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ABSTRACT

The widespread adoption of cloud computing has underscored the critical importance of efficient resource
allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources
for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling,
among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential,
albeit with apparent needs for enhanced global search capability and convergence speed. To address these limita-
tions of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced
Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its
global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed
via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test
functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and
arange of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan,
and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other
meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The
method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of
task scheduling within a cloud computing environment.
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1 Introduction
1.1 Research Background

Cloud computing plays a pivotal role in various fields, offering a ubiquitous resource base where
users can readily access cloud services on demand [1]. The “pay-as-you-go” model, characteristic of
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web-based applications, is employed in cloud computing to facilitate large-scale sharing of resources,
including software and hardware [2]. Cloud computing systems utilize distributed technology and
virtualization to enhance flexibility and resource utilization, thereby addressing diverse user require-
ments. Cloud service providers [3] assume responsibility for hardware and software maintenance
and updates, while users need only specify their business requirements. Additionally, users circum-
vent the substantial expenses typically associated with constructing and maintaining extensive IT
infrastructure.

Cloud computing operates on the principle of providing computing resources on demand through
virtualization technologies. Task scheduling [4—6] plays a crucial role in this process, as it manages
the allocation of computing tasks to virtual machines (VMs) for optimized resource utilization and
system performance. The importance of task scheduling lies in its ability to ensure efficient task
completion while minimizing costs and execution time and maintaining system load balance. However,
current task scheduling faces numerous challenges, including finding an optimal balance between
cost management, task execution efficiency, and load balancing to meet increasing computational
demands.

1.2 Research Objective

The task scheduling problem in distributed systems [7,8] is generally considered a complex combi-
natorial optimization challenge, classified as a Non-deterministic Polynomial (NP)-hard problem [9].
Meta-heuristic algorithms [10,11] constitute a comprehensive framework for optimization methods
and have demonstrated significant advantages in addressing complex objective optimization prob-
lems, particularly in resource allocation, task scheduling, and performance optimization. Population
intelligence optimization algorithms [12-14], a subset of meta-heuristic algorithms, identify solutions
by simulating group behavior or individual interactions. Examples of such techniques include Particle
Swarm Optimization (PSO) [15-17], Ant Colony Optimization (ACO) [18], Genetic Algorithm (GA)
[19,20], Tumbleweed Algorithm (TA) [21], Cat Swarm Optimization (CSO) [22,23], Artificial Bee
Colony (ABC) [24], and Willow Catkin Optimization (WCO) [25].

The WCO algorithm is a meta-heuristic optimization technique designed to address complex
optimization challenges by simulating the natural process of willow seed dispersal and aggregation
in wind currents. This algorithm explores the solution space by emulating the diffusion and aggre-
gation patterns of willow seeds in nature. However, the WCO algorithm exhibits certain limitations,
particularly in its global search capability and convergence speed, both of which are comparatively
slow. Additionally, the algorithm is prone to being trapped in local optima, which poses a significant
challenge in identifying the optimal solution for complex problems.

To address these challenges, an improved Advanced Willow Catkin Optimization (AWCO)
algorithm is developed in this study. This novel algorithm enhances global search capability by
incorporating a reverse learning strategy and employs sinusoidal mapping to expedite convergence.
AWCO substantially improves resource utilization efficiency in cloud computing task scheduling
through optimized task allocation processes. The algorithm simulates willow diffusion and aggregation
dynamics by initializing a set of candidate solutions, integrating these with a reverse learning strategy
for global search, and swiftly identifying optimal task allocation schemes. In applications, AWCO
assigns the most suitable VMs to each task, ensuring task completion with optimal resource consump-
tion and minimal time. Simultaneously, AWCO accelerates algorithm convergence through sinusoidal
mapping, effectively avoids local optima, and ultimately achieves load balancing and improved system
performance in task scheduling.
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1.3 Contributions and Structure of the Paper
This paper makes the following contributions:

e The AWCO algorithm is introduced as an innovative optimization approach. The proposed
reverse learning strategy is incorporated into the individual evolution process of WCO, thereby
enhancing the algorithm’s capacity for exploration and exploitation, as well as its global search
capability and convergence speed.

e The sinusoidal mapping strategy is integrated into the individual position updating process to
minimize the distance between individuals and the optimal solution, thereby enhancing the
algorithm’s performance.

e The AWCO algorithm is evaluated using 30 test functions from the CEC2014 dataset and is
benchmarked against various alternative algorithms, including GA, bat algorithm (BA), and
PSO. The experimental results demonstrate that AWCO exhibits superior performance.

e To assess the efficacy of the proposed algorithm, it is applied to task scheduling in cloud com-
puting environments. The experimental results indicate that, compared to similar algorithms in
two heterogeneous cloud environments, the enhanced algorithm improves resource utilization
for task scheduling.

Section 2 offers a comprehensive review of existing scheduling models and techniques utilized
in cloud computing environments. Section 3 introduces the proposed scheduling system, followed by
Section 4, which provides an in-depth examination of the WCO algorithm. Section 5 elucidates the
improvements made to the WCO algorithm and illustrates the implementation of AWCO for task
scheduling purposes. Section 6 presents the experimental outcomes and their subsequent performance
analysis, while Section 7 concludes with a summary of the paper’s key findings and contributions.

2 Related Work
2.1 Task Scheduling Models

The diverse requirements of tasks and the intricacies of cloud environments have led to the
development of numerous models for task scheduling in cloud computing. Among these, scheduling
methods based on mathematical models are the most precise, typically employing mathematical opti-
mization techniques such as linear programming, integer programming, and dynamic programming to
determine the optimal task allocation scheme. These models represent the objectives and constraints
of task scheduling through explicit mathematical formulas. For instance, the model proposed by
Alguliyev et al. [26] ensures the efficient allocation of mobile users’ tasks to appropriate cloud
resources. This is accomplished by defining a set of mathematical variables and constraints that
minimize task processing time, reduce network latency, and lower the energy consumption of mobile
devices. However, the computational complexity of these models increases significantly as the problem
size grows. To address the challenges posed by large-scale task scheduling problems in cloud computing
environments more effectively, meta-heuristic algorithms are adopted.

Moreover, load-balancing task scheduling models aim to ensure a relatively balanced load across
computing nodes in cloud computing systems. Fang et al. [27] proposed a two-tier scheduling
mechanism for efficient task execution in cloud computing environments. This approach initially
assigns tasks to VMs, followed by mapping these VMs to physical resources. However, unlike the
model presented in this study, these conventional methods typically focus solely on balanced task
distribution without considering factors such as the optimization of task execution time and cost.
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2.2 Task Scheduling Strategy

Task scheduling policies in cloud computing environments play a crucial role in efficient task
allocation and scheduling to cloud computing resources, aiming to optimize system performance and
resource utilization. These policies typically consider various factors, including time, cost, makespan
[28], reliability, availability, throughput, and resource utilization, to ensure the reliable and cost-
effective execution of tasks within a cloud environment. Common task scheduling techniques, such
as dynamic priority scheduling [29] and hierarchical scheduling [30], are frequently employed for
task optimization in cloud computing. Additionally, meta-heuristic algorithms are utilized to address
cloud task scheduling challenges [31,32]. These algorithms offer advantages such as conducting more
comprehensive searches, accommodating complex objective optimization problems, avoiding local
optima, and improving resource utilization.

