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ABSTRACT

In response to the limitations and low computational efficiency of one-dimensional water and sediment models
in representing complex hydrological conditions, this paper proposes a dual branch convolution method based
on deep learning. This method utilizes the ability of deep learning to extract data features and introduces a dual
branch convolutional network to handle the non-stationary and nonlinear characteristics of noise and reservoir
sediment transport data. This method combines permutation variant structure to preserve the original time series
information, constructs a corresponding time series model, models and analyzes the changes in the outbound water
and sediment sequence, and can more accurately predict the future trend of outbound sediment changes based on
the current sequence changes. The experimental results show that the DCON model established in this paper has
good predictive performance in monthly, bimonthly, seasonal, and semi-annual predictions, with determination
coeflicients of 0.891, 0.898, 0.921, and 0.931, respectively. The results can provide more reference schemes for
personnel formulating reservoir scheduling plans. Although this study has shown good applicability in predicting
sediment discharge, it has not been able to make timely predictions for some non-periodic events in reservoirs.
Therefore, future research will gradually incorporate monitoring devices to obtain more comprehensive data, in
order to further validate and expand the conclusions of this study.
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1 Introduction

Among the various human endeavors to reshape the natural environment, one of the most
grandiose and far-reaching projects is undoubtedly the construction of reservoirs by damming rivers.
These reservoirs not only reconfigure the surface water systems but also profoundly alter the natural
ecology and socio-economic landscapes. However, among the many challenges, the issue of sedi-
mentation in reservoirs stands out, particularly for those built on rivers with high sediment loads.
As these reservoirs are established, the water level is artificially raised, leading to the deposition of
up-stream sediments within the reservoir area, resulting in severe siltation. This situation not only ac-
celerates the reduction in reservoir capacity, shortening its expected lifespan, but also poses a direct
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threat to the safety of the dam. Confronted with this pressing issue, finding effective solutions has
become an urgent task before us.

In recent years, the rapid development of sensor and communication technologies has made
it possible to generate and record large amounts of continuous time-series data. Predicting long-
term reservoir sediment discharge is a complex problem involving high dimensions [1], extended
timeframes, and multiple stages [2]. The core of sediment discharge prediction involves detecting
patterns in historical time-series data to anticipate future trends, which is critical for improving
reservoir management strategies [3]. Accurate predictions assist in optimizing dam operations and
sediment management strategies. Such as dam operation and reservoir sediment management [4].

In the field of sediment and water flow prediction, neural networks have made significant strides.
Researchers have continuously refined sediment prediction models to improve their accuracy. For
instance,. Similarly, Nagy et al. [5] integrated artificial neural networks with fluid dynamics and
sediment transport principles, selecting hydrological and sediment variables that significantly impact
model performance. They trained the model using field-collected data and validated its accuracy
and generalization capabilities through comparisons with data from other rivers. AlDahoul et al. [0]
used the Long Short Tern Memory (LSTM) algorithm to predict suspended sediment in the Johor
River in Malaysia, aiming to solve the problem of low accuracy in traditional river runoff and
sediment content prediction methods. This prediction method can predict daily, weekly, and monthly
regression scenarios. Despite LSTM’s effectiveness as an optimized Recurrent Neural Network (RNN)
for handling time-series data, RNN-based methods encounter difficulties with long time windows
due to vanishing gradients, which increases computational cost and limits predictive accuracy over
extended periods [7]. In recent years, there has been a notable shift in the technological landscape
of time-series prediction, with more researchers gravitating towards Transformer-based methods
[8], Convolutional Neural Networks (CNNs) [9], and simpler models like Multi-Layer Perceptrons
(MLPs) [10]. However, the self-attention mechanism in Transformers exhibits permutation invariance,
meaning it cannot inherently account for the original sequence order, potentially leading to the loss of
critical temporal information. While Transformers offer a powerful tool for time-series modeling, they
also introduce new challenges that must be addressed to ensure the proper capture and preservation
of time dependencies.

