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ABSTRACT

This paper introduces an advanced and efficient method for distributed drone-based fruit recognition and
localization, tailored to satisfy the precision and security requirements of autonomous agricultural operations.
Our method incorporates depth information to ensure precise localization and utilizes a streamlined detection
network centered on the RepVGG module. This module replaces the traditional C2f module, enhancing detection
performance while maintaining speed. To bolster the detection of small, distant fruits in complex settings, we
integrate Selective Kernel Attention (SKAttention) and a specialized small-target detection layer. This adaptation
allows the system to manage difficult conditions, such as variable lighting and obstructive foliage. To reinforce
security, the tasks of recognition and localization are distributed among multiple drones, enhancing resilience
against tampering and data manipulation. This distribution also optimizes resource allocation through collaborative
processing. The model remains lightweight and is optimized for rapid and accurate detection, which is essential
for real-time applications. Our proposed system, validated with a D435 depth camera, achieves a mean Average
Precision (mAP) of 0.943 and a frame rate of 169 FPS, which represents a significant improvement over the baseline
by 0.039 percentage points and 25 FPS, respectively. Additionally, the average localization error is reduced to 0.82
cm, highlighting the model’s high precision. These enhancements render our system highly effective for secure,
autonomous fruit-picking operations, effectively addressing significant performance and cybersecurity challenges
in agriculture. This approach establishes a foundation for reliable, efficient, and secure distributed fruit-picking
applications, facilitating the advancement of autonomous systems in contemporary agricultural practices.
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1 Introduction

In recent years, the integration of robotics in agriculture has gained attention, with target detection
methods based on image processing and machine learning becoming more prevalent in these environ-
ments. Early research applied methods such as local binary patterns and color histograms, combining
these features using score fusion algorithms for fruit species recognition. Similarly, Yamamoto [1]
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developed a segmentation approach using traditional RGB cameras and machine learning techniques,
while Zawbaa et al. [2] utilized shape and color features, along with Scale Invariant Feature Transform
(SIFT), to build fruit species recognition systems. However, these methods struggled to handle the
complexities of real-world environments, where lighting changes, occlusion, and overlapping fruits
pose significant challenges to accurate recognition.

Deep learning methods, specifically convolutional neural networks (CNNs), have since advanced
the field of fruit recognition, offering more robust and scalable solutions. For example, Zhang et al. [3]
introduced an RGB-D depth camera to fuse depth and image data for accurate localization of tomato
bunches, while Lin et al. [4] used RGB-D images and Euclidean clustering for guava detection and
segmentation. Research has also focused on real-time localization in more complex environments, with
deep learning models for navel oranges and citrus fruits. While deep learning has shown promise in
these controlled scenarios, there are still significant challenges when it comes to handling small, densely
packed objects like litchis, particularly in natural orchard environments where occlusion, lighting
variability, and jitter affect performance.

The need for secure and efficient recognition and localization in such environments becomes even
more critical when deployed in distributed drone networks. Drones, used for automated fruit picking,
operate in decentralized systems, introducing vulnerabilities to data tampering, unauthorized access,
and system disruptions. Ensuring the integrity of the data used for fruit recognition, as well as the
communication between drones and central processing systems, is essential for reliable operation.

This paper builds on previous deep learning approaches and introduces a new method to enhance
both performance and security in drone-based fruit recognition systems. The proposed solution
leverages the YOLOv8 model, modified with the RepVGG network for lightweight processing to
reduce computational complexity. Additionally, the model incorporates a small target detection layer
and SKAttention module to enhance its ability to detect small objects such as litchis, even in complex
environments. Furthermore, we address the security challenges by implementing a secure distributed
framework that protects against data manipulation and ensures robust communication across drones.
By combining these advancements with RGB-D depth camera technology, the system achieves precise
localization while ensuring the reliability and security of the distributed architecture.

Experimental results demonstrate that the proposed method achieves high accuracy and perfor-
mance in detecting litchi fruits in complex orchard environments, with improvements in detection
speed and localization precision. Additionally, the integration of security protocols ensures that the
system is resilient to cyber threats, making it suitable for large-scale, automated drone-based fruit
harvesting operations.

The contribution of this paper can be summarized as follows:

• We propose an improved YOLOv8 model by integrating the RepVGG network structure for
lightweight processing, Selective Kernel Attention for better feature extraction, and a small
target detection layer to improve the recognition of small fruits, such as litchis, in complex
environments.

