the standard Swin Transformer. This optimization effectively balances computational
load with model accuracy.

• This model is exceptionally well-suited for agricultural monitoring in resource-limited envi-
ronments, such as those with hardware constraints, including drones and mobile devices.
Through reduced computational complexity and refined parameter design, the Efficient Swin
Transformer enables high-accuracy, efficient, and automated plant disease detection. This
capability provides reliable, cost-effective support for smart agricultural monitoring, making the
model particularly advantageous for remote, real-time monitoring and early disease detection
applications.

3 Efficient Swin Transformer Algorithm

The Efficient Swin Transformer is an optimized Transformer architecture specifically designed
for vision tasks, as illustrated in Fig. 1. This architecture comprises four main stages, each containing
a different number of Swin Transformer blocks and enhanced modules. Through a series of feature
extraction and compression operations, it generates the final classification results from input images.
The first stage includes two Swin Transformer blocks, the second stage contains four, and the third
stage incorporates six blocks. These modules progressively extract multi-scale and deep features from
the input image. The Swin Transformer blocks utilize a Shifted Window Attention mechanism, which
significantly enhances the extraction of both local and global features, enabling efficient processing of
large-scale images without increasing computational complexity.

Figure 1: Structure of the efficient Swin Transformer

The fourth stage integrates a Selective Token Generator and a Compact Transformer. The
Selective Token Generator selectively samples input features, filtering out representative feature tokens
and removing redundant or irrelevant information, thus reducing the number of tokens processed
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and lowering computational costs. The Compact Transformer, structurally optimized from standard
Transformer blocks, includes an innovative Feature Fusion Aggregator module. By leveraging sparse
token representation and structural optimization, this module decreases the model’s computational
load and parameter size while maintaining effective feature learning capabilities, thereby further
enhancing the model’s overall performance.

3.1 Selective Token Generator Module

In visual tasks, traditional methods often process the entire image, which typically includes
irrelevant or redundant information—such as background, noise, or repetitive features. This approach
dramatically increases computational complexity and leads to resource waste, making it difficult for
models to meet efficiency and real-time requirements in practical applications. When extracting and
analyzing visual features in complex scenarios, current deep learning models frequently struggle to
filter out irrelevant information effectively. To address this issue, this paper introduces the Selective
Token Generator module. This module selectively generates token representations, focusing on
the most representative feature regions within the image and effectively eliminating redundant or
irrelevant information. Fig. 2 illustrates the structure of the Selective Token Generator, detailing the
collaborative mechanism of convolutional layers and linear transformations.

Figure 2: Structure of the sparse token selector

The Selective Token Generator comprises a series of convolutional layers along with a linear
transformation layer, specifically designed to dynamically select and extract the most representative
tokens from input data. The operational workflow of this module can be delineated into the following
distinct steps:

(1) Initial Feature Extraction

The input feature matrix, x, has a shape of (B, H, W , C), where B denotes the batch size, and
H and W represent the height and width of the input features, respectively. Initially, a standard 3 × 3
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convolution layer is applied, with a kernel size of 3 × 3, a stride of 1, and padding of 1. This convolution
layer extracts local features from the input without altering the spatial dimensions of the feature
map and transforms them into a new dimension denoted as Tokendim. As a result, this operation
outputs the initial feature map, x′, with a shape of (B, Tokendim, H, W), establishing a foundation for
subsequent token selection [32]:

x′ = Conv (x), x′ ∈ R
B×Token dim×H×W . (1)

(2) Spatial Feature Enhancement

The spatial feature enhancement module improves input feature representation through two
depth-wise dilated convolution operations applied in the horizontal and vertical directions. This
design significantly enhances the model’s capability to capture spatial information. In the horizontal
direction, a convolution kernel, Convsph, captures essential horizontal information from the feature
map. With a kernel size of (1,3) and a dilation rate of 2, this configuration maintains computational
efficiency while expanding the receptive field, allowing the model to capture long-range horizontal
dependencies. In the vertical direction, Convspv employs a (3,1) kernel, effectively capturing deep vertical
spatial features and enhancing the model’s sensitivity to vertically oriented patterns [33].

This configuration substantially expands the receptive field of the convolutional kernel. Through
the integration of depthwise dilated convolutions, the model not only preserves its capacity to capture
local features but also substantially enhances its ability to capture contextual information. Such a
design enables the model to effectively discern complex spatial relationships within small-sized feature
maps, thus improving both the breadth and depth of feature representation. Additionally, the fusion of
multi-scale features further strengthens the network’s capacity to identify local feature patterns across
various spatial positions, equipping the model to perform robustly in complex scenarios. Consequently,
this enhanced architecture markedly improves the model’s capacity for feature representation and
processing in challenging environments, providing robust support for the accurate capture of diverse
feature patterns.