In the application of hybrid models, Afan et al. [11] applied two distinct Artificial Neural
Network (ANN) algorithms to improve the model’s capacity to predict daily sediment load by
capturing different types of relationships in the data. By training and testing the models using daily
sediment and flow data from the Lembangang Station on the Johor River, they were able to create
an accurate sediment prediction model by combining flow and sediment data. In terms of deep
learning applications, Ma et al. [12] used a neural network consisting of two branches. This includes
an LSTM branch and a CNN branch. The LSTM branch is used to learn gas containing features
in one-dimensional time series data, while the CNN branch is used to learn gas containing features
in two-dimensional time series data. Finally, the outputs of the two branches are fused and the final
prediction is made through the output layer. Xu et al. [13] used a dual branch feature interaction
network (DFI Net) method, which designed two independent branches to process multispectral
image (MSI) and synthetic aperture radar (SAR) data separately. MSI data is processed using 3D
convolutional neural networks to capture spectral spatial features, while SAR data is processed using
2D convolutional neural networks to capture polarization features. This structure adopts a cross
agent attention mechanism to achieve effective interaction between MSI and SAR features, as well
as contextual information fusion between the two branches. DFI Net utilizes a dual branch structure
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and feature interaction fusion strategy to better utilize the complementary characteristics of MSI and
SAR data, thereby improving the classification accuracy of the network.

Complex, nonlinear, and non-stationary data pose difficulties and inaccuracies in the construction
of prediction models. In this paper, we combine the advantages of dual branch convolutional networks
and cascaded prediction heads to construct a Double branch convolution (DCON) prediction model.
The input data is sequentially split, and a permutation variant convolution structure is introduced
to preserve temporal information. For the decomposed data, dual branch convolution is used to
extract feature information, and dual prediction heads are used for prediction. By leveraging sequence
stacking in the time series, this approach reveals temporal patterns, ultimately enhancing the model’s
predictive accuracy.

2 Related Work
2.1 CNNS'in LTSF

Convolutional neural networks and Transformers are both mainstream models in the field of
computer vision, but in Long Term Series Forecasting (LTSF) tasks, Transformers dominate. This is
mainly due to the limitation of the receptive field size of convolutional layers in convolutional neural
networks. CNN based methods typically adopt a local perspective and extend their perceptual fields
to the entire input space by continuously stacking convolutional layers. The Temporal Convolutional
Networks (TCN) [14] network is the first to introduce CNN structure into temporal prediction tasks,
using multi-layer causal convolution and dilated convolution to model temporal causal relationships
and expand receptive fields. In the later Sample convolution and interaction networks (SCINet) [15]
network, a multi-layer binary tree structure was used to iteratively obtain information at different
time resolutions. The Multi scale Isometric Convolution Network (MICN) [16] uses multi-scale mixed
decomposition and isometric convolution to extract features from local and global perspectives.
It models different latent patterns using a multi-scale branch structure, and uses down-sampling
convolution and isometric convolution to extract local features and global correlations, respectively.
Meanwhile, Temporal 2D-Variation Modeling for General Time Series Analysis (TimesNet) [17] uses
the Fast Fourier Transform algorithm to transform 1D sequences into 2D tensors, in order to capture
temporal patterns using visual deep learning models such as Inception.

2.2 Depth Wise Separable Convolution

Deep separation convolution, as a special form of grouped convolution, has been widely used
in the field of computer vision. This technique has been applied in some classic networks, such as
Inception V1 [18] and Inception V2 [19] neural networks, where this method is used in the first layer.
In addition, the MobileNet [20] lightweight model launched by the Google team has a core innovation
in the use of deep convolution. In fact, the entire network structure is composed of stacked deep
separable modules. Based on these characteristics, the Xception [21] network further demonstrates the
extension and optimization of deep separable filters. Depth wise separable convolution decomposes
standard convolution into two steps: depth wise convolution and pointwise convolution. Depth wise
separable convolution significantly reduces computation and parameter count while maintaining good
performance. Based on this characteristic, in order to reduce model training time and save computing
resources, this paper combines depth-wise separable convolution to extract temporal information
features.
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3 Method
3.1 Problem Modeling

This study aims to predict future sediment discharge trends by analyzing historical time-series
data of water inflows, outflows, and sediment concentrations. The historical sequence consists of a
collection of time-series with length L, denoted as L: (x,,...,x;). At a given step, #(1 < t < L)
represents a vector with M variables at the current step. The objective of this task is to forecast the
time-series for the next 7T steps, resulting in the predicted sequence (x,,1, ..., X, 7).

