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ABSTRACT

WCE (Wireless Capsule Endoscopy) is a new technology that combines computer vision and medicine, allowing
doctors to visualize the conditions inside the intestines, achieving good diagnostic results. However, due to the
complex intestinal environment and limited pixel resolution of WCE videos, lesions are not easily detectable, and
it takes an experienced doctor 1–2 h to analyze a complete WCE video. The use of computer-aided diagnostic
methods, assisting or even replacing manual WCE diagnosis, has significant application value. In response to the
issue of intestinal lesion detection in WCE videos, this paper proposes a multi-scale feature fusion network model
TSD-YOLO based on the YOLO (You Only Look Once) architecture: (I) a Tiny Detection Layer to avoid the loss
of shallow feature information for tiny-scale targets; (II) integrating a simple, parameter-free attention module
(SimAM) at the neck to better extract local lesion features and fuse features; (III) incorporating a new loss function
DIoU (Distance Intersection over Union) to better achieve boundary box regression for target detection. This model
was validated using the WCE dataset from Kyushu University Hospital. For the dataset containing 18,000 images,
the evaluation metrics of our model for 12 types of lesions, outperformed existing reported results from advanced
models on this dataset, and the mAP (mean Average Precision) and precision evaluation metrics improved by 3.7%
and 0.9% over the benchmark model.
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1 Introduction

WCE (Wireless Capsule Endoscopy) [1] is a tiny capsule-shaped medical device that can be
swallowed by patients. Equipped with a camera and sensors, it captures images of the digestive tract
and transmits the data to external devices via radiofrequency technology for doctors to analyze.
WCE is useful for diagnosing complex gastrointestinal conditions such as IBD (Inflammatory Bowel
Diseases), GIST (Gastrointestinal Stromal Tumor), and CRC (Colorectal cancers) [2]. Patients with
IBD are at an increased risk for colorectal tumors due to chronic colon inflammation. Colorectal
cancer is the second leading cause of cancer-related deaths. However, early treatment can eradicate over
90% of cancer cells within five years [3]. Thus, early detection and treatment of gastrointestinal issues
are essential. While traditional methods may be invasive and struggle to access the small intestine,
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other non-invasive imaging techniques, such as ultrasound and CT (Computed Tomography) scans,
often have lower resolution, which can result in misdiagnoses [4].

WCE provides a non-invasive, painless, and comprehensive method for examining the digestive
tract, gaining popularity in hospitals with promising results [5,6]. However, WCE videos typically last
8–12 h and produce 50,000–80,000 images, with numerous interfering elements such as intestinal fluids,
blood, bile, and dark-field images [7]. This creates a heavy burden on doctors conducting manual
analysis, which is both time-intensive and prone to missed diagnoses. Implementing AI (artificial
intelligence) for automatic monitoring of capsule endoscopy footage, to assist in accurate lesion
detection, has substantial clinical value [8,9].

Traditional target detection requires manual feature extraction methods, which have difficulty
obtaining features, limiting their effectiveness in medical applications [10]. With advancements in deep
learning, target detection techniques based on convolutional neural networks have rapidly advanced
and are now widely applied in medical imaging [11]. The two-stage method represented by the R-
CNN (Region convolutional neural network) series [12] and the single-stage detector represented
by the YOLO (You Only Look Once) [13] and SSD (Single Shot Multibox Detector) [14] series are
currently the two mainstream frameworks for convolutional neural network-based target detection.
Recent advancements in target detection include architectures like RetinaNet [15] and transformer-
based models such as DETR (Detection Transformer) [16] and RT-DETR (Real-Time Detection
Transformer) [17].

The YOLO series algorithms [18–20] are widely used for object recognition, but improvements
tailored to WCE image characteristics are lacking. This paper proposes TSD-YOLO, a multi-scale
feature fusion network based on YOLO. Our contributions are summarized as follows:

1. Adding a prediction head for detecting tiny targets to prevent the loss of shallow features;
2. Integrating the simple, parameter-free attention module (SimAM) module [21] for better

feature extraction and fusion in order to obtain better aspect-specific context representation;
3. Introducing the DIoU (Distance Intersection over Union) loss function [22] for improved

bounding box regression in target detection, enhancing model performance.

We studied WCE data of 12 types of lesions from 523 cases at Kyushu University Hospital in a
large-scale WCE dataset [23,24]. The collection of data from the Hospital for verification has been ap-
proved by Kyushu University Hospital. The typical images of the 12 lesions in our dataset are shown
in Fig. 1, and the experiments show our model outperforms existing methods.