Task scheduling algorithms in these environments include those based on GA, PSO, and ACO.
GAs in task scheduling identify optimal solutions by simulating natural selection and evolution
processes. Changtian et al. [33] characterized independent task scheduling as a two-objective mini-
mization problem, optimizing completion time and energy consumption. Sheng et al. [34] noted that
most task scheduling algorithms prioritized overall task completion duration over individual task
completion time and proposed a Template-Based Genetic Algorithm (TBGA) with user Quality of
Service (QoS) constraints. Pirozmand et al. [35] emphasized that scheduling and associated energy
consumption posed significant challenges for cloud computing systems and proposed a two-step
hybrid scheduling approach. The PSO algorithm in task scheduling identifies optimal solutions by
simulating collaborative and informational transfer dynamics observed in bird flocks or fish schools.
Mansouri et al. [36] developed a new task scheduling algorithm, FMPSO, employing advanced PSO
techniques and fuzzy systems. Task scheduling based on the ACO algorithm simulates ant colony
behavior to solve task allocation and scheduling problems. Moon et al. [37] proposed an innovative
ACO algorithm, SACO, for cloud computing task scheduling. Experimental findings confirmed
SACO’s ability to maximize cloud server utilization while solving the NP-hard issue. In contrast,
AWCO demonstrates enhanced global search capabilities and dynamic adaptability in task scheduling.
By simulating willow diffusion and aggregation processes, AWCO accelerates convergence speed,
avoids local optima, and achieves efficient resource utilization and balanced system load.

3 Task Scheduling System
3.1 Model Design

In a cloud computing environment, the task scheduling algorithm initiates the assignment of
tasks to VMs upon their addition to the task queue by the task manager. Fig. | illustrates a
representative example of task scheduling in a cloud computing system. Presently, task scheduling in
cloud computing faces significant challenges, primarily in intelligently allocating tasks to processors
for cost-effectiveness, load balancing, and reduced makespan. To address the limitations of current
research on task scheduling algorithms in cloud computing, this study proposes an enhanced task
scheduling method utilizing an enhanced version of the Advanced Phasmatodea Population Evolution
(APPE) algorithm [3£].

Each task is characterized by two attributes: the number of tasks designated as n and the number of
machine language instructions in millions required for task execution represented by variable /en. VMs
possess five attributes: m, MIPS, RAM , bandwidth, and storage. The m attribute represents the number
of available VMs, while MIPS indicates the average speed at which a VM processes single-word fixed-
point instructions. The RAM attribute refers to the VM’s memory capacity, the bandwidth attribute
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represents the network bandwidth of a VM, and the storage attribute denotes a VM’s storage capacity.
Several key factors primarily influence the load profile of a VM. The system employs sequential task
execution through task queues and scheduling algorithms, whereby each assignment is completed
linearly on the VM.

Users g 2 2. s e e e e
task1 task2 task3 | ...
‘ task information resource information

J d
@ el D)

VM1 VM2 VM3

Figure 1: Task scheduling model for cloud computing environment

3.2 Formulation of the Objective Function

This article aims to assess the performance of task scheduling in makespan, cost-effectiveness,
and load balancing.

Consider a scenario where a cloud user submits a task queue, denoted as Task, comprising tasks
T, T, ...,upto T, (30 <n < 300). Testing low and high task counts demonstrates the algorithm’s
adaptability to varying task quantities. Additionally, a set of VMs is defined as VM = {VM,, VM,, ...,
VM,}, where VM, corresponds to the j-th VM. We introduce the variable EXT, represented as EXT
={EXT}, .., to signify the expected execution time. This metric indicates the time required for task
i to be processed on VM, and is calculated using the following Eq. (1):

len;

EXT, = ——
' MIPS,

0]

The variable T_length, consisting of elements len,, len,, ..., and len,, represents the duration of the
i-th task, denoted as len,. MIPS; denotes the execution rate of M. Consequently, EXT; signifies the
estimated time required to complete task i on VM, considering various factors such as task length
and potentially relevant parameters.
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(a) Cost:

The cost of a VM encompasses multiple factors, including the utilization of CPU, memory, and
storage resources, as well as the operational duration of the VM. These costs are typically billed on a
usage-per-unit-of-time basis. The calculation formula is presented in Eq. (2):

Cost = Z(cos 1 % (Z EXT; x RUN,.,)) 2)

j=1 i=1

where cos?; denotes the hourly cost of the jth VM, influenced by MIPS, RAM, bandwidth, and storage
in this environment. Let RUN = {RUN}, . ., where RUN is a binary indicator (1 or 0) representing
whether task i is executed on VM j. Specifically, RUN, = 1 indicates task i is assigned to VM j, while
RUN; = 0 implies otherwise.

(b) Makespan:

In the context of task scheduling, Makespan represents a critical performance metric for the total
time required to complete the entire set of tasks, which reflects the efficiency and productivity of task
scheduling. Consequently, minimizing Makespan is commonly considered an optimization objective
in the development of scheduling algorithms. The calculation formula is presented in Eq. (3):

Makespan = max (z EXT; x RUN,j) (3)
j=1

i=1

(c) Load:

The significance of load in task scheduling is exemplified by the system’s selection of suitable
nodes for task execution. A node with a higher load may result in increased task execution time.
Consequently, task scheduling algorithms typically consider node load and select nodes with the lowest
load to execute tasks, aiming to maintain system efficiency and optimize performance. The calculation
formula is provided in Eq. (4):

i (load, — (load))” x VT,
j=1
Load = 4
od m x Makespan @

where m is the number of VM, load, denotes the load of the jth VM, (load)denotes the overall VMs’
average load, and VT, denotes the running time of the jth VM, as described in Eqs. (5)—(7). Specifically,
MIPS is used to calculate the task execution time of a VM; RAM and storage impose constraints on the
number and size of tasks a VM can host; and bandwidth is utilized to simulate the task transmission
time over the network, reflecting network latency’s impact on task completion time. Consequently,
the resource constraints of the VM directly influence task allocation and execution, ensuring that the
processing capacity of the VM is not exceeded during scheduling [39].

load, = o x MIPS + B x RAM + y x bandwidth + § x storage %)
Zm: load,
(load) = . (6)

m
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VT, =" EXT, x RUN, ()

i=1
where «, B, v, and § are the four parameters.

Based on these performance indicators, the expression of the fitness function is given in Eq. (8):
Fitness = a, x Makespan + a, x Cost 4+ a; x Load ®)

where a,, a,, and a; are three weights that satisfy ¢, + a, + a; = 1. The value of each weight can be
adjusted according to specific task requirements. The objective of task scheduling is to minimize the
value of the fitness function.

4 WCO Algorithm

The WCO algorithm simulates the dispersal of willow seeds, also referred to as willow flakes, as
they are carried by the wind. This process is primarily influenced by two factors: wind speed and
wind direction. As the willow flakes descend, they tend to cluster together, potentially adhering to
one another when in close proximity. Furthermore, the algorithm reflects the gradual decrease in the
dispersal range of willow seeds, representing a transition from an exploration phase to an exploitation
phase in the optimization process.