From the perspective of deep learning channel independence, the multivariate time-series
(x1,...,x,)isdecomposed into M univariate sequence x” € R, wherei = 1,..., M. Each univariate
sequence i(1 < i < M) of length L is treated as x\, = x",...,x{. Each univariate sequence is
independently processed through the model, allowing for feature extraction that captures key temporal
dependencies within each variable. Finally, the model outputs the corresponding predicted sequence

i (i) (i)
results /9 = (1, ..o frir)-

3.2 Model Structure

The long-term time-series prediction model structure based on the Double-Branch Convolutional
Network is illustrated in Fig. 1. This model primarily comprises three modules: the Sequence Process-
ing Module (SPM), the Double-Branch Convolution Module (DBCM), and the Dual Forecasting
Heads Module (DFHM). The Sequence Processing Module transforms raw input data into a format
suitable for neural network processing by normalizing and segmenting the time-series. This step
enhances the utilization of the original data and sets the stage for network feature fusion. The Double-
Branch Convolution Module learns from the normalized input sequences by applying convolutional
layers with varying kernel sizes. This approach enables the network to capture features at different
temporal scales within the time series, thereby improving the representation capability of the input
data. The Dual Forecasting Heads Module comprises a linear forecasting head and a nonlinear
forecasting head. Residual techniques allow for the retention of critical feature information by
facilitating gradient flow through deep networks, mitigating issues like vanishing gradients [22],
thereby enhancing the learning capability. Additionally, the design of the dual forecasting heads
facilitates feature reuse, allowing the model to retain more effective information.

3.2.1 Sequence Processing Module

For a univariate time series X; € R" of length L, traditional deep learning methods typically
normalize the data and feed it directly into the network for training, producing the corresponding
results. Although traditional methods have made some progress in the field of hydrology, hydrological
data can vary due to factors such as time and season, which can still impact the predictive performance
of the network model. To address this issue, this experiment employs a segmented value processing
approach, where the data is divided into segments for network training to learn local features. The
Sequence Processing Module is illustrated in Fig. 2.

Using a segmented value design, the univariate time series X, € R" is transformed by segmenting
it into portions with a segment length of len and a stride of stride. This method extends the input
sequence by repeating the stride multiple times. After applying this method, a two-dimensional block is
generated to maintain the original relative positions within the sequence. The process can be described
by the following formula:

X,, = Unfold (ReplicalionPad ()A(1 D) ,size = len, step = stride) (1)
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Figure 1: The double-branch convolution model, composed of the sequence processing module (SPM),
double-branch convolution module (DBCM), and dual forecasting heads module (DFHM), captures
both local and global temporal patterns

Sequence Processing Module

Figure 2: Sequence processing module

After the Sequence Processing Module processes the data, it becomes possible to adopt methods
similar to image processing. The segmented value design decomposes the one-dimensional time series
into structured two-dimensional fragments. This two-dimensional format allows for the introduction
of spatial considerations, which resemble the nature of image data. As a result, convolution operations
can be applied to capture both local and global relationships within the time series [23].

3.2.2 Double-Branch Convolution Module

In time-series forecasting, traditional convolutional networks often model the global relationships
within time-series data across multiple scales or branches. However, this approach has drawbacks such
as high computational cost, large memory requirements, and increased training difficulty. To better
capture temporal relationships in the sequences while reducing model complexity and computation,
this paper proposes a double-branch convolutional structure. The design of this structure is inspired by
the residual connections in deep learning networks as described in reference [22], allowing outputs to be
passed directly without significant modification. The double-branch design enables the construction
of a deeper network architecture, which allows the model to capture both global receptive fields and
local position features in the input sequence. This capability is especially critical in complex tasks
requiring multiple layers of features. The proposed double-branch convolutional structure leverages
both temporal convolution and point-wise convolution, enhancing the model’s ability to process
temporal dependencies effectively while maintaining computational efficiency.
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In the temporal convolution module, assume that after the segmentation processing module, the
sequence is divided into N segments, each with a length of /len. To expand the receptive field in the
temporal convolution, a larger convolution kernel is applied, with the kernel size set based on the len
value from the segmentation processing. During this process, the N segments are fed into the network
sequentially, and each segment generates a corresponding feature map. These N feature maps are then
concatenated in order, forming an output feature map with N channels. Afterwards, the N feature
maps are concatenated in sequence, forming an output feature map with N channels. The temporal
convolution calculation is given by the following equation:

X0 = BN (o { Convy (x5, sride = K. kernel,.. = K)}) ?

where, x,"*” represents the output of the input sequence at layer /, o is the element-wise nonlinear

activation function, specifically the Gaussian error linear units (GELU) function in this case [24].

The temporal convolution module applies the same convolutional kernel to the time-series data,
enabling the model to capture underlying periodic patterns. By reusing the same parameters across
different sections of the time series, the convolutional kernel extracts features within local regions while
also leveraging those features throughout the entire sequence. This mechanism allows for efficient
modeling of temporal dependencies. The advantage of temporal convolution lies in its ability to not
only identify important features within the time series but also ensure parameter reusability, which
enhances data utilization efficiency. This approach enables the model to efficiently learn from the time-
series data, maintaining a balance between local feature extraction and global pattern recognition.

When using the temporal convolution module to capture the internal features of each segment,
pointwise convolution is applied after the temporal convolution to capture the feature correlations
between segments. Temporal convolution deeply learns the complex patterns within each segment,
while pointwise convolution captures and integrates the interactions and dynamic relationships
between these segments. By introducing pointwise convolution, the model efficiently models the
temporal dependencies across different parts of the time series, enhancing the overall representational
power of the model. The pointwise convolution is computed as follows:

x/xP' = BN (o {Convy_., (x)*", stride = 1, kernel,., = 1)}) (3)
where, A4 represents the input to the pointwise convolution.

This model employs separable convolution, achieving superior performance in sequence predic-
tion tasks on the dataset used in this study, surpassing models with attention mechanisms. Moreover,
it demonstrates excellent performance when compared to traditional convolutional methods. By
carefully tuning the output channel count A of the pointwise convolution layer, the model can control
the integration of information between different segments of the sequence, enabling fine-grained
optimization of the interactions among time-series features.

This flexibility allows the model to adjust the degree of feature interaction between segments,
enhancing the overall predictive accuracy while maintaining computational efficiency. The separable
convolution’s ability to isolate spatial and temporal feature extraction makes it a powerful approach
for improving time-series prediction tasks, particularly when handling complex dependencies within
the data.

3.2.3 Dual Forecasting Heads Module

Traditional LSTM methods typically decompose input sequences, such as by breaking them
down based on seasonal variations, before feeding them into the network to generate predictions.
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Similarly, in the multi-head attention mechanism of the Transformer model, decomposition and
aggregation are also utilized to enhance predictive accuracy. Drawing inspiration from the predictive
heads used in both models, this paper introduces a dual forecasting head module that incorporates
both decomposition and aggregation. The module includes two distinct heads: a nonlinear forecasting
head and a linear forecasting head.

When utilizing the forecasting head module for skip connections, the model employs a linear
residual forecasting head to extract the overall trend of temporal changes. After the convolutional
layers, the model applies both a Multi-Layer Perceptron (MLP) forecasting head and a nonlinear
function forecasting head to fit the variations within the sequence. The final prediction is produced
by summing the outputs of these heads. Compared to traditional models that use a single linear
forecasting head, the dual forecasting head approach enables the model to capture deeper details of
sequence changes. This results in a more refined sequence mapping, leading to improved prediction
accuracy. The structure of the forecasting heads is illustrated in Fig. 3.