Figure 1: Typical cases of twelve lsions in wireless capsule endoscopy from our dataset
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2 Related Work
2.1 WCE Target Detection

There are two dominant methods for automatic target detection of WCE intestinal lesions:
traditional machine learning methods [25–27] and deep learning methods [11]. Machine learning
relies on manual feature extraction and the application of classifiers such as SVM (Support Vector
Machines), k-NN (K-nearest Neighbor) and MLP (Multilayer Perceptron), focusing on color and
texture features. Conversely, with the development and application of image detection techniques,
advancements in image detection have prompted many researchers to investigate deep learning
algorithms for the automatic recognition of WCE images.

Souaidi et al. [28] presented a CNN (Convolutional Neural Network) system based on the SSD
for the automatic detection of intestinal erosion and intestinal ulcer lesions in WCE images. A total
of 5800 images of intestinal ulcers and small intestinal erosion were used, achieving an accuracy of
90.8%. However, there are also problems in which the detection sensitivity is affected by bubbles, food
debris and bile.

Patel et al. [29] employed a DCNN (Deep Convolutional Neural Network) to classify colorectal
polyps, comparing its performance with six different convolutional network models. Their model
consistently outperformed others in both frame-level and polyp-level assessments across two datasets.
He et al. [30] integrated two CNN networks to extract and classify hookworms, creating a novel
deep learning tool for hookworm detection in WCE images and validating its efficacy on a dataset
of 440,000 images that included 4000 hookworms. However, the above methods by Patel et al. and
He et al. are primarily target specific gastrointestinal diseases.

Sekuboyinade et al. [31] proposed an automated method for anomaly detection in WCE images.
Their technique segments images into multiple chunks, using a CNN to extract features from each
segment. This approach mitigates the limitations of manual feature extraction and effectively identifies
anomalies such as fistulas, celiac cysts, lymphangiomas, stenosis and ulcers, although it has limited
sensitivity to bleeding.

Based on the existing studies mentioned above, researchers have applied various methods to
enhance model detection in lesion detection studies of endoscopic images. To improve the accuracy
of localization and enhance the precision of lesion detection and classification, we propose a new
solution.

2.2 YOLOv8 Network Architecture

YOLOv8 is based on the YOLO series of algorithms [18–20] and integrates four key components:
image input, feature extraction, feature fusion and detection head.

In the input stage, data preprocessing is consistent with the YOLOv5 method with Mosaic, Mixup,
random perspective and HSV (Hue, Saturation, Value) augmentation, and feeds into the CNN module.
Inspired by the E-ELAN (Enhanced Efficient Layer Attention Network) module in YOLOv7, it
introduces the C2f (Cross Stage Partial Networks Bottleneck with 2 Convolutions) module, which
combines the CBS (Conv, Batch Normalization, SiLU) and SPPF (Spatial Pyramid Pooling Fast)
modules. The feature fusion stage utilizes PAFPN (Path Aggregation Feature Pyramid Network) to
construct a feature pyramid Network, ensuring the comprehensive fusion of both shallow and deep
features. Its detection head is borrowed from YOLOX and adopts a disentangled structure to separate
the classification and localization tasks. In addition, the important C2f, SPPF, Conv Module and
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Darknet Bottleneck in YOLOv8, which are also structures for reference in our model, are detailed at
the bottom of Fig. 2.

Figure 2: The network structure of TSD-YOLO. The w (width) and r (ratio) are parameters used to
represent the size of the feature map. The size of the model can be controlled by setting the values of
w and r to meet the needs of different application scenarios. The Ncls + 5 indicates the output values
for each anchor box, where Ncls is the number of object classes, and 5 consists of 4 bounding box
coordinates and 1 confidence score. The conv2d modules consists of the darknet bottleneck modules.
The n + 2 in the C2f module represent the number of main convolutional layers used for feature
extraction and the two additional convolutional layers. The c_out represents the number of channels
output by the module

The preprocessed image is segmented into S × S grids in the CNN module and each grid is
responsible for detecting the targets whose centers fall within that grid. If the center of an object
is located at the edge of a grid cell, almost half of the pixels required for recognition may fall
outside that cell. If the grid cells overlap with adjacent cells near the edges, the pixels also belong
to the adjacent segments. YOLOv8 addresses the issue of object centers located at the edges of grid
segments by employing PAFPN, overlapping grids, and diverse predefined anchor boxes, thereby
enhancing detection accuracy and robustness. Additionally, through image boundary extension and
data augmentation techniques, the model is better equipped to adapt to real-world scenarios and
reduce missed detections. The core of CNN consists of multiple conv layers, activation functions and
fully connected layers. Convolutional layers are used to perform operations on the input image to
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extract features. The activation function introduces non-linearities, enabling the network to learn and
recognize more complex features. Fully connected layers are employed to link the convolutional layers
to the output layer of YOLO, allowing for the final recognition of the target object. YOLOv8 was
proposed by Ultralytics in 2023, this paper presents its application for the first time in training a model
on a large-scale capsule endoscopy detection dataset.