Formula for Horizontal Spatial Feature Extraction:

HFeature (i, j) =
∑k

m=−k
Wh · X (i, j + m). (2)

Here, HFeature (i, j) represents the horizontal feature extracted at position (i, j), Wh is the weight of
the horizontal convolution kernel with a size of (1,3), and X (i, j + m) represents the feature value of
the input feature map covered by the current convolution kernel region; m denotes the position offset
of the convolution kernel in the horizontal direction, and k is the dilation rate, expanding the receptive
field of the dilated convolution.

The formula for vertical spatial feature extraction is:

VFeature (i, j) =
∑k

n=−k
Wv · X (i + n, j). (3)

VFeature (i, j) represents the vertical feature extracted at position (i, j); Wv represents the weight of
the vertical convolution kernel, with a size of (3,1), and X (i + n, j) represents the feature value of the
input feature map covered by the current convolution kernel region. n is the position offset of the
convolution kernel in the vertical direction, and k is the dilation rate, expanding the receptive field of
the dilated convolution to capture more vertical feature information.
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(3) Dynamic Feature Adjustment

The spatial information extracted in the previous step is refined and compressed using a 1 × 1
convolution layer, resulting in a feature-enhanced map, denoted as attn. By integrating horizontal and
vertical feature information, the quality of feature representation is further improved [34].

(4) Generating Sparse Token Representations

By performing element-wise multiplication of the computed feature-enhanced map attn with the
initial feature map x′, only spatial and channel regions with significant representations are retained,
effectively filtering out irrelevant information and emphasizing key features. Subsequently, a standard
3 × 3 convolution layer is applied to further process the feature map, with a kernel size of 3 × 3, a
stride of 1, and padding of 1. Following this, the Selective Token Generator unfolds the features into a
specified matrix form. Through a linear transformation, it converts the H × W token representations
into a defined number of sparse token representations. Finally, these tokens are transformed into a
format that meets the model’s input requirements for further processing and analysis [35].

The Selective Token Generator integrates multiple convolutional operations, enabling precise
extraction of essential information across both spatial and channel dimensions. Subsequently, a
linear transformation compresses these extracted features into sparse token representations, thereby
significantly reducing the number of input tokens and markedly decreasing computational complexity.
This approach enhances the model’s overall efficiency while maintaining high fidelity in feature
representation [36].

3.2 Compact Transformer Block

Traditional Vision Transformer architectures excel at capturing global features; however, their
feature fusion capability is often constrained by the computational overhead and redundancy inherent
in the standard self-attention mechanism, particularly when dealing with fine-grained features and
complex scenarios. This limitation is especially evident in tasks such as agricultural disease detection,
where precise feature extraction and efficient fusion are critical for enhancing detection accuracy.
To address this limitation, this study introduces the Compact Transformer Block, which improves
feature fusion and representation efficiency by incorporating a Feature Fusion Aggregator module
and residual connections.

The Compact Transformer Block comprises a normalization layer, a Feature Fusion Aggregator
module, a Multi-Layer Perceptron (MLP), and residual connections, significantly optimizing the
efficiency of feature extraction and fusion. The normalization layer is positioned before the Feature
Fusion Aggregator and MLP to balance feature distribution, improve training stability, and accelerate
model convergence (see Fig. 3). The Feature Fusion Aggregator module combines convolutional
operations with adaptive attention mechanisms, dynamically fusing static and dynamic features,
making it particularly suitable for complex or high-noise image scenarios to achieve flexible and precise
feature extraction. Residual connections retain the original information from the input features,
enhancing the network’s training stability, while the MLP further refines the fused features through
nonlinear transformations, improving feature representation and diversity.

The Feature Fusion Aggregator (FFA) serves as the core module within the Compact Transformer
Block (CTB), specifically engineered to adaptively fuse static and dynamic feature representations.
This design facilitates the precise extraction of subtle features within complex backgrounds, allowing
the model to excel in scenarios characterized by high noise levels and fine-grained variations. The
detailed architecture of the FFA is illustrated in Fig. 4.
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Figure 3: Structure of the compact transformer block

Figure 4: Structure of the feature fusion aggregator

The FFA’s operational workflow encompasses three key steps: static and dynamic feature extrac-
tion, attention weight calculation, and feature fusion. Through multi-scale analysis of input features,
the FFA achieves accurate and robust feature extraction, enhancing the model’s adaptability to diverse
visual contexts and improving its overall performance in complex scenarios.