Linear prediction head output ' ﬁ &

R N Fully connected layer =~ GELU Dropout

Figure 3: Prediction head structure diagram

4 Experiments
4.1 Datasets and Preprocessing

This dataset consists of daily water and sediment measurement data from over 20 years of
operation of the Xiaolangdi Reservoir in China, including inflow/outflow and sediment concentration,
offering a comprehensive view of reservoir capacity dynamics. This data captures detailed daily fluctu-
ations in water and sediment quantities, reflecting the reservoir’s capacity variability. By predicting the
changes in sediment outflow from the reservoir, the model can reveal future trends in the reservoir’s
capacity evolution to a certain extent.

The model’s input dataset integrates seven key indicators to achieve precise predictions of sediment
outflow from the reservoir. Specifically, the inputs include: Date (D), Water Level (H), Inflow Volume
(1;), Inflow Sediment Concentration (/,), Outflow Volume (O;), Outflow Sediment Concentration (O,)
and Inflow Water Volume (/). These indicators collectively form a multidimensional feature space,
providing ample information for the long-term sequence model to learn from. The Sediment Outflow
(S) is the sole output variable. The comprehensive prediction model established is:

S:f(D7H7If7IS) Ofp 05‘7[]1:) (4)

To overcome the dimensional differences among various features and improve model accuracy,
each feature is normalized before being input into the model. This preprocessing step not only
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accelerates model training and convergence but also maintains the original information of the data.
Specifically, normalization is performed using the maximum and minimum values of each feature to
standardize the corresponding data, ensuring that the normalized data falls within a uniform scale.
This step helps the model learn features more stably during training and reduces the risk of certain
features disproportionately influencing the model due to inconsistent dimensions. The normalization
formula is as follows:

X — min (-xtmin)

/

©)

max (xtrain) — min (xtrain)

where, x is the original feature value, x,.,, is the training data, x’ is the data after normalization.

4.2 Experimental Detail

In this experiment, the algorithm used was PaddlePaddle GPU 2.5.1 framework, programming
language version: Python 3.7.16, running environment: Linux Ubuntu 20.04 operating system, CPU
model: Intel (R) Core (TM) i7-10700 K, CPU clock speed: 3.8 GHz, server memory: 64 GB DDR4,
graphics card model: Nvidia RTX A5000, video memory: 24 GB.

4.3 Model Evaluation Indexes and Experimental Results

During the model training process, Mean Square Error (MSE) and Mean Absolute Error (MAE)
are used as loss functions for evaluation. In the model testing phase, relative standard error (RSE) and
coefficient of determination R* are introduced as evaluation indicators for the model. This method is
used in statistics to measure the accuracy of sample estimation. Due to the use of relative values, it is
very useful when comparing sample estimates of different sizes or different variables. The formula of
mean square error function loss, mean absolute error loss and relative standard error function is as
follows:

1 < 2
mse = - ; =1 (x) (6)
1 m
mae = — ; i —f ()] (7
rse — \ Z i _f(zcz)) )
i —X)

where, y; is the measured value for sample 7, /(x;) is what the model predicts for the i sample, X is the
average value of the measured value.

4.4 Experimental Result

In the model training phase, set the network learning rate to 0.00001, input network batch size to
256, use AdamW [25] optimizer, and have a maximum iteration count of 800. In order to verify the
validity of the two-branch convolution model proposed in this paper, the model was compared with the
performance of the three benchmark models ITransformer [26], PatchMixer [27] and TSMixer [2€] in
the reservoir measured data sets. In this experiment, a model comparison experiment was conducted
using the actual observational data set of a reservoir to evaluate and compare the performance of
several advanced algorithms in the field of time series prediction. The experimental determination
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coefficients are shown in Table 1, and the comparison of other performance indicators is shown in
Fig. 4. The improved DCON model has lower losses and higher determination coefficients, indicating
that the DCON model performs better and is more accurate in predicting outbound sediment volume.
The DCON’s superior performance can be attributed to its ability to capture both long-term seasonal
trends and short-term fluctuations more effectively than the other models. The sequence segmentation
and convolutional layers allow the model to identify recurring seasonal patterns in sediment discharge,
improving long-term prediction accuracy.

Table 1: Model R2 comparison table

Predicition_length 30 (R?) 60 (R?) 90 (R?) 180 (R?)