3 Methodology
3.1 Overall Architecture

The architecture of the TSD-YOLO model proposed in this paper is shown in Fig. 2. The input
medical images are preprocessed to ensure compatibility with the TSD-YOLO model. Then, the images
are passed through a neural network for feature extraction and target detection. Specifically, TSD-
YOLO divides the input images into grids and assigns bounding boxes to each grid cell, predicting
target classes and detection confidence scores. The backbone network first performs feature extraction
and channel information fusion, and new SimAM attention modules are added at the end of the neck
network to enhance the weight of the region of interest. Notably, the use of multiple feature maps of
four different sizes helps the model accurately spot and classify targets of various sizes. Additionally,
by switching to the DIoU loss function, TSD-YOLO improves its ability to precisely locate targets in
endoscopic images.

3.2 Tiny Detection Layer

Down-sampling the convolutional layer of the baseline model leads to the loss of tiny features,
resulting in missed and false detections. The prediction of the baseline model has three detection layers,
which detect small, medium and large targets. Along with the P2 layer, an extra detection layer is
introduced in the neck and head of the baseline model for processing the shallow feature maps from
the P2 layer of the backbone network, and by integrating it into the architecture, it is able to perform
the detection in denser grid cells, thus allowing for the detection of tinier targets. The architecture of the
tiny target detection layer is shown in the red dashed box in Fig. 2: The P2 detection layer up-samples
the deep feature maps, which contain strong semantic features. These are then fused with the shallow
feature maps output from the P2 layer of the backbone network to enhance the semantic representation
of the shallow features. After feature extraction by the C2F module, the obtained features are passed to
the extra detection head. The larger the size of the final output tessellation-like feature map of Fig. 2c,
the smaller the area represented by each position on the feature map. This allows for the capture of
more contextual information and feature details, which is very advantageous for detecting tiny targets.
This method integrates shallowly extracted feature information into the model, enhancing its ability
to localize objects at different scales.

Taking an input image size of 640 × 640 as an example, the original model contains three different
scales. The P3 layer outputs feature maps with a size of 80 × 80, detecting small-sized targets larger
than 8 × 8. The P4 layer outputs feature maps with a size of 40 × 40, detecting medium-sized targets
larger than 16 × 16. The P5 layer outputs feature maps with a size of 20 × 20, detecting large-sized
targets larger than 32 × 32. The added P2 tiny detection layer outputs feature maps of size 160 × 160,
detecting tiny targets larger than 4 × 4. The final improved model contains four different detection
scales: (160 × 160), (80 × 80), (40 × 40), and (20 × 20). Compared to the existing detector model, this
modification increases computational effort, but it is worthwhile for detecting tiny specks in WCE
images.
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3.3 SimAM Attention Module

Current attention modules mostly refine features along channel or spatial dimensions, which
greatly limits the flexibility of attention weight learning and is too complex in structure [32]. The
SimAM [21] computes 3D (Three-Dimensional) attention weights by optimizing the energy function
of each neuron in a 3D feature map without introducing additional model training parameters, thus
ensuring lighter weights and higher efficiency. Fig. 3 illustrates the 3D weights of SimAM compared
to the 1D (One-Dimensional) and 2D (Two-Dimensional) Weights.

Figure 3: Comparison of SimAM attention using Full 3D (Three-Dimensional) Weights based on
Feature X vs. 1D (One-Dimensional) or 2D (Two-Dimensional) Weights. In each subfigure, the same
color indicates that a single scalar is used for each channel, spatial location, or feature point. This
approach eliminates the need for dimensional expansion, improving both the efficiency and accuracy
of the attention mechanism

The attention mechanism is designed to discover important neurons by measuring the linear
separability between neurons and assigning higher priority to those neurons. We embed SimAM into
the TSD-YOLO framework to improve the performance of target detection. To determine which
neurons matter most and capture their attention, we use an energy function to assess how linearly
separable neuron o is from all the others in its channel. The basic form of the energy function for each
neuron is shown in Eq. (1):

e0 (w0, b0, y, ai) = (
yo − ô

)2 + 1
S − 1

∑S−1

i=1

(
ya − âi

)2
, (1)
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Eq. (2) is a further extension of Eq. (1), which includes a regularization term to prevent overfitting:

e0 (w0, b0, y, ai) = 1
S − 1

∑S−1

i=1
(−1 − (w0ai + b0))