• We introduce a secure framework for distributing the fruit recognition and localization process
across multiple drones, ensuring data integrity and protection against tampering, which is
crucial for reliable and safe operations in decentralized systems.

• Our system leverages RGB-D depth cameras to enhance the accuracy of fruit localization,
achieving an average localization error of 0.82 cm, which meets the precision demands for
autonomous drone operations in agricultural settings.
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2 Related Work
2.1 Objective Detection

Objective detection is fundamental in computer vision, particularly for applications that involve
identifying and localizing objects in diverse environments. This capability is crucial in agriculture,
where precise detection of fruits can significantly improve automated tasks such as harvesting and yield
monitoring [5,6]. Historically, traditional techniques like local binary patterns and color histograms
were employed for fruit recognition, extracting texture and color features to classify various fruit types
[7,8]. While these methods laid the groundwork, they often fell short in robustness under real-world
conditions, challenged by issues such as varying lighting, occlusion, and overlapping fruits [9].

The advent of deep learning has been transformative in the field of objective detection. Specifically,
Convolutional Neural Networks (CNNs) have revolutionized feature extraction and processing,
facilitating the automatic learning of complex patterns from data [10]. The YOLO (You Only Look
Once) series, including the advanced YOLOv8 model, exemplifies this progress by providing a real-
time detection framework that efficiently predicts object boundaries and classifications directly from
image data [11,12]. These models have achieved significant gains in speed and accuracy, rendering
them ideal for dynamic and complex environments [13].

In agricultural settings, the integration of deep learning with depth sensing technologies has
further enhanced detection capabilities. RGB-D cameras, capturing both color and depth information,
offer a richer dataset that improves object localization accuracy [14,15]. This method has proven
effective in projects aimed at detecting tomatoes, guavas, and passion fruits, where depth data helps
resolve ambiguities caused by overlapping fruits and varying object sizes [16]. By merging depth
information with deep learning models, precise 3D localization is achieved, enabling accurate detection
even in cluttered and occluded environments [17,18].

Despite these advancements, challenges remain, especially in detecting small, densely packed
objects. Factors such as lighting variations, shadows, and natural occlusions can impede detection
performance. Current research is directed towards improving feature extraction techniques and
enhancing model efficiency. Techniques like Selective Kernel Attention, which refine the model’s focus
and filter out irrelevant noise, show promise in overcoming these obstacles [19]. As these technologies
evolve, they are expected to further refine objective detection systems, broadening their applicability
to a range of real-world scenarios [20,21].

2.2 Fruit Recognition

Fruit recognition plays a pivotal role in agricultural automation, facilitating tasks such as har-
vesting, sorting, and quality control [22]. Initially, traditional image processing methods that relied on
handcrafted features like color histograms, Local Binary Patterns (LBP), and Scale Invariant Feature
Transform (SIFT) were predominant [23,24]. These methods, effective in controlled conditions,
struggled in natural settings characterized by variable lighting, occlusion, and overlapping fruits.
Techniques combining color and texture features, followed by classification with k-nearest neighbors
or support vector machines, often faced limitations under complex conditions [25,26].

The adoption of deep learning has significantly advanced fruit recognition capabilities, par-
ticularly through Convolutional Neural Networks [27,28]. These models autonomously learn and
extract relevant features from extensive datasets, adapting better to varying conditions. YOLO (You
Only Look Once) models, known for real-time object detection, frame detection as a regression
problem, simultaneously predicting bounding boxes and class probabilities [29,30]. YOLO’s efficacy in
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agricultural contexts, such as apple detection in orchards, illustrates its capability to handle challenges
like variable lighting and partial occlusions [31,32].

Enhancements in fruit recognition have also been achieved through the integration of depth
information from RGB-D cameras. This multimodal approach, combining RGB images with depth
data, significantly improves the ability to accurately recognize and localize fruits, even in cluttered
and occluded environments [33]. These developments have bolstered fruit recognition systems, making
them more robust and suitable for diverse and challenging agricultural settings [34,35].

Challenges persist, particularly in detecting small, densely packed fruits in varying environmental
conditions. Fluctuating lighting, shadows, and foliage occlusions continue to impact the perfor-
mance of recognition systems. Future research is likely to focus on enhancing the robustness and
adaptability of deep learning models, improving network architectures, and employing sophisticated
data augmentation techniques. Addressing these challenges will further advance the development of
fully automated, efficient, and accurate fruit recognition systems, significantly benefiting agricultural
operations [36,37].