(1) Static and Dynamic Feature Extraction

First, static and dynamic features are extracted from the input feature matrix X ∈ R
B×C×H×W . The

extraction process for static feature K1 and dynamic feature V is as follows:
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Static features are extracted through depthwise and pointwise convolutions, and the formula is
given by:

K1 = σ (BN (Conv1×1 (Convd (X)))), (4)

where Convd represents depthwise convolution, Conv1×1 is the pointwise convolution, BN denotes
batch normalization, and σ represents the ReLU activation function.

Dynamic feature V is generated using standard convolution operations to capture the diversity of
input features:

V = BN (Conv1×1 (X)). (5)

(2) Attention Weight Calculation

Next, the static feature K1 and input feature X are concatenated along the channel dimension to
form the combined feature Y , and then the attention module calculates the attention weights:

Y = [K1, X ] ∈ R
B×2C×H×W . (6)

Using two layers of convolution and activation functions to compute the attention weight A for
the fused features:

A = Conv1×1 (σ (BN (Conv1×1 (Y)))), A ∈ R
B×(k×k)×C×H×W . (7)

Here, k×k represents the kernel size of the convolution. Then, the average weight at each position
is calculated:

Â = 1
k × k

∑k×k

i=1
Ai. (8)

Finally, the Softmax function is used to normalize the weights to obtain the attention weight
matrix:

αij =
exp

(
Âij

)

∑HW

j=1 exp
(

Âij

) , α ∈ R
B×C×H×W . (9)

(3) Feature Fusion Process

In the feature fusion stage, attention weights are used to combine static and dynamic features,
generating the final output feature matrix O. First, dynamic features are represented as K2 by element-
wise multiplication of attention weights and dynamic feature V :

K2 = α � V , K2 ∈ R
B×C×HW . (10)

Here, � denotes element-wise multiplication.

The final output f eature O is the weighted sum of the static feature K1 and the dynamic feature K2

O = K1 + K2. (11)

This fusion approach adaptively adjusts the significance of static and dynamic features, thereby
markedly enhancing the model’s representational capacity in complex scenarios. The FFA module
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achieves efficient feature fusion through adaptive feature selection, integrating contextual information
with detailed analysis of static and dynamic features. This design effectively improves the model’s
robustness and its capacity for accurate recognition across varied environments.

4 Experiment
4.1 Experimental Environment

All experiments in this study were conducted in an Ubuntu 20.04 operating system environment.
The experimental setup consisted of an NVIDIA RTX 4090D GPU and an 18-core AMD EPYC
9754 128-Core processor. Experiments were implemented using PyTorch 1.11.0 and CUDA 11.3 with
Python 3.8.

During training, the model employed the AdamW optimizer in conjunction with the cross-entropy
loss function to evaluate classification errors. The initial learning rate was set to 5e−5, with a batch
size of 64, and training was conducted over 30 epochs. Validation was performed at the end of each
epoch to ensure that the model’s performance on the validation set was iteratively optimized.

4.2 Experimental Dataset

The dataset utilized in this study is PlantDoc, a publicly available resource specifically designed
for image-based plant disease classification and detection tasks [37]. PlantDoc comprises 2598 images
across 13 plant categories and 27 types of plant diseases. As the data in PlantDoc is derived from
real-world environments, it is highly valuable for developing plant disease detection models that can
achieve robust performance under realistic conditions. This dataset presents challenges to the model’s
robustness and classification accuracy due to complex backgrounds, variable lighting conditions, and
multiple interference factors. Sample images from PlantDoc are displayed in Fig. 5.

Figure 5: Sample images from the plantdoc dataset

4.3 Evaluation Metrics

In this experiment, four essential evaluation metrics were employed to comprehensively assess the
performance of the Efficient Swin Transformer model in plant disease recognition tasks: Precision,
Recall, F1 score, and GMACs. Each metric is defined and formulated as follows:

1. Precision quantifies the model’s accuracy in predicting positive samples, defined as the
proportion of true positives among all samples classified as positive. The formula is provided
as follows:

Precision = TP
TP + FP

, (12)

where TP (True Positives) is the number of correctly predicted positive samples, and FP (False
Positives) is the number of samples incorrectly predicted as positive.
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2. Recall indicates the model’s capability to identify actual positive samples, defined as the
proportion of true positives among all genuine positive instances. The formula is provided
as follows:

Recall = TP
TP + FN

, (13)

where FN (False Negatives) is the number of actual positive samples incorrectly predicted as
negative.