4.1 Initialization Phase

The algorithm’s initialization phase involves generating random seeds and distributing them
across the solution space. This space can be represented by a matrix with N rows and D columns,
where N signifies the total population size, and D represents the dimensionality of each individual.
In this matrix, each row corresponds to a single individual, while each column represents a specific
attribute of that individual. The WCO process commences with this random population in the willow
tree, generating the initial random population using the following Eq. (9):

x,=rx (UB—LB)+LB,i=1,2,....N )

Here, the random number r is within the range [0, 1], x; denotes a D-dimensional solution, and
the solution space is bounded by an upper limit UB and a lower limit LB.

4.2 Search Phase

During the search phase, following the descent of willow catkins from the willow tree, each flake is
influenced by two primary factors: wind speed and direction. If individuals update their positions too
closely to one another during the iterative process, they will be blown closer together by the wind.
To measure the distance between individuals, the distance between the current individual and the
global optimal solution, denoted by d,, is calculated. An adhesion-prone radius R is introduced; if
the distance d; between individuals exceeds R, they are less likely to stick together, and Eq. (10) is
applied to determine the stochastic wind speed and direction. Conversely, if d; is less than or equal to
R, indicating a higher probability of adhesion, Eq. (11) is employed. The weights are then computed
according to Eqs. (12) and (13).

ws=rxR
wd =r x 2w

(10)
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ws=,ux(ZK,-!pg—xi‘)+(l—u)xer
i=1

(11)
wd = ar cos (m) +rxz
DW =1 _M (12)
| = b
k=2 (13)
> DW,

i=1
where p, represents the current global optimal solution, the symbol ||-|| signifies the Euclidean distance

between x; and p,, DWW denotes the weight of the distance between p, and x; in each dimension relative
to the total distance, while x is a random number generated within the range of 0.4 to 0.6.

By incorporating the randomly generated wind speed ws and wind direction wd into Eq. (14), we
can determine the direction and distance of an individual’s movement during each iterative update.

(14)

u = —ws x sin (wd)
v = —ws x cos (wd)

The individual update process can be accomplished by decomposing the wind’s direction and
speed into components u and v. We employ Eq. (15) to execute the individual update.

X =X, +ax uxv)xr+@2—a)(p, — x) (15)

where x; represents the current position of the individual, and « is a parameter that governs the
transition from exploration to exploitation during the individual’s iterative process.

a=cx e () (16)

Here, ¢ represents the current number of iterations, 7 denotes the maximum number of iterations
allowed, and c is a constant fixed at 2.

5 AWCO Algorithm

The update mechanism in WCO primarily relies on local information despite its efforts to guide
updates toward the global optimum in each generation. However, an update mechanism lacking
global search capabilities may struggle with complex optimization problems. The proposed reverse
learning strategy addresses this limitation by considering both the current and inverse solutions,
thereby expanding the search space coverage and exploring a wider range of potential solutions. Addi-
tionally, improvements to the WCO algorithm’s convergence speed are essential. The incorporation
of sinusoidal mapping in the initialization phase and position update formula aims to enhance the
algorithm’s ability to identify the optimal solution.

5.1 Improvement Methods

5.1.1 Sinusoidal Mapping for Enhanced Population Initialization

Sine chaotic mapping [40] is a chaotic system derived from sinusoidal functions, which is
characterized by high dynamic randomness that produces a nonlinear and unpredictable output
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sequence. The nonlinear properties of this mapping increase the algorithm’s complexity, particularly
in scenarios where avoiding locally optimal solutions is crucial. Implementing sine chaotic mapping in
the algorithm enables a more thorough exploration of the search space. Its irregular trajectory allows
for the traversal of each potential solution and enhances the algorithm’s convergence, thus facilitating
more efficient identification of the global optimum solution. The mathematical formulation of this
mapping is presented in the following Fq. (17):

4
Zipr = — SIn (7w Z) (17)
a

The sinusoidal mapping’s value domain is defined as the interval [—1, 1]. In Eq. (17), a represents
a real number within the interval (0, 4], z, denotes the mapping sequence of the k-th individual, while
Z,41 Tepresents the mapping sequence of the (k+1)-th individual.

The parameter a plays a crucial role in determining the randomness of sinusoidal mapping. To
identify the optimal value of a, this study conducts a comparative experiment using CEC2014, with
the results presented in Table 1. The algorithms yielding the optimal results are highlighted in bold.
The comparison reveals that when « is set to 4, the algorithm achieves the highest number of optimal
outcomes. Consequently, this paper adopts a value of 4 for a.

Consequently, the initialization formula is modified as follows:
x,=zx(UB—LB)+LB,i=1,2,....N (18)

where z represents the sequence of sinusoidal mappings.

Table 1: Comparison of results for different values of a

Function a=1 a=2 a=3 a=4

F1 1.03E+06 5.03E+05 3.00E+05 2.62E+05
F2 1.28E+06 1.20E+06 1.18E+06 1.15E4+06
F3 1.49E+03 6.94E+02 5.88E+02 1.04E+03
F4 4.25E+02 4.24E+402 4.21E+02 4.18E+02
F5 5.20E+02 5.20E+02 5.20E+02 5.20E+02
Fé6 6.03E+02 6.02E+02 6.02E+02 6.02E+02
F7 7.01E+02 7.01E4+02 7.01E+02 7.01E402
F8 8.17E+02 8.13E+02 8.15E+02 8.12E+02
F9 9.16E+02 9.13E+02 9.16E+02 9.11E+02
F10 1.51E+03 1.44E+03 1.50E+03 1.50E4-03
F11 1.78E+03 1.71E+03 1.62E4-03 1.60E403
F12 1.20E+4-03 1.20E+03 1.20E4-03 1.20E403
F13 1.30E403 1.30E+03 1.30E+03 1.30E403
Fl14 1.40E+403 1.40E+03 1.40E+03 1.40E+03
F15 1.50E+03 1.50E+03 1.50E+03 1.50E403
Fl16 1.60E+03 1.60E+4-03 1.60E+4-03 1.60E403
F17 7.78E+03 7.08E+03 7.15E4-03 4.90E403
F18 2.02E+04 2.07E+04 1.79E+04 2.82E+04

(Continued)



2504 CMC, 2025, vol.82, no.2

Table 1 (continued)

Function a=1 a=2 a=3 a=4
F19 1.90E+03 1.90E+03 1.90E403 1.90E+03
F20 2.31E+03 2.23E+03 2.09E+03 2.20E+03
F21 5.86E+03 5.00E+03 5.00E+03 5.39E+03
F22 2.25E+03 2.25E+03 2.25E+03 2.24E+03
F23 2.63E+03 2.63E+03 2.63E+03 2.63E+03
F24 2.53E+03 2.52E+03 2.52E+03 2.52E+03
F25 2.65E+03 2.66E+03 2.65E+03 2.65E+03
F26 2.70E+03 2.70E+03 2.70E+03 2.70E+03
F27 2.72E+03 2.74E+03 2.76E+03 2.95E+03
F28 3.23E+03 3.21E+03 3.22E+03 3.26E+03
F29 4.34E+03 3.70E+03 3.60E+03 3.07E405
F30 4.40E+03 4.04E+03 4.01E403 4.27E4+03
Total 7 10 12 20

5.1.2 Sinusoidal Mapping for Improved Position Update Formula

In the original algorithm, the component vectors of wind in the position update formula are
generated using pseudo-random numbers to create d-dimensional vectors. However, pseudo-random
number generators may not provide adequate randomness and distribution. To address this limitation,
this study employs sinusoidal mapping as an alternative to pseudo-random numbers for position
updates. The enhanced formula is presented in Eq. (19):

x,-+1=x,-+a><(u><v)><Z—|—(2—a)(pg—x,-) (19)

5.1.3 Quasi-Opposition-Based Learning (QOBL) Strategy

QOBL [41] builds upon the concept of Opposition-Based Learning (OBL) [42], aiming to enhance
the search process efficiency and global optimization performance. Unlike conventional OBL, QOBL
implements a more flexible adversarial strategy. Instead of merely adopting elements from the inverse
solution, it incorporates perturbations or variations of adversarial elements. This approach facilitates
a more adaptable exploration of the search space, thereby strengthening the algorithm’s ability to
conduct global searches and avoid entrapment in local optima.