3 Methodology
3.1 Fruit Identification Methods

The network structure of YOLOv8 is mainly composed of backbone network, neck network and
head network. Because of the consideration of high real-time and accuracy in the process of litchi
picking, the method in this paper is improved in terms of improving the detection efficiency of the
algorithm, while improving the accuracy of the model. Specifically: 1) Use RepVGG module to replace
the c2f module as the network model of YOLOv8 to realize the lightweight of the model. 2) Add the
SKAttention attention mechanism to improve the lychee target detection accuracy of the network
model of YOLOv8. 3) Add the small target detection layer to improve the model’s ability of detecting
the dense small lychee target. The network structure of the method in this paper is shown in Fig. 1.

Figure 1: Network structure of our method

RepVGG was selected for this study due to its balance between simplicity, lightweight architecture,
and high inference speed, which are critical for real-time applications like drone-based fruit detection.
Unlike more complex models like EfficientNet and Transformer-based architectures, RepVGG uses
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a structural re-parameterization approach, allowing the model to switch between a multi-branch
structure during training and a more efficient single-path structure during inference. This results in
faster computations while maintaining accuracy, which is essential in dynamic environments where
quick responses are required. While EfficientNet and Transformer-based models have demonstrated
superior performance in handling highly complex and variable datasets, they often come with higher
computational costs, which could slow down real-time detection on resource-constrained devices like
drones. In future work, we plan to explore these advanced architectures to assess their potential benefits
in terms of accuracy and robustness in more diverse environments. However, for the current study,
RepVGG offers an optimal trade-off between speed, efficiency, and detection accuracy for real-time
fruit-picking operations.

The RepVGG network uses a structural re-parameterization approach, which results in a sub-
stantial increase in both speed and accuracy. During training, a multi-branch model is used, where
multiple branches generally increase the model’s representational power, while inference is converted
to a single-path model, which is faster, memory efficient and more flexible. As shown in Fig. 2, Fig. 2A
represents the network structure used for RepVGG training, while the network structure of Fig. 2B is
used for inference.

Figure 2: RepVGG network structure

RepVGG has three branches in each layer during training, which are IDENTIFY, 1 × 1, 3 × 3.
When the model is trained, the output, for each layer, requires 3 parameter blocks, and for an n-layer
network, 3n parameter blocks are required. Therefore, the method in this paper performs structural
reparameterization, which makes the number of model parameters small when inference is performed.
repVGG converts the 3-branch network equivalently and simplifies it into a single-branch network.
The structural reparameterization is divided into three main steps: (1) fusing Conv2d and BN; (2)
converting 1 × 1 convolution to 3 × 3 convolution; (3) multi-branch fusion, the process is shown in
Fig. 3.
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Figure 3: Structure reparameterization process

3.2 Small Target Detection Layer

The original YOLOv8 network model has a relatively large downsampling multiplier, and during
the downsampling process with a trunk step of 2, the network model can obtain more semantic
information, but a large amount of detail feature information is lost, and the lack of shallow network
information is a problem [38]. Among them, the detail information contains mass features of small-
sized objects, which may be ignored in the downsampling process. The deep feature map is difficult to
learn the feature information of small targets. Therefore, the method in this paper adds a small target
detection layer, which detects the shallower feature maps spliced with the deeper feature maps, so that
the network model pays more attention to the detection of small targets of litchi fruits, reduces the
leakage rate of small targets, and improves the detection accuracy of litchi fruits, as shown in Fig. 4.

Figure 4: Small target detection layer
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3.3 Incorporating Selective Kernel Attention Attention Mechanisms

SKAttention, called Selective Kernel Attention, is an attention mechanism that introduces
different kernel sizes to capture multi-scale contextual information in convolutional neural networks
(CNNs). In traditional CNNs, the sensory field size is fixed, limiting their ability to efficiently capture
both local and global contextual information [39]. The SKAttention attention mechanism addresses
this limitation by introducing multiple parallel convolutional branches, each using a different kernel
size. These branches can capture information at different spatial scales, allowing the network model
to have a better understanding of the input features. The key idea of SKAttention is to utilize channel
attention across different kernel sizes. The attention mechanism learns the importance of each channel
for each kernel size, allowing the network to selectively focus on the most informative kernel size. This
adaptivity allows the model to dynamically adjust the receptive field and gather relevant information
from different scales. By introducing SKAttention into the CNN architecture, the model is able to
capture both the local details of fine-grained litchi fruits and the larger global context, thus improving
the accuracy of litchi recognition, as shown in Fig. 5.