TSMixer [28] 0.865 0.882 0.893 0.901
ITransformer [26] 0.873 0.891 0.9 0.917
PatchMixer [27] 0.881 0.878 0913 0.923
DCON 0.891 0.898 0.921 0.931

In predictions over a shorter period of time, the improvement effect of DCON is not significant,
but the difference compared to other benchmark models is very small. Specifically, the main reason
is that the reservoir may experience sudden floods and other events. Non-periodic events such as
sudden floods disrupt the model’s ability to predict based on seasonal trends, leading to higher error
rates for short-term predictions. Taking into account longer changes, the DCON model performs
better overall, indicating that DCON can more accurately describe the correlation between high-
dimensional and multivariate variables, and has better adaptability to multiple sequence periods.
Its performance in long-term series prediction problems is more accurate and reliable in multiple

scenarios. The comparison of losses of four models on multiple prediction sequence lengths is shown
in Fig. 4.
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Figure 4: Comparison of training results for multiple sequence lengths, (a) comparison of MSE values
of each model; (b) comparison of MAE values of each model; (¢) comparison of RSE values of each
model

Fig. 4 lists the performance metrics of four models in multiple prediction sequence lengths. From
the table, it can be seen that the model proposed in this paper exhibits significant advantages compared
to other models in water and sediment prediction tasks. In order to observe the differences in prediction
among the four models more intuitively, the prediction results of each model at various sequence
lengths are divided into Figs. 5-8.
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Figure 8: Comparison between the predicted 180-day sediment discharge and the actual value of each
model; (a) DCON; (b) ITransformer; (¢) PatchMixer; (d) TSMixer

The chart shows that the predicted results of the four models are generally consistent with the
true value distribution trend at various sequence lengths. Combined with Table 1, the DCON model
outperforms ITransformer, PatchMixer, and TSMixer, with a lower MSE and higher R?, indicating
more accurate sediment discharge predictions. By comparing the consistency between predicted values
and true values, it can be observed that the dual branch convolution model proposed in this paper can
provide predictions that are close to the true values in most cases. Comprehensive analysis shows that
after sequence segmentation, feature extraction and residual linking through the dual prediction head
and dual branch convolution module can better preserve the sequence feature information, which
can enable the model to better focus on the seasonal changes in sediment volume and produce a
better model. Comparing the trend of curve changes at the same position as the predicted values
and true values of the four models, it can be found that the DCON model used in this article can
provide predictions close to the true values in most cases. Compared to other models, the [Transformer
model can better predict changes in sediment caused by sudden floods, but its prediction error
is relatively large when dealing with slow changes in sediment discharge. From a comprehensive
performance perspective, the model used in this article can provide better prediction results and serve
as a reference for formulating reservoir output solutions. The analysis results showed that through
sequence segmentation and multiple attention of dual prediction heads, combined with the extraction
of the characteristics of changes in outbound sediment volume by convolutional layers, the model can
better capture long-term seasonal trends and short-term fluctuations, thereby identifying the seasonal
sediment discharge patterns that repeatedly appear in outbound sediment volume, and producing
better prediction results.

However, the model used in this article and the three benchmark models have not been able to
solve the problem of sudden changes in sediment discharge caused by sudden floods in reservoirs.
Considering that the reservoir involves a wide water area and a large inflow range, it is affected by
non-periodic events such as upstream floods and waterlogging. Sudden floods have disrupted the
model’s ability to make periodic predictions based on seasonal trends, resulting in significant errors in
predicting short-term sudden changes in sediment levels.
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4.5 Ablation Study

To verify the effectiveness of the algorithm improvements used in this study for long-term time-
series prediction, ablation experiments were conducted. These experiments assessed the contributions
of the sequence processing module, the dual-branch convolution module, and the dual-forecasting
heads module on the reservoir’s real-world dataset. The results of the ablation experiments are shown
in Table 2.

Table 2: Comparison table of ablation results

SPM DFHM DBCM MSE MAE RSE R?