Consider x as a point in the d-dimensional space, represented by the vector x = (x;, x,, ..., X,),
where each component x; is a real number within the interval [g;, b,], with g; and b; being constants.
The inverse solution is defined in d-dimensions and is expressed by the following Eqs. (20)—(22):

~ _ |rand (M. 5) . x, < M,
Y= " (20)
' rand (X;, M) , otherwise
1h
M, = 4+ (22)

2
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where rand(M,, X;) represents a uniform random number between M, and X, X; signifies the inverse

solution of x;, and x] denotes the proposed inverse solution of x;.

If the termination condition is not met, each individual’s fitness value is evaluated after each
position update. Subsequently, the lowest-performing 10% of individuals are selected for the proposed
reverse learning process. Following this, individuals with superior fitness values are incorporated into
the population.

The AWCO pseudo-code is presented in Algorithm 1 below for reference.

Algorithm 1: AWCO

Input: N: population size, D: dimension of the solution, 7: maximum iterations, UB: upper bound,
LB: lower bound.

Output: The global optimum for each individual in the population.

1: Use Eq. (18) to initialize the position for each individual in the population.

2: while count < T do

3: Denote the variable a by Eq. (16).

4: fori=1to Ndo

5: if d; < R then

6: Generation of wind speed ws and wind direction wd using Eqs. (11)—(13).

7 else

8: Generation of wind speed ws and wind direction wd using Eq. (10).

9: end if

10: Update the position of the population using Eqs. (14)—(19).

11: Calculate fitness values of population.

12: end for

13: Select the top 10% with poor fitness values for the proposed reverse learning through
Eqgs. (20)—(22).

14: Selection of small fitness values to be placed in the population.
15: end while

5.2 AWCO-Based Task Scheduling

The primary aim of task scheduling is to allocate specific tasks to VMs. In this context, the
dimension d signifies the number of tasks, while n represents both the number of solutions and the
population size within the algorithm. Each individual in the population corresponds to a potential
solution. The optimal solution, which represents the most efficient resource allocation plan, is
determined through the application of a fitness function.

To determine the initial globally optimal solution, the population must first be initialized, followed
by solving the fitness function to ascertain the fitness value. Subsequently, the position of each
generation of individuals is updated using the willow position, and the global optimal solution is
refined. This process continues, with fitness values recalculated until the termination condition is met.
The final globally optimal solution represents the ideal scheduling plan.

In cloud computing environments, tasks often present diverse priorities, variable execution time,
and fluctuating resource requirements during the execution phase. Many conventional scheduling
algorithms tend to converge on local optimal solutions, leading to suboptimal resource utilization
and inefficient task execution. AWCO addresses these limitations by overcoming the constraints
of conventional algorithms. It demonstrates an enhanced ability to approximate optimal solutions
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efficiently. These improvements enable AWCO to effectively tackle task scheduling challenges in cloud
computing environments. Consequently, AWCO facilitates the optimization of resource utilization,
reduces task completion time, and enhances overall system performance.

6 Experiments

This section provides a preliminary evaluation of the AWCO algorithm’s performance on
CEC2014, comparing it with other established algorithms such as the GA, BA [43,44], Sinusoidal
Cosine Algorithm (SCA) [45], TA, PSO, Rafflesia Optimization Algorithm (ROA) [46], and WCO.
Following this comparison, AWCO’s performance is assessed in two distinct heterogeneous cloud
environments.

6.1 Experimental Setup

The CEC2014 benchmark function set, established by the 2014 IEEE Congress on Evolutionary
Computation, consists of a series of test functions. These functions have been utilized to assess and
compare the performance of various optimization algorithms, particularly those related to evolution-
ary computation and meta-heuristic algorithms. The test suite encompasses 30 test functions, including
single-peaked (F1-F3), multi-peaked (F4-F16), mixed-peaked (F17-F22), and combinatorial-peaked
(F23-F30) ones. This diversity aims to assess the algorithms’ performance and adaptability across
various problem types. This study presents an analysis of the comparative effectiveness of several
algorithms, with particular emphasis on contrasting the AWCO algorithm with the original algorithm.
The comparison involved executing each benchmark function 20 times. Each iteration was performed
using CEC2014 with function dimensions of 10, 30, and 50, culminating in a total of 50,000 function
evaluations.

Following comprehensive simulations of the CEC2014 test functions, practical application tests
were conducted on the AWCO algorithm in an enhanced mixed cloud environment. This approach
facilitated a comparison with other algorithms, including WCO, PSO, GA, BA, SCA, TA, and APPE.
To ensure a fair comparison, identical initial conditions were maintained, with the population size
and iteration times set to 100. The performance of the two independent heterogeneous environment
evaluation algorithms was enhanced. In the initial improved environment (hereinafter referred to as
Improved Environment 1), the MIPS and storage capacity values of the VMs were distinct, while
the remaining factors remained constant. In the second improved environment (hereinafter referred
to as Improved Environment 2), a random number generator was employed to select values for
RAM, MIPS, bandwidth, and storage of the VMs, which were then assigned to specific ranges. The
relevant parameters are presented in Tables 2 and 3. The costs associated with resource utilization
were determined by the specifications delineated for the VMs. The resulting calculations yielded the
following costs: $0.12, $0.13, $0.17, $0.48, $0.52, and $0.96 per hour [47].

Table 2: Experimental settings in Improved Environment 1

Cloud entities Parameters Values
Task Num of task 30-300
Length 100-1000

(Continued)
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Table 2 (continued)

Cloud entities Parameters Values

Host Num of host 2
RAM 2048 MB
Storage 1,000,000
Bandwidth 10,000

Virtual machine Num of VMs 15
RAM 512 MB
MIPS 100-1000
Bandwidth 1000 MB
Storage 1000-1,000,000 MB
Size 10,000
VVM XUN
Operating-system Linux
Num of CPUs 1

Data center Num of DCs 2

Table 3: Experimental settings in Improved Environment 2

Cloud entities Parameters Values

Task Num of task 30-300
Length 100-1000

Host Num of host 2
RAM 20 GB
Storage 1TB
Bandwidth 10 GB

Virtual machine Num of VMs 25
RAM 128-15,360 MB
MIPS 256-30,720
Bandwidth 128-15,360 MB
Storage 128-15,360 MB
Size 10 GB
VVM XUN
Operating-system Linux
Num of CPUs 1

Data center Num of DCs 2
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6.2 Comparison Results of CEC2014 Benchmark Test Suite

Table 4 employs the following notations: “+” indicates superior performance of AWCO compared
to other algorithms, “—" denotes inferior performance, and “=" signifies comparable performance.
The AWCO algorithm demonstrates superior performance across all functions when compared to
GA, SCA, TA, and WCO. Furthermore, it outperforms BA and ROA in 29 functions and PSO
in 26 functions. AWCO exhibits superior performance in all single-peak functions, attributable to
its implementation of sinusoidal mapping for position updates. The AWCO algorithm only shows
marginal inferiority to PSO regarding F27. Additionally, AWCO demonstrates superior performance
in the remaining mixed-peak and combinatorial functions, which often comprise multiple local and
global optimal solutions. The QOBL strategy employed by AWCO effectively navigates around local
optima, showcasing robust global search capabilities. Moreover, AWCO demonstrates an effective
balance between exploration and exploitation processes, enabling thorough exploration of unvisited
regions while accurately searching for optimal solutions near local optima.