Figure 5: SKAttention structure

Notably, Split performs a complete convolution operation with different convolution kernel sizes
on the input tensor X; Fuse performs element-wise summation on the above two outputs to obtain
the output feature map U, followed by global average pooling with a fully connected layer to obtain
the attentional information of the feature maps; Select: re-divides the compact vectors into two (the
structure of the above figure) or Select: re-split the compact vector into two (in the above structure)
or more (in more cases) feature vectors, and then perform the multiplication operation with the
corresponding channels with the feature maps after the split, and finally sum them up to form the
tensor for input to the next neuron.

The integration of SKAttention and the small target detection layer plays a crucial role in
improving the model’s performance. SKAttention enhances the model’s ability to capture multi-
scale contextual information by employing different kernel sizes, allowing it to focus on both fine-
grained details and broader patterns. This mechanism significantly improves the detection of small,
overlapping, or partially occluded fruits in dense environments. Meanwhile, the small target detection
layer addresses the challenge of detecting small objects by fusing shallow and deep feature maps, which
ensures that fine details are preserved throughout the network’s downsampling process. Together, these
components boost the model’s precision and recall, particularly for small and hard to detect targets,
while maintaining high computational efficiency.
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4 Experiments
4.1 Settings

4.1.1 Collection of Data

The experimental data were gathered in June 2023 at the litchi garden on the campus of Shenzhen
Vocational and Technical University, Nanshan District, Shenzhen, China. Mature and immature
litchis were photographed from various angles using an Intel RealSense D435 camera under varying
climatic conditions, including cloudy or sunny days. The collected images represent a range of real-
world fruit growth conditions such as smooth light, backlight, sparse and dense fruit arrangements,
and shaded or overlapping fruits, ensuring a representative sample set. A total of 7686 sets of color
images were collected, consisting of 96,400 mature litchis and 27,213 immature litchis. The data were
divided into training and test sets in an 8:2 ratio, with 6149 images for training and 1537 images
for testing, manually labeled using Labelme. The lightweight YOLOv8 model used in this study has
approximately 25.3 million parameters, significantly reduced from over 40 million parameters in the
standard YOLOv8 model. An example of the data used in our research is given in Fig. 6.

Figure 6: Examples of the collected data

Our dataset primarily focuses on litchi fruits, captured under various environmental conditions
that challenge the detection system, such as varying lighting, occlusion by leaves, and varying fruit
densities. However, the dataset is limited as it concentrates on a single fruit type in a specific agricultural
setting. Future expansions of the dataset to include various fruit types and environmental conditions
are planned to assess the model’s applicability and robustness in broader agricultural scenarios.

4.1.2 Experimental Parameters

Training parameters were set as follows: batch size at 8, number of iterations at 400, and input
image size at 640 × 640. Default values were used for other parameters. The experimental setup is
detailed in Table 1. For testing, the batch size was set to 1, and the input image size remained at
640 × 640, optimizing the conditions for detailed, image-by-image evaluation of model performance.



CMC, 2025, vol.82, no.2 1993

Table 1: Experimental environment

Configure Parameters

CPU AMD EPYC 7742 64-Core Processor
RAM 128
GPU A100-SXM4-40GB
Operating system Windows 10
CUDA CUDA Version: 11.2
Image processing language Python 3.8
Deep learning framework Pytorch 1.7

4.1.3 Evaluation Metrics

Evaluation metrics for object detection include precision, recall, mean average precision (mAP),
and frames per second (FPS). Precision and recall are defined respectively by the equations:

P = TP
TP + FP

(1)

R = TP
TP + FN

(2)

mAP provides a comprehensive measure of model performance across different classes and is
calculated as the mean of the area under the precision-recall curve. FPS is defined as:

FPS = 1000
inference time (ms)

(3)

indicates the speed at which the model processes images, vital for real-time applications.

4.2 Results and Analysis

4.2.1 Model Training Results

Training results show that the modified YOLOv8 model demonstrates a faster convergence in
loss reduction compared to the original model, stabilizing around 50 iterations, with an evident
improvement in mAP over time, as shown in Fig. 7.