3. The F1 score is the harmonic mean of Precision and Recall, serving to balance these two metrics
and providing a comprehensive evaluation of the model’s overall performance. The formula is
provided as follows:

F1 score = 2 × Precision × Recall
Precision + Recall

. (14)

4. GMACs (Giga Multiply-Accumulate Operations) serve as a critical metric for assessing the
computational complexity of the model. This metric quantifies the total number of multiply-
add operations performed during execution, expressed in billions. A lower GMACs value
indicates reduced computational load and enhanced execution efficiency, making this metric
particularly valuable for evaluating the model’s viability in resource-constrained environments.

Collectively, these evaluation metrics offer a robust assessment of the model’s accuracy, stability,
and computational efficiency in classification tasks, particularly in the context of complex plant
disease imagery. They provide a thorough evaluation of the model’s practical applicability and overall
performance.

4.4 Experimental Results

The purpose of this experiment is to evaluate the performance of the Efficient Swin Transformer
model in plant disease recognition tasks and to assess its effectiveness in practical applications. The
experimental results indicate the superior performance of the Efficient Swin Transformer in terms of
precision, recall, and F1 score across various categories, as detailed in Table 1 and the confusion matrix
(Fig. 6).

Table 1: Classification results for each category

Class Precision (%) Recall (%) F1 (%)

0 75.00 90.00 81.81
1 58.33 77.77 66.66
2 100 70.00 82.35
3 85.71 75.00 80.00
4 83.33 55.55 66.66
5 66.66 90.90 76.92
6 87.5 70.00 77.77
7 0 0 0
8 66.66 66.66 66.66
9 100 90.00 94.73
10 100 33.33 50.00
11 66.66 75.00 70.58

(Continued)
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Table 1 (continued)

Class Precision (%) Recall (%) F1 (%)

12 60.00 37.50 46.15
13 63.63 100 77.77
14 85.71 75.00 80.00
15 100 100 100
16 100 100 100
17 100 88.88 94.11
18 64.70 100 78.57
19 53.84 87.50 66.66
20 80.00 44.44 57.14
21 66.66 100.00 80.00
22 100 50.00 66.66
23 100 83.33 90.90
24 80.00 66.66 72.72
25 100 91.66 95.65
26 80.00 100 88.88
All 80.14 76.27 78.16

Figure 6: Confusion matrix
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As shown in Table 1, the Efficient Swin Transformer demonstrates excellent overall performance
in plant disease recognition tasks. The model achieves an overall precision of 80.14%, indicating
a high correct classification rate across all categories and enabling accurate identification of plant
diseases in most cases. Notably, the model achieved 100% precision in categories 15 and 16. The
overall recall is 76.27%, indicating that the model successfully detected disease samples in most
instances. However, the recall for category 7 is zero, suggesting that samples in this category were
not detected accurately, potentially due to sample imbalance or high similarity of image features with
other categories, complicating feature capture during training.

The F1 score, as the harmonic mean of precision and recall, provides a comprehensive measure
of the model’s classification performance. The overall F1 score of the Efficient Swin Transformer is
78.16%, reflecting a balanced trade-off between precision and recall and enabling stable performance
in complex multi-category environments. In certain challenging categories (e.g., categories 19 and 20),
although precision or recall fluctuated for individual categories, the F1 score remained consistently
high, underscoring the robustness of the model.

Figs. 7–9 illustrate the convergence of precision, accuracy, and loss for the Efficient Swin Trans-
former on the validation set as the number of training epochs increases. The model’s validation
precision and accuracy (Figs. 7 and 8) rise rapidly in the initial training epochs, indicating that the
model effectively captures key features from the data in the early learning stages. After the 6th epoch,
the growth in precision slows and fluctuates slightly between 75% and 80%, while accuracy stabilizes,
suggesting that the model’s validation performance has reached a plateau without overfitting. The
validation loss (Fig. 9) decreases significantly from an initial high value (around 3.5) to approximately
1.0 during early training epochs, indicating that the model effectively reduces prediction errors in
the initial phase. As training progresses, validation loss stabilizes around 1.0, demonstrating good
convergence, absence of overfitting, and strong generalization capabilities. The stability of validation
loss further supports the model’s learning efficiency throughout the training process.