Table 4: Simulation results of 10-D on CEC2014 benchmark functions

Function GA BA SCA TA PSO ROA WCO AWCO

F1 3.3692E+07 2.9623E405 7.5325E+4+06 2.3451E+06 8.2691E+405 1.1591E+05 1.0122E+06 1.9733E+4-04
F2 1.4910E4+09 3.9005E+05 7.1288E+08 2.1925E+4+04 4.1385E+05 6.6973E4+03  6.2796E+06 2.0943E+03
F3 1.8185E+04 1.7564E+04 4.7005E403 4.7589E+03 8.7381E+402 1.6748E4+03 4.4211E+03 3.0023E4-02
F4 5.8367E+02 4.0295E4+02 4.6068E+02 4.3028E+02 4.0202E4+02 4.2355E+02 4.2399E+02 4.1112E+4-02
F5 5.2016E+02 5.2039E402 5.2040E+02 5.2014E+02 5.0567E+402 5.2003E+02 5.1962E+02  5.0518E+-02
F6 6.0714E+02  6.0850E+02 6.0673E4+02 6.0431E4+02 6.0172E4-02 6.0611E4+02 6.0333E402  6.0038E+02
F7 7.2539E+02  7.0070E4-02 7.0994E+02 7.0031E+02 7.0062E4-02 7.0040E+02 7.0105E+02  7.0022E4-02
F8 8.4102E+02 8.4755E+4+02 8.3933E+02 8.2260E+02 8.1296E+4+02 8.0468E+02 8.2191E+02 8.0696E+-02
F9 9.4750E+02  9.4962E+02 9.4139E+402 9.3008E+02 9.0436E+02 9.4847E+402 9.2371E+02 9.0801E+02
F10 1.3783E+03 2.2024E+03 2.0070E4+03 1.4001E+03 1.0020E403 1.7718E+03 1.5235E+03 1.2306E+4-03
F11 2.5164E+03 2.2526E+03 2.4614E403 1.8839E+03 1.5159E+03 2.1689E+403 1.8979E+03 1.2485E+403
F12 1.2009E+03 1.2005E+03 1.2013E4+03 1.2003E+03 1.2004E+4+03 1.2005E+03 1.2011E+03 1.2001E4-03
F13 1.3008E4+03  1.3005E4+03 1.3006E+03 1.3004E+03 1.3002E+03 1.3004E+03 1.3004E+03 1.3001E+403
F14 1.4033E+03 1.4003E+03 1.4011E4+03 1.4003E+03 1.4001E4+03 1.4004E+03 1.4002E+03 1.4000E4-03
F15 1.5571E4+03 1.5063E4+03 1.5088E+03 1.5021E+03 1.5030E+03 1.5031E+03 1.5038E+03 1.5007E+03
F16 1.6035E+03 1.6036E4+03 1.6033E4+03 1.6030E+03 1.6018E403 1.6033E+03 1.6028E+03 1.6016E+4-03
F17 8.6229E+05 5.6940E+03 4.4810E4+04 8.7665E4+03 2.7036E+03 6.5333E+03 5.9134E+03  2.2692E+03
F18 3.2137E+06  1.2924E+4+04 1.9066E+04 1.1849E+04 2.2497E+403 1.1173E+04 1.8511E+04 2.7201E4-03
F19 1.9146E+03  1.9054E+03 1.9049E4+03 1.9040E+03 1.9016E4+03 1.9051E+03 1.9041E+03 1.9016E+03
F20 5.1715E+05  7.8475E403 5.2997E+03 4.1522E+03 2.1224E4-03 5.2315E+03 2.4332E+03 2.0325E4-03
F21 4.3903E+05 9.3234E403 1.0926E4+04 4.5448E+03 2.4545E403 8.2155E+03 5.7204E+03 2.4131E+03
F22 2.4672E+03 2.3706E+03  2.2609E+403 2.2714E+03 2.3437E4+03 2.3248E+403 2.2449E+03 2.2226E+03
F23 2.6668E+03 2.6295E4+03 2.6418E4+03 2.6299E4+03 2.6341E403  2.6295E+03  2.6302E+03 2.6100E+03
F24 2.5698E+03 2.5690E+03 2.5518E+403 2.5413E+03 2.5599E+03 2.5573E403 2.5301E+03 2.5145E+403
F25 2.6987E+03 2.6991E+03 2.6972E4+03 2.6908E+03 2.7017E4+03 2.7012E403 2.6473E+03 2.6155E+03
F26 2.7011E+03 2.7004E+03 2.7007E4-03 2.7004E+03 2.7002E+03 2.7003E4-03 2.7003E+03  2.7001E+403
F27 3.0619E+03 3.0539E+4+03 2.9829E+03 2.9017E+03 2.7061E4+03 3.0412E+03 2.9227E+03 2.8216E+4-03
F28 3.5059E+03  3.3248E+4-03 3.2618E+03 3.2967E+03 3.9219E403 3.2922E+03 3.5156E+03  3.1924E4-03
F29 1.5440E+05 3.8737E4+03 9.3586E+403 4.5525E+03 3.1562E4+03 8.9931E+04 4.0903E+03 3.2211E4-03
F30 9.9212E4+03 4.6551E4+03 4.7705E4+03 4.9427E4+03 5.1399E+03 4.4713E+03 5.4584E+03 3.6746E+03

+/=/— 30/0/0 29/0/1 30/0/0 30/0/0 26/1/3 29/0/1 30/0/0
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Table 5 presents a comparative analysis of the algorithms across 30 dimensions. The data in
the table demonstrates that the AWCO algorithm outperforms GA, SCA, TA, and WCO in various
scenarios, including single-peak, multi-peak, and mixed-peak problems. The results indicate the algo-
rithm’s robustness in handling diverse problem types, from simple single-peak problems to multi-peak
problems with multiple local optima and mixed-peak problems with complex structures. Moreover,
AWCO exhibits enhanced performance compared to BA and ROA in single-peak and mixed-peak
scenarios. In the mixed-peak function, AWCO slightly underperforms PSO in F22 but surpasses
the other algorithms in the remaining cases. These findings suggest that as problem dimensionality
increases, AWCO demonstrates a superior ability to avoid local optima, making it more suitable for
complex optimization problems.