Vi 1.91 0.722 1.13 0.853
WV v 1.783 0.684 0.992 0.877
Vi v v 1.624 0.641 0.974 0.931

From the ablation experiment results in Table 2, it can be seen that when only the sequence
processing module is added to the algorithm, the loss of the model will be slightly reduced, and R? will
also increase accordingly. The experiment found that adding only the sequence processing module
greatly improves the training speed of the model, which is closely related to the number of model
parameters. Further adding a dual prediction head module to the model increases the number of
model parameters. As the number of parameters increases, the model loss further decreases and the
model’s coefficient of determination correspondingly improves. The addition of the double-branch
convolution module significantly improves MSE and R? values, demonstrating its importance in
extracting temporal features across multivariate time-series. Compared with adding only the sequence
processing module, adding the dual branch convolution module reduced MSE, MAE, and RSE by
0.286, 0.081, and 0.078, respectively. The ablation study shows that the full model, with all modules
active, provides the best performance, especially in MSE, MAE, RSE and R?, validating the need for
each component.

5 Discussion

In terms of current reservoir scheduling policies, deep learning models have brought significant
changes and progress. With the development of artificial intelligence technology, it has also caused
significant changes in water conservancy. Deep learning simulates the working mode of human brain
neural networks, which can process and analyze large amounts of complex data. The development
of this technology not only improves the intelligence level of water resource management, but also
provides new solutions for the formulation of reservoir scheduling policies.

In formulating traditional reservoir scheduling policies, decision-making often relies more on
experience and historical data. Although this method has played an important role in the past, its
limitations based on historical experience are gradually becoming apparent in the face of climate
change, extreme weather events, and increasing upstream and downstream water demand. However,
due to limitations in the way reservoir data is obtained, this article was unable to predict the sediment
discharge from other reservoirs and can only simulate and predict based on the data from that reservoir.

Deep learning can also be used to evaluate the effectiveness of different reservoir scheduling
schemes. By establishing relevant models and simulating the operation of reservoirs under various
scheduling schemes, the advantages and disadvantages of multiple schemes can be intuitively seen.
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This helps reservoir operation decision-makers choose the optimal solution among numerous options,
improving the efficiency and effectiveness of reservoir operation. At the same time as formulating
plans, the computational efficiency of deep learning has been significantly improved compared to
traditional reservoir scheduling formulas. In the same solution time, deep learning can provide more
reference and evaluation solutions for plan makers.

In summary, the development of deep learning technology has brought new opportunities and
challenges to the formulation of reservoir scheduling plans. In the formulation of reservoir scheduling
policies, the application of deep learning can not only improve the scientific and accurate decision-
making, but also promote the sustainable utilization and protection of water resources. In the future,
as research continues to deepen and improve, deep learning can play a more important role in this
field.

6 Conclusion

In engineering practice, the processed data has non-stationary and nonlinear characteristics.
At this time, traditional reservoir scheduling formulas have disadvantages such as poor prediction
accuracy and slow calculation. This paper adopts the double branch convolution method, combined
with the sequence splitting module, to construct a reservoir outflow sediment prediction model. The
prediction model is trained based on daily outflow sediment and flow data, and effectively improves
the prediction effect of the model under the premise of the nonlinearity and non-stationarity of the
original data. The model in this article is trained in four different scenarios: monthly, bi monthly,
quarterly, and semi-annual. The experimental results show that the DCON model used in this article
has the best performance. When the outbound sediment volume is the target, the coefficient of
determination of the model is 0.931 when predicting for six months. The coefficients of determination
of the model for each month, every two months, and every quarter are 0.901, 0.917, and 0.923,
respectively. In the experiment, it was found that the dual branch convolution model used in this
paper has the following advantages: compared with traditional reservoir scheduling formulas, it can
maintain good model prediction accuracy while reducing certain computational practices, proving that
the algorithm has good representational power; After the sequence processing and splitting module,
the ability to extract features of multiple data lengths has been effectively improved, and the model
has shown good predictive performance on various sequence lengths, proving its good robustness.
This study currently only uses twenty years of data, and collecting more training data in the future can
improve the performance of the DCON model by learning new patterns from new samples. Future
research will focus on refining the model to better handle sudden sediment discharge changes caused
by reservoir inflow events.
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