Figure 7: Validation accuracy curve
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Figure 8: Validation precision curve

Figure 9: Validation loss curve

The multi-level feature aggregation mechanism of the Efficient Swin Transformer allows it to
sustain high recognition accuracy even under challenging conditions, such as complex backgrounds
and subtle disease regions. Experimental results confirm that the model performs reliably, even in
the presence of high category similarity or variations in sample quality. This stability is attributed to
the model’s advanced feature extraction capabilities, including multi-scale adaptive aggregation and
efficient feature representation, which render the Efficient Swin Transformer exceptionally refined and
precise for plant disease recognition tasks.

4.5 Grad-CAM Visualization for Model Diagnostic Function

To evaluate the performance of the Efficient Swin Transformer in plant disease detection, this
study visualizes the classification results using Grad-CAM (Gradient-weighted Class Activation
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Mapping) technology. Grad-CAM generates heatmaps that highlight the image regions the model
focuses on when making classification decisions, helping to assess whether the model accurately
identifies diseased areas. Red regions indicate areas with a greater contribution to classification, while
blue regions indicate lesser contribution, making it straightforward to visually determine whether the
model is focused on the core diseased areas of the leaf rather than the background.

Fig. 10 presents a sample of corn leaf blight, characterized by irregularly distributed lesions across
the leaf surface. The Grad-CAM heatmap shows that the model’s focus aligns well with actual lesion
locations, indicated by red-highlighted areas, demonstrating high recognition accuracy in identifying
complex and dispersed disease patterns. The model effectively minimizes background interference,
consistently focusing on disease-affected regions.

Figure 10: Grad-CAM visualization of corn leaf blight detection

Figs. 11 and 12 display samples of bell pepper leaf spot and apple rust diseases, respectively. In
Fig. 11, the bell pepper leaf exhibits multiple lesion points scattered across the surface, and the model
accurately identifies these areas without misclassifying healthy tissue, confirming its adaptability and
precision in multi-lesion detection. In Fig. 12, the apple rust spots are widely distributed, and the
model’s attention closely matches these locations, indicating high precision and focus in recognizing
broad disease patterns. These findings suggest that the Efficient Swin Transformer is well-suited for
complex disease monitoring tasks across diverse agricultural applications.

Figure 11: Grad-CAM visualization of bell pepper leaf spot detection
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Figure 12: Grad-CAM visualization of apple rust leaf spot detection

4.6 Comparative Experiments

In this experiment, we compared the performance of various deep learning models in plant
disease classification tasks to validate the effectiveness of the proposed model. The results, as shown
in Table 2, cover various deep learning classification model architectures, including Mobilenet [38],
ResNet [15], GoogLeNet [7], DenseNet [8], ShuffleNet V2 [39], MobileViT [40], Vision Transformer,
Swin Transformer, and other models applied to plant disease classification tasks, such as T-CNN
(ResNet-101) [41] and ICVT [42].

Table 2: Comparative experimental results of model performance

Model Precision (%) Recall (%) F1 (%) Parameter (M)

Mobilenet 55.24 52.57 53.82 3.50
ResNet 67.36 65.34 66.28 25.55
GoogLeNet 74.31 69.19 71.61 10.04
DenseNet 69.26 66.17 67.61 19.95
ShuffleNet V2 72.28 71.24 71.70 2.27
MobileViT 72.55 68.22 70.32 5.60
Vision-Transformer 54.35 56.77 55.53 85.83
Swin-Transformer 75.85 69.91 72.76 28.29
T-CNN (ResNet-101) 74.44 – – –
ICVT 77.23 – – –
Efficient Swin Transformer 80.14 76.27 78.16 22.38

From the results in Table 2, it is evident that different models exhibit significant variations
in performance on plant disease classification tasks. Lightweight models, such as Mobilenet and
ShuffleNet V2, while offering low computational complexity and reduced parameter counts, display
lower precision and recall when handling complex disease images due to their relatively limited feature
extraction capabilities. This suggests that, in disease detection tasks, relying solely on lightweight
designs may fall short of high-precision requirements, especially in practical agricultural applications
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where disease types are diverse and complex, necessitating models with stronger feature recognition
capabilities.

Classic deep convolutional neural networks, including ResNet, GoogLeNet, and DenseNet,
significantly enhance the ability to capture disease features through increased network depth and
multi-scale feature extraction mechanisms. In experiments, GoogLeNet achieved precision and recall
of 74.3% and 69.1%, respectively, outperforming most lightweight networks. However, the high
parameter count and computational costs of these models constrain their application in resource-
limited scenarios, particularly in mobile deployment or real-time detection, where their performance
benefits are challenging to fully utilize.