Table 5: Simulation results of 30-D on CEC2014 benchmark functions

Function GA BA SCA TA PSO ROA WCO AWCO

F1 5.1498E+08  7.5536E4+06 3.9371E4+08 7.6362E+07 6.8864E+06 1.2146E4+07 5.4967E+07 1.7146E+4-06
F2 2.7862E+10 8.8175E4+06 2.3465E+10 8.7470E+07 7.5377E4+09 1.1438E+4+04 3.3709E+08 9.6693E+-03
F3 8.4302E+04 1.1740E4+05 5.3086E+04 6.5284E+04 1.6845E+04 2.3347E+4+04 4.9244E+04 9.4146E+02
F4 2.3322E+03 4.5183E+02 2.1548E+403 7.1887E+02 4.5298E+02 5.2681E+402 6.4657E4+02 4.9585E+02
F5 5.2029E+02 5.2101E4+02 5.2101E4+02 5.2079E+02 5.2017E4+02 5.2015E402 5.2102E+02  5.2004E+-02
F6 6.3060E+02 6.3640E4+02 6.3633E4+02 6.2768E+02 6.3399E4+02 6.3281E4+02 6.2555E+02  6.1364E+4-02
F7 9.0180E+02 7.0108E+02 8.8772E+4+02 7.0156E+02 7.0435E+02 7.0002E402 7.0369E+02 7.0003E+02
F8 1.0390E+03  1.0481E4+03 1.0652E4+03 9.4564E+02 9.6607E+02 8.4306E+02 9.7247E+02  8.5985E+02
F9 1.1494E+03 1.2209E403 1.1897E403 1.0900E+03 1.0587E+403 1.2099E+403 1.1050E+03 9.6646E+-02
F10 5.0638E+03  5.3235E+03 7.4304E4+03 4.6908E4+03 3.2765E4+03 5.1668E+03 5.6752E+03 3.7912E+03
F11 6.9880E+03 5.5300E+03 8.3974E+403 5.5327E+03 5.0801E+403 5.7445E4+03 6.7904E+03 4.1396E+4-03
F12 1.2008E+03  1.2013E4+03  1.2029E4-03 1.2012E+03 1.2011E4+03 1.2013E403 1.2029E+03 1.2005E+4-03
F13 1.3038E+03 1.3005E+03 1.3037E+403 1.3005E+03 1.3002E4+03 1.3006E4+03 1.3006E+03 1.3004E+4-03
F14 1.4778E+03 1.4003E4+03 1.4639E403 1.4003E+03 1.4743E4+03 1.4004E+03 1.4005E+03 1.4001E+4-03
F15 1.9787E+04 1.5388E+03 1.5040E4+04 1.5309E+03 1.1922E4+04 1.5354E+03 1.5312E+03 1.5079E+03
F16 1.6123E+03 1.6132E403 1.6131E403 1.6124E+03 1.6133E4+03 1.6130E4+03 1.6125E+03 1.6102E+4-03
F17 3.3878E+07 4.3109E4+05 9.4532E+406 2.1658E+06 1.3232E+407 7.3447E+405 2.0768E+06 1.5649E4-05
F18 8.1982E+08 2.1737E4+05 2.3357E4+08 5.7248E+04 2.6385E+07 1.3499E+04 3.6448E+06 2.8808E+-03
F19 2.1309E+03  1.9233E403 2.0181E4+03 1.9441E+03 1.9166E4+03 1.9365E4+03 1.9213E+03 1.9136E+4-03
F20 6.8129E+04 3.3610E4+04 3.4939E+04 2.1341E+04 2.6896E+03 1.6412E4+04 1.5870E+04 2.3089E+-03
F21 1.6261E+07 2.1297E+405 3.3913E406 4.6685E+05 3.2140E4+05 4.8655E+405 6.4345E+05 6.4855E+04
F22 3.3230E+03 3.2712E+03 3.1530E4+03 2.7761E4+03 2.4477E4+03 3.0662E+03 2.7176E+03  2.4693E+03
F23 2.7416E+03 2.6156E+03 2.6969E+03 2.6545E+03 2.7299E+03 2.6180E+4+03 2.6461E+03 2.6178E+03
F24 2.6016E+03 2.6661E4+03 2.6140E4+03 2.6546E+03 2.6471E4+03 2.6589E+03 2.6442E+03 2.6255E4-03
F25 2.7044E+03 2.7301E+03  2.7342E4+03 2.7242E+03 2.7245E+03 2.7227E+403 2.7200E+03 2.7087E+03
F26 2.7291E+03 2.7105E+03  2.7030E4-03 2.7007E+03 2.7042E+03 2.7006E+403 2.7006E+03 2.7003E+03
F27 3.7492E+03 3.8063E+03 3.7772E4+03 3.5160E4+03 4.0892E+03 3.6577E+03 3.1342E+03  3.2639E+03
F28 6.1691E+03 6.4960E4+03 5.4214E+4+03 5.5251E+03 6.5688E+4+03 4.7911E4+03 6.3290E+03  5.5042E+4-03
F29 49573E+07 3.1303E+03  2.5734E+407 3.4876E+06 2.7717E+05 1.0927E407 2.2662E+08 2.3920E+06
F30 5.9544E+05 1.5817E4+04 4.5924E+05 1.0550E4+05 2.0503E4+05 2.7140E+04 1.0143E4+05 1.3553E+04
+/=/— 28/0/2 2710/3 29/0/1 30/0/0 25/0/5 27/0/3 29/0/1

Table 6 presents a comparative analysis of the algorithms across 50 dimensions. Among the 50
dimensions, AWCO exhibits 28 test functions with superior performance when compared to SCA,
26 test functions surpassing GA and TA, and 25 test functions outperforming WCO. These results
indicate that the AWCO algorithm demonstrates effective global search capabilities. Except for F12
and F16, which show performance characteristics similar to those of SCA, all functions exhibit
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superior performance in AWCO compared to SCA. Moreover, AWCO outperforms the remaining
algorithms by a margin exceeding 80% in high-dimensional problems, suggesting its proficiency in
navigating high-dimensional spaces. High-dimensional problems typically present complex search
spaces with numerous local optima. AWCO employs the QOBL strategy to maintain population
diversity throughout the search process, preventing solution space reduction due to over-aggregation
and ensuring adequate exploration capabilities in high-dimensional problems. The commendable
performance of AWCO demonstrates its ability to efficiently navigate these complex spaces, avoiding
the pitfalls of local optima. AWCO outperforms other classical algorithms on most test functions, thus
exhibiting robustness and consistency.