Detection results in various conditions confirm the effectiveness of the improvements. The
model accurately identifies litchi fruits under different lighting and occlusion scenarios, crucial for
autonomous picking robots, as shown in Fig. 8.

Backbone network comparisons reveal that RepVGG provides the best balance of accuracy, recall,
mAP, and detection speed among the networks tested, as detailed in Table 2 and Fig. 9.
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Figure 7: Training results comparison

Figure 8: Detection results under various conditions

Table 2: Results of different backbone experiments

Id Backbone network mAP@0.5 Precious Recall FPS

1 YOLOv8 0.904 0.901 0.836 144
2 Shufflenet v2 0.863 0.883 0.787 144

(Continued)
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Table 2 (continued)

Id Backbone network mAP@0.5 Precious Recall FPS

3 Mobilenet v3 0.864 0.886 0.786 117
4 Efficientnetv2 0.802 0.873 0.721 90
5 Mobile ViT 0.784 0.867 0.692 85
6 Mobilile One 0.896 0.896 0.823 62
7 PP-LCNet 0.852 0.876 0.769 169
8 RepVGG 0.906 0.901 0.841 181

Figure 9: Comparison of experimental results for different backbone networks

These results underline the robustness and effectiveness of the YOLOv8 model modified with
RepVGG and SKAttention, enhancing both the accuracy and operational efficiency, making it highly
suitable for real-time applications in agricultural settings.

4.3 Discussion

From the results we can observe that, the proposed security framework in our system enhances
protection by distributing the fruit recognition and localization processes across multiple drones in
a decentralized manner, which reduces the risk of single points of failure and limits exposure to
tampering or manipulation. Each drone operates independently, and communication between drones
and the central system is encrypted using secure communication protocols, ensuring data integrity
and preventing interception by unauthorized parties. Additionally, we incorporate blockchain-based
logging, where each transaction and data transfer is recorded on a tamper-proof ledger.

In particular, the decentralized recognition framework, encryption, and blockchain-based logging
work in synergy to provide robust security for the proposed system. In the decentralized framework,
the fruit recognition and localization tasks are distributed across multiple drones, eliminating the
reliance on a central system and reducing the risk of a single point of failure. This decentralized
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approach makes it more difficult for an attacker to compromise the entire system, as each drone
operates independently while sharing secure data. Encryption is employed for all communication
between the drones and the central processing system, ensuring that data transmissions are protected
from interception or tampering during flight. Additionally, blockchain-based logging provides an
immutable and verifiable record of all data interactions within the system. Each drone logs its activities
and data exchanges on a blockchain, making it nearly impossible for any tampering to go unnoticed,
as the blockchain ledger ensures transparency and traceability. Together, these security mechanisms
create a highly robust system that is resistant to common threats such as data manipulation, unautho-
rized access, and system disruption.

5 Conclusion

This paper introduces a method for the rapid recognition and localization of litchi fruits in orchard
environments, which significantly enhances the original YOLOv8 network model. By incorporating the
lightweight RepVGG network and integrating both a small target detection layer and the SKAttention
attention module, this approach achieves more effective and efficient processing. Depth information,
crucial for precise localization, is gathered using a depth camera, with the system’s effectiveness
validated through a comprehensive dataset of litchi fruits. The method entails several improvements.
Firstly, the adoption of the RepVGG network structure reduces the model’s size and memory usage,
facilitating faster processing suitable for real-time applications in orchards. The introduction of a
small target detection layer and SKAttention module enhances the model’s ability to concentrate on
relevant features and resist noise interference, improving both the accuracy and the generalization
capacity of litchi fruit detection. In comparative tests with the standard YOLOv8 model, the enhanced
YOLOv8 model exhibited a 3.9% improvement in mean Average Precision (mAP) and a 25 FPS
increase, indicating boosted performance in rapid recognition tasks. Additionally, these modifications
have improved the model’s compactness and recall metrics, decreased memory usage during training,
and made the system more adaptable for implementation on fruit-picking robots. Stereo matching
techniques are utilized to fuse images with depth data, obtaining accurate depth measurements of litchi
fruits. Experimental results show that within a range of 313 cm, the maximum error in 3D localization
by this method is 1.7 cm, with an average error of 0.82 cm. These findings confirm that the localization
precision satisfies the operational requirements of litchi-picking robots.
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