In contrast, Transformer architectures have demonstrated tremendous potential in visual tasks
due to their powerful global feature extraction capabilities. The Swin Transformer achieves high
recognition precision (75.85%) and recall (69.91%) through its sliding window mechanism and
hierarchical feature extraction design, excelling in handling complex scenarios and multi-scale disease
features. Nonetheless, the high parameter count of the Swin Transformer (28.29 M) remains a primary
limitation to its practical application. Furthermore, global attention mechanisms like the Vision
Transformer, despite theoretically robust feature capture capabilities, perform slightly worse than other
convolutional models in plant disease classification, primarily due to lower efficiency in handling
small-scale data and fine-grained features.

The proposed Efficient Swin Transformer introduces a Feature Fusion Aggregator and a Selective
Token Generator, effectively addressing the computational bottlenecks of traditional Transformer
models and significantly enhancing feature fusion and sparsification capabilities. Experimental results
indicate that the Efficient Swin Transformer achieved precision, recall, and F1 scores of 80.14%,
76.27%, and 78.16%, respectively, outperforming all compared models, especially under limited com-
putational resources, validating its application potential and innovative value in practical agricultural
disease detection.

Additionally, this study evaluated other representative models for plant disease classification,
including T-CNN (ResNet-101) and ICVT. T-CNN (ResNet-101) is an enhanced convolutional neural
network based on ResNet-101, integrating advanced deep feature learning and multi-level feature
fusion techniques. ICVT (Improved Convolutional Vision Transformer), on the other hand, represents
the latest advancements in deep learning combined with Transformer architecture, further improving
global feature capture capabilities. Experimental results indicate that T-CNN and ICVT achieved
precision scores of 74.44% and 77.23%, respectively. In comparison, the Efficient Swin Transformer
achieved a precision of 80.14%, significantly outperforming T-CNN and ICVT, thereby highlighting
its superior performance in plant disease classification tasks.

4.7 Ablation Experiment

In this study’s ablation experiments, we designed five comparative tests to verify the contribution
of different modules in the Efficient Swin Transformer to the model’s classification performance
(Table 3).

The first experiment utilized the basic Swin-T model as a baseline. This model possesses certain
global feature extraction capabilities but incurs a high computational cost (28.29 M parameters, 4.5
GMACs) and achieved an F1 score of 72.76%.
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Table 3: Analysis of module ablation experiments

Model Precision (%) Recall (%) F1 (%) Parameter (M) GMACs

1 75.85 69.91 72.76 28.29 4.50
2 75.21 70.33 72.69 20.52 3.32
3 76.77 72.88 74.77 15.74 3.37
4 78.16 75.25 76.68 16.79 3.52
5 80.14 76.27 78.16 22.38 3.40

In the second experiment, the Feature Fusion Aggregator was replaced with a multi-head attention
mechanism. The results indicated that multi-head attention had limitations in feature fusion, with
the F1 score slightly decreasing to 72.69%. The model’s parameters were reduced to 20.52 M, and
the computational cost dropped to 3.32 GMACs. These findings suggest that the Feature Fusion
Aggregator significantly enhances feature fusion quality and overall model performance.

The third experiment further removed the Selective Token Generator and replaced the Feature
Fusion Aggregator with a multi-head attention mechanism. Although the model’s parameters were
reduced to 15.74 M, and the computational cost was 3.37 GMACs, the F1 score dropped to 74.77%,
underscoring the critical role of the Selective Token Generator in enhancing feature sparsity and
reducing redundancy.

The fourth experiment removed only the Selective Token Generator while retaining the Feature
Fusion Aggregator, resulting in an F1 score of 76.68%, with 16.79 M parameters and a computa-
tional cost of 3.52 GMACs. This outcome further validated the effectiveness of the Feature Fusion
Aggregator.

Finally, the fifth experiment utilized the complete Efficient Swin Transformer model, integrating
both the Selective Token Generator and Feature Fusion Aggregator. This configuration achieved the
highest performance, with an F1 score of 78.16%, 22.38 M parameters, and a computational cost of
3.40 GMACs, fully demonstrating the critical contributions of these two modules in enhancing the
model’s classification performance.