Table 6: Simulation results of 50-D on CEC2014 benchmark functions

Function GA BA SCA TA PSO ROA WCO AWCO

F1 7.7200E+08  1.3200E407 9.5500E+08 1.9600E+08 2.8000E+407 3.3500E+07 1.4000E+08 3.3000E+4-06
F2 6.5200E+10 2.8100E407 6.6800E+10 2.8900E+09 1.6500E409 2.7400E+05 1.7200E+09 1.7800E4-05
F3 1.2200E4+05 1.5000E405 1.2700E405 1.1200E+05 5.6100E+04 6.8400E+04 7.9800E404 6.8800E+403
F4 1.0900E+04 5.3100E402 1.1500E404 1.5000E+03 6.7500E4+02 5.9600E+02 1.0300E+03  5.5900E+-02
F5 5.2100E+02 5.2100E+02 5.2100E+02 5.2100E4+02 5.1300E4+02 5.2000E+02 5.2100E402  5.2000E+02
Fo 6.6000E+02  6.6800E4+02 6.7100E+02 6.5500E+02 6.2400E4+02 6.6500E+02 6.5100E+02  6.4100E+4-02
F7 1.2600E+03  7.0100E+02 1.3300E+403  7.2800E+402 7.2000E+02 7.0000E+402 7.2100E4+02 7.0100E+02
F8 1.2800E4+03 1.2700E4+03  1.3500E403  1.1700E+03  9.7800E+02 9.2600E+02 1.2200E403  9.6300E+4-02
F9 1.3900E+03  1.4900E+03 1.5000E+403 1.3600E+03 1.1300E403 1.5100E+03 1.3700E+03 1.0800E+-03
F10 9.9200E+03 9.2500E+03 1.4200E4+04 8.3700E4+03 8.2100E4+03  9.2000E+03  1.0800E+04 5.9800E+03
F11 1.2500E+04  9.2500E+03 1.5200E+04 1.0200E+04 8.1400E+4+03 9.8700E+03 1.3200E+04 7.6600E+4-03
F12 1.2000E403  1.2000E+03  1.2000E+4-03  1.2000E+403 1.2000E+03 1.2000E+4-03  1.2000E+03 1.2000E+03
F13 1.3100E+03  1.3000E+03 1.3100E403 1.3000E+03 1.3000E403 1.3000E+03 1.3000E+03 1.3000E+4-03
F14 1.5400E+03  1.4000E+403 1.5700E+403 1.4000E+03 1.4000E403 1.4000E+03 1.4000E+03 1.4000E4-03
F15 3.9800E+05 1.5700E+03 3.9000E405 2.1700E4+03 1.5500E4+03 1.6100E+03 2.0800E+03 1.5800E+03
Fl16 1.6200E+03  1.6200E+03 1.6200E+03 1.6200E+03 1.6200E4+03 1.6200E+03 1.6200E+03 1.6200E+4-03
F17 1.0600E408 1.1200E+06 8.2100E+4-07 1.2600E4+07 7.6200E+05 2.3600E+406 7.9700E+06 6.2100E+405
F18 4.3000E+09 1.0700E+06 2.3300E4+09 6.8600E+06 3.5800E+07 6.0500E403 1.8300E+07 2.7500E+03
F19 2.4200E+03 1.9500E+03 2.2700E403 2.0000E+03 1.9400E4+03 1.9600E+403 1.9900E+03 1.9400E+03
F20 9.3800E+04 4.8600E+04 7.4500E4+04 4.0100E+04 1.0300E+04 3.6300E4+04 4.0800E+04 2.8400E+03
F21 3.1800E+07 8.3000E+405 2.0500E+07 4.3900E+06 9.0300E405 1.4100E+06 5.0000E+06 3.0600E4-05
F22 5.2900E+03  4.1500E+03 4.9100E4+03 3.4900E+03 2.6800E+03 3.9700E+03 3.7600E+03  3.2900E+03
F23 3.3100E+03  2.6500E+03 3.1600E+03 2.7700E+03 3.2000E403 2.6600E+03 2.7500E+03 2.6700E+4-03
F24 2.6700E+03  2.7700E+03 2.7600E4-03  2.7200E+03 2.7200E+03 2.7200E4-03 2.7200E+03  2.6800E+403
F25 2.7100E4+03  2.7700E403 2.7900E4+03 2.7600E4+03 2.7600E403  2.7600E+03  2.7500E+03  2.7100E+03
F26 2.7900E+03  2.7200E+03 2.7100E4-03 2.7600E+03 2.8100E4+03 2.7200E4-03 2.7000E+03  2.7000E+403
F27 4.6400E+03  5.1000E403 4.9200E4+03 4.4900E+03 5.4300E4+03 4.8200E+03 4.3400E+03  4.1500E+03
F28 1.0300E+04 1.1900E+04 1.0000E+04 9.6300E+03 1.4300E4+04 7.7800E+03 1.0100E+04 7.4500E+4-03
F29 4.2900E+08 3.1700E+03 2.8400E+408 1.3000E+08 2.7800E+08 1.6900E+408 4.9400E+08 1.8800E+04
F30 5.1100E+06 1.6500E+04 3.5600E+06 6.4700E+05 9.8800E4+06 5.6900E+04 3.9800E+05 7.0800E+-04
+/=/— 26/3/1 20/5/5 28/2/0 26/4/0 21/5/4 22/5/3 25/5/0

To further demonstrate the superior performance of AWCO, we conducted convergence perfor-
mance tests on 30 benchmark functions in CEC2014, including convergence graphs of 10-D, 30-D,
and 50-D. Each dimension was tested on functions exhibiting single, multiple, mixed, and combined
peaks, enabling a comprehensive evaluation of AWCO’s convergence and robustness. Fig. 2 illustrates
the convergence performance of AWCO on the 10-D dataset. Compared to other algorithms such as
GA, WCO, and SCA, the results show that AWCO exhibits superior performance, particularly for
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multiple and combined peaks. This is attributed to AWCO’s utilization of a reverse learning strategy
to identify the optimal solution, allowing it to converge to the global optimal solution more rapidly.
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Figure 2: Convergence graph of CEC2014 benchmark functions on 10-D

Fig. 3 illustrates the convergence performance of AWCO on 30-D. AWCO demonstrates superior
performance compared to alternative algorithms, particularly in processing data related to functions
with multiple and combined peaks. The AWCO algorithm converges notably faster than other
algorithms for most functions. AWCO’s ability to achieve low fitness values with limited evaluations
highlights its exceptional global search capability and efficiency in identifying optimal solutions. The
graph displays several fitness curves, with AWCO’s curve being the most prominent, especially in the
early stages. The sinusoidal mapping enables a more uniform initial population distribution across
the solution space, facilitating rapid identification of high-quality solutions in the algorithm’s initial
phase. The AWCO curve exhibits minimal fluctuation, indicating stability throughout the optimization
process and reduced susceptibility to significant performance variations.
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Figure 3: Convergence graph of CEC2014 benchmark functions on 30-D

Fig. 4 illustrates the convergence performance of AWCO on the 50-dimensional data set. While the
performance of many algorithms may deteriorate with increasing dimensionality, AWCO consistently
demonstrates superior convergence and achieves lower fitness values more quickly than other algo-
rithms for most functions. This suggests that AWCO possesses enhanced global search capabilities and
convergence speed when addressing high-dimensional problems. Although increased dimensionality
typically results in performance fluctuations for many algorithms, AWCO’s fitness curves remain
smooth with minimal variations, indicating its robustness is well-preserved even in high-dimensional
problems. This stability is attributed to the sinusoidal mapping, which enhances the stochastic nature
of positional updates while maintaining a uniform distribution of population initialization, thus
providing a robust foundation for the algorithm’s exploration from the outset. AWCQO’s superiority
in various aspects renders it a noteworthy and applicable algorithm.
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6.3 Experimental Results of Task Scheduling in Improved Heterogeneous Cloud Environments

The APPE algorithm was employed to evaluate the performance of both the original and
improved heterogeneous cloud environments, and the results are presented in Table 7. The objective
function values of Improved Environments 1 and 2 are significantly lower than those of the original
environments, indicating that the improved environments are more conducive to optimization and
demonstrate superior performance across all dimensions. This suggests that in these improved
environments, the optimization algorithm can identify outcomes more closely aligned with the global
optimal solution. Since the goal is to minimize the objective function value, the lower values in the
improved environments indicate greater efficiency. In dimensions ranging from 50-D to 300-D, the
improved environments (1 and 2) consistently exhibit lower objective function values, demonstrating
that the enhanced cloud environments maintain their optimization capability for high-dimensional

problems.
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Table 7: Comparison of heterogeneous cloud environments