4.8 Analysis of the Impact of Regularization Methods on Model Performance

In this study, we conducted an in-depth comparison of different regularization methods (L1
regularization, L2 regularization, and no regularization) on the performance of the Efficient Swin
Transformer model, focusing on changes in precision, recall, and F1 score (Table 4). The results
indicate that L1 regularization yielded the best performance, achieving a precision of 80.14%, recall
of 76.27%, and an F1 score of 78.16%. L1 regularization introduces sparsity, enabling the model to
perform more selective feature extraction, effectively reducing the influence of unimportant features
and enhancing the model’s generalization ability and stability in plant disease classification. This
advantage allows the model to maintain high recognition accuracy even when processing complex
and variable disease images.
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Table 4: Effect of the regularization method on the model performance

Regular way Precision (%) Recall (%) F1 (%) Parameter (M) GMACs

L1 80.14 76.27 78.16 22.38 3.40
L2 78.50 74.15 76.27 22.38 3.40
None 78.66 75.52 77.06 22.38 3.40

In contrast, the performance of L2 regularization and no regularization was slightly inferior. L2
regularization achieved a precision of 78.50%, recall of 74.15%, and an F1 score of 76.27%. Although
L2 regularization mitigates overfitting, its uniform weight penalty may reduce the model’s ability to
capture subtle features. For no regularization, the results showed a precision of 78.66%, recall of
75.52%, and an F1 score of 77.06%. While the absence of regularization can preserve strong feature
learning capabilities in certain cases, it tends to increase the risk of overfitting, especially when handling
high-dimensional and complex plant disease images.

Overall, L1 regularization enhances model sparsity, significantly improving detection perfor-
mance and resistance to interference, thus providing more stable support for practical disease detection
tasks.

4.9 Discussion of the Influence of Token Dimension and Quantity on Model Performance

In this study, a systematic investigation was conducted to evaluate the effects of varying token
dimensions and quantities within the Selective Token Generator module on the model’s classification
performance, parameter count, and computational cost (GFLOPs). By adjusting token dimensions
(128, 256, 512, and 768) and token quantities (25, 49, 64, and 81), changes in Precision, Recall, F1
score, model parameter count, and GFLOPs were thoroughly analyzed. The experimental findings
demonstrate that both token dimension and quantity exert a considerable impact on the model’s
performance, underscoring a distinct trade-off between classification accuracy, computational com-
plexity, and resource consumption.

4.9.1 Impact of Token Quantity (49 Tokens) on Model Performance

With a token dimension of 128, the model achieved a precision of 76.85%, recall of 70.76%, and
an F1 score of 73.68%, utilizing 13.14 M parameters and incurring 2.72 GFLOPs. This configuration
demonstrated low computational complexity alongside satisfactory performance, rendering it suitable
for scenarios with limited computational resources.

Increasing the token dimension to 256 resulted in a slight decrease in precision to 75.81%, while
recall improved to 71.18%, yielding an F1 score of 73.42%. The parameter count increased to 15.17
M, and GFLOPs rose to 2.89, suggesting that a larger token dimension can enhance recall while
maintaining a relatively low computational cost.

At a token dimension of 512, the model exhibited optimal performance, achieving a precision
of 80.14%, recall of 76.27%, and an F1 score of 78.16%. The parameter count was 22.37 M, with
a computational load of 3.40 GFLOPs. This configuration strikes an effective balance between
performance and computational cost, making it the recommended setting for this study.

Further increasing the token dimension to 768 led to a slight improvement in recall to 72.45%, but
precision dropped to 76.62%, resulting in an F1 score of 74.48%. The parameter count rose to 33.78



3064 CMC, 2025, vol.82, no.2

M, and GFLOPs surged to 4.14, indicating that excessively high token dimensions add complexity and
introduce redundant features, ultimately diminishing overall precision.

4.9.2 Impact of Token Quantity on Model Performance (with Dimension of 512)

With a token quantity of 25 and a token dimension of 512, the model demonstrated stable
performance, achieving a precision of 76.45%, recall of 73.30%, and an F1 score of 74.84. The
parameter count and GFLOPs were 22.38 M and 3.21, respectively, making this configuration suitable
for applications that prioritize computational efficiency while still requiring reliable performance.

Setting the token quantity to 49 achieved a balanced performance, particularly with a token
dimension of 512, where the F1 score reached 78.16%, reflecting moderate computational cost and
excellent performance.

Increasing the token quantity to 64 maintained stable precision and recall (75.53% and 73.30%),
yielding an F1 score of 74.40. The parameter count remained at 22.38 M, and GFLOPs increased
slightly to 3.53. This configuration enhanced the model’s spatial awareness, albeit with a marginal rise
in computational cost.

At a token quantity of 81, precision improved to 77.91%, though recall decreased slightly to
72.88%, resulting in an F1 score of 75.31. The parameter count rose to 22.39 M, with GFLOPs reaching
3.67, indicating that increasing token quantity can marginally improve precision but also introduces
additional computational overhead.

4.9.3 Discussion on Model Computational Performance and Practicality in Resource-Constrained Envi-
ronments

Table 5 illustrates a clear trade-off between the model’s performance and computational cost
(GFLOPs) as the token dimension and quantity vary. Experimental results indicate that when the
token dimension is 512 and the token quantity is 49, the model achieves an optimal balance between
performance and computational cost. Under this configuration, the Efficient Swin Transformer
attains an F1 score of 78.16%, with approximately 20.89% fewer parameters and a significant reduction
in GFLOPs compared to the standard Swin Transformer. These improvements allow the model to
maintain high accuracy while significantly reducing computational complexity.

Table 5: Impact of Token dimensions and quantity on model performance

Token dimension Token quantity Precision (%) Recall (%) F1 (%) Parameter (M) GMACs

128 49 76.85 70.76 73.68 13.14 2.72
256 49 75.81 71.18 73.42 15.17 2.89
512 49 80.14 76.27 78.16 22.37 3.40
768 49 76.62 72.45 74.48 33.78 4.14
512 25 76.45 73.30 74.84 22.38 3.21
512 64 75.53 73.30 74.40 22.38 3.53
512 81 77.91 72.88 75.31 22.39 3.67

The reduction in GFLOPs enhances the model’s efficiency in utilizing computational resources,
making it particularly suitable for hardware platforms with limited computational power and energy
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resources, such as drones and mobile devices. In such scenarios, devices typically require efficient infer-
ence tasks with limited power supply and computational capacity, making computational efficiency
critical. Experimental results further demonstrate that the model can operate effectively in low-power,
low-latency environments (e.g., agricultural monitoring and remote plant disease detection), balancing
performance with energy consumption.

Additionally, Table 5 shows that although increasing the token number and dimension can
enhance specific performance metrics, it also substantially increases computational overhead. There-
fore, in practical applications, selecting a token dimension of 512 and a quantity of 49 is an ideal
configuration for resource-constrained environments. In future research, further optimization of the
Selective Token Generator may help ensure that the model maintains real-time detection capability
and high-precision performance in more extreme resource-constrained environments (e.g., embedded
devices), thereby broadening the applicability of the Efficient Swin Transformer. By reducing GFLOPs
and parameter count, the Efficient Swin Transformer can function effectively in resource-limited
environments, particularly excelling in scenarios where a balance between computational complexity,
energy consumption, and performance is critical.

5 Conclusions

This study introduces the Efficient Swin Transformer, which significantly enhances classification
performance in plant disease detection by incorporating the Feature Fusion Aggregator and Selective
Token Generator. Compared with traditional convolutional neural networks and Transformer archi-
tectures, this model excels in multi-scale feature extraction and adaptability to complex scenarios,
while effectively reducing computational costs, providing an innovative solution for efficient visual
recognition. This work underscores the potential of efficient visual recognition in resource-constrained
environments, promising advancements in plant disease detection and breakthroughs in agricultural
automation technologies.

Experimental results indicate that the Efficient Swin Transformer surpasses existing state-of-the-
art models on the PlantDoc dataset, particularly excelling in key metrics such as precision, recall,
and F1 score. Furthermore, in optimization experiments focused on token dimension and count, a
configuration of 512 dimensions and 49 tokens achieved an optimal balance between performance
and computational resource consumption, validating the feasibility and effectiveness of this method
in practical agricultural applications. These findings demonstrate that the Efficient Swin Transformer
not only delivers outstanding performance in plant disease detection tasks but also provides valuable
insights for achieving efficient recognition in other complex scenarios.

Nonetheless, this study acknowledges certain limitations. Although the Selective Token Generator
effectively reduces computational load, it may lead to excessive filtering or feature loss when processing
redundant or overly complex scenarios. Additionally, the balance between computational efficiency
and accuracy requires further optimization, particularly in applications involving higher resolutions
or real-time detection tasks. Improving feature extraction and fusion mechanisms will be an important
area of future exploration to enhance the model’s performance in higher-resolution and dynamic
scenarios.

Future research directions involve further refinement of the Selective Token Generation strategy
to improve adaptability to dynamic features and diverse complex scenarios, thus enhancing the model’s
generalizability. Additionally, incorporating other innovative feature extraction methods, such as
adaptive attention mechanisms, or integrating multi-modal data fusion could bolster the model’s
robustness. With these optimizations and expansions, the Efficient Swin Transformer is anticipated
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to play an increasingly pivotal role in plant disease detection and to extend its applicability to other
visual tasks, providing robust technical support across a broad spectrum of agricultural and industrial
applications.
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