Dimension Original Original Improved Improved
Environment 1 Environment 2 Environment 1 Environment 2

50-D 0.1251 0.0014 38.1194 2.8414

100-D 0.1557 0.0009 44.5321 3.0891

200-D 0.103 0.0006 35.9361 2.6448

300-D 0.1318 0.001 46.6529 4.2776

To rigorously evaluate the effectiveness of the AWCO algorithm, 30 trials were conducted
for each of the following algorithms: WCO, PSO, GA, BA, SCA, TA, and APPE. These trials
were performed in the improved heterogeneous cloud environment, and the resulting averages were
compared across dimensions of 30-D, 50-D, 100-D, 200-D, and 300-D, where the dimension refers
to the task volume. The comparative analysis of these averages is presented in Tables 8 and 9. The
data in these tables indicate that AWCO consistently demonstrates the lowest mean value compared
to other algorithms, suggesting superior efficiency and global search capability in optimizing cloud-
based tasks. Furthermore, the values in Table 9 (Improved Environment 2) are generally lower than
those in Table & (Improved Environment 1), particularly at smaller dimensions (30-D and 50-D). This
implies more effective task allocation management in the context of enhanced load capacity. In this
environment, the reduced average values across all algorithms indicate improved efficiency in resource
management and task scheduling.

Table 8: Comparison of mean values of various dimensions in Improved Environment 1

Dimension WCO PSO GA BA SCA TA APPE AWCO
30-D 25.2 21.07 156.03 23.82 2491 24.85 26.65 12.29
50-D 30.67 32.14 67.12 32.93 32.7 44.25 38.11 13.48
100-D 35.15 43.38 54.63 36.11 37.13 45.11 44.53 21.08
200-D 61.64 40.37 226.31 57.37 46.91 40.82 35.94 26.12
300-D 91.58 72.28 229.47 70.1 98.18 58.11 46.65 38.49

Table 9: Comparison of mean values of various dimensions in Improved Environment 2

Dimension WCO PSO GA BA SCA TA APPE AWCO
30-D 0.48 1.61 2.2 0.87 1.53 2.02 2.2 0.45
50-D 0.07 2.85 0.1 3.03 2.28 2.91 2.84 0.06
100-D 2.58 3.02 6.49 3.28 4.68 2.54 3.09 1.44
200-D 1.96 3.47 8.55 2.75 3.37 2.49 2.64 1.78
300-D 4.86 4.37 20.75 4.39 5.17 4.07 4.28 2.97

At elevated task counts (e.g., 200-D and 300-D tasks), the mean value of AWCO is significantly
lower than that of the other algorithms. This suggests that AWCO not only performs optimally
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with low task volumes but also demonstrates notable adaptability and robustness in high-volume
task scenarios. The sinusoidal mapping strategy and QOBL approach contribute to the algorithm’s
enhanced flexibility within the solution space. The dynamic adjustment of task scheduling, based
on feedback during the search process, enables the algorithm to utilize high-quality solutions more
efficiently while maintaining the ability to explore new solutions.

Figs. 5 and 6 illustrate the convergence of the algorithm in both improved environments with
varying task volumes. The convergence plots demonstrate three scenarios: low, medium, and high
task volumes. The BA, TA, and APPE algorithms exhibit greater consistency across all task volumes,
although they do not perform as well as the AWCO algorithm under high task volumes. The
AWCO algorithm demonstrates superior performance under varying task volumes, particularly in
high task volumes, where it shows higher convergence speeds and final convergence values. While
the other algorithms may perform better under specific task volumes, they generally do not match
the effectiveness of the AWCO algorithm. A comparison of the AWCO algorithm with the other
algorithms reveals its notable advantage in terms of convergence speed and capacity to handle
different task volumes and heterogeneous environments. This indicates that the AWCO algorithm is
more efficient and robust than similar algorithms for task scheduling. Moreover, AWCO not only
demonstrates notable performance under a single task volume but also exhibits adaptability in diverse
heterogeneous environments. This positions the AWCO algorithm as an effective tool for addressing
task scheduling challenges and a reliable solution for task allocation in complex environments.
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Figure 5: Comparison of convergence for different tasks in Improved Environment 1
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Figure 6: Comparison of convergence for different tasks in Improved Environment 2

To effectively demonstrate the efficacy of the AWCO algorithm in cloud environments, experi-
ments were conducted to analyze the makespan, cost, and load. Figs. 7 and & illustrate the experiments
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conducted in homogeneous (Improved Environment 1) and heterogeneous (Improved Environment 2)
cloud environments, respectively. The number of tasks varied between 30 and 300, with a step size of 90.
The experimental results presented in Fig. 7 demonstrate that the AWCO algorithm exhibits notable
superiority over the other meta-heuristic algorithms in terms of cost, completion time, and load as the
number of tasks increases. The ability to achieve the lowest cost, shortest completion time, and most
effective load balancing is of great significance in task scheduling. This is attributed to the AWCO
algorithm’s effective exploration and development capabilities, enabling it to identify more suitable
solutions for task allocation. The experimental results in Fig. & are analogous to those in Fig. 7, with
the AWCO algorithm again demonstrating advantages over the other algorithms. In the heterogeneous
Improved Environment 2, the completion time is reduced in comparison to the cost. This is because a
greater number of VMs can be assigned to the tasks, thereby improving efficiency.

0 120 210 300 0 120 210 300 0 120 210 300
MNumber of Tasks Mumber of Tasks Number of Tasks
(a) Cost (b) Makespan (c) Load

Figure 7: Comparison of makespan, cost, and load balancing level of each algorithm for different task
volumes in Improved Environment 1
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Figure 8: Comparison of makespan, cost, and load balancing level of each algorithm for different task
volumes in Improved Environment 2

7 Conclusions

To enhance global search capability, this study implements the QOBL strategy in the pro-
posed AWCO algorithm, which proves effective in achieving the desired outcome. Additionally, the
incorporation of chaotic mapping improves the convergence rate, strengthens its exploration and
exploitation capabilities, and facilitates rapid and accurate identification of the optimal solution. In the
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CEC2014 benchmark functions, the AWCO algorithm demonstrates superior performance compared
to the original WCO algorithm, effectively addressing the latter’s convergence and instability issues.
Moreover, it yields favorable results in task scheduling within cloud computing environments. These
improvements offer a more viable and reliable solution for the practical implementation of WCO.

While AWCO demonstrates effectiveness in solving task scheduling problems, it may not be the
optimal solution for highly complex and multimodal issues. In such scenarios, AWCO might struggle
to efficiently escape local optima, potentially limiting its global search capabilities. To address these
limitations, future research should focus on incorporating an adaptive mechanism to dynamically
adjust AWCO parameters and enhance its ability to navigate complex problem spaces. Although
this study has provided valuable insights into the task scheduling algorithm’s efficacy, it primarily
emphasizes algorithmic optimization and has not fully examined the impacts of cloud and data center
dynamics on task scheduling in cloud computing environments. This includes crucial factors such as
dynamic resource management, data transmission overheads, and energy consumption optimization.
Future investigations could integrate cloud computing infrastructure characteristics with a more
comprehensive analysis of data center resource fluctuations and network environment dynamics.
This approach would better align with task scheduling requirements in real-world cloud computing
scenarios, thereby improving the algorithm’s practicality and efficiency.
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