2 + (−1 − (w0o + b0))
2 + λw2

0, (2)

where o is the neuron we are focusing on in its channel, i is the index of one of the other neurons,
besides the focused one, ai is other neurons in a single channel with input feature X ∈ RC×H×W , and λ is
the regularization coefficient. ô and âi represent the linear transformation of the target neuron and the
linear transformation of the surrounding neurons. y0 and yi represent the label assigned to the target
neuron and the label assigned to the surrounding neurons. The number of neurons in that channel can
be obtained by S = HW . The w0 and b0 are the weights and biases of the o linear transformation, and
their solutions can be found by calculation:

w0 = − 2 (o − μo)

(o − μo)
2 + 2σ 2

o + 2λ
, (3)

b0 = −(o + μo) w0

2
, (4)

where μo and σ 2
o are the mean and variance of all neurons in the channel except for neuron o. Eq. (5)

computes the minimum energy value e∗
0 for each neuron using the solutions from Eqs. (3) and (4):

e∗
o = 4

(
σ̂ 2 + λ

)
(
o − μ̂

)2 + 2σ̂ 2 + 2λ
, (5)

where

μ̂ = 1
S − 1

∑S−1

i=1
ai and σ 2 = 1

S − 1

∑S−1

i=1

(
ai − μ̂

)2
, (6)

where μ̂ is the mean of all neurons, σ 2 is the variance of all neurons. In simple terms, the difference
between a neuron and its neighbors relates to energy. We can determine the significance of each neuron
by 1/e∗, which refines features using a scaling operator.

From Eq. (5), we see that the smaller the energy function value, the greater neuron o can be
separated from others. By following the guidance of this energy function, we avoid overly heuristic
or manual adjustments. By focusing on individual neurons and integrating this linear separability into
an end-to-end framework, we enhance the neural network. Our experiments show that introducing
SimAM, a non-parameter attention mechanism, into the YOLO structure helps the model effectively
extract target feature information during detection without adding more parameters to the original
network.

3.4 Loss Function Regression

The effectiveness of endoscopic target detection is influenced by the choice of loss function. While
GIoU (Generalized Intersection over Union), CIoU (Complete Intersection over Union), ICIoU
(Improved Complete Intersection over Union) and other loss functions solely consider the distance
between predicted and real bounding boxes, they fail to account for the directional mismatch between
them, leading to slow convergence and reduced efficiency. The DIoU loss function [22], proposed by
Zheng et al. in 2019, was introduced as a remedy for this limitation. The DIoU is defined as:

LDIoU = 1 − IoU + ρ2 (b + bgt)

c2
, (7)
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where b and bgt denote the central points of their shape B and Bgt, ρ() is the Euclidean distance, and
c is the diagonal length of the Minimum closure area covering two boxes.

The DIoU loss is more in line with the bounding box regression mechanism than other loss
functions. It considers the distance between the target and the anchor, the overlap rate and the scale,
provides a directional adjustment for the bounding box when it does not overlap with the target
box, effectively minimizing the distance between them. It enables rapid regression in both horizontal
and vertical directions, making the bounding boxes regression more stable, avoiding problems such
as divergence during training like IoU and GIoU. DIoU also adds a penalty term based on IoU,
replacing the traditional IoU evaluation strategy, making the results for endoscopic image detection
more reasonable and effective.

4 Experiments and Results
4.1 Dataset

We conduct experiments on the SEE-AI Project Dataset™ [23,24], which is a collection of WCE
images obtained from the PillCam SB 3 (Medtronic, Minneapolis, MN, USA). It comprises 18,481
images extracted from 523 capsule endoscopy videos, including 123,320 annotated images with 23,033
disease lesions and 6161 normal mucosa images. It includes 12 lesion signature labels: angiodysplasia,
erosion, stenosis, lymphangiectasia, lymph follicle, SMT (Sub Mucosal Tumor), polyp-like, bleeding,
diverticulum, erythema, foreign body and vein. The details are shown in Fig. 4. In this experiment, the
dataset was divided into training, testing, and validation sets according to a ratio of 8:1:1.

Figure 4: Manual labeling information in the SEE-AI dataset sample histogram for each type of
training set

4.2 Implementation Details

The experiments consist of hardware and software configurations. The distributed training
hardware is an Intel Xeon E5-2650 v4 CPU and an NVIDIA GTX 2060 graphics card, with the
Ubuntu 14.04 Linux operating system. The software is Python 3.7.0, PyTorch 1.10.0, and CUDA
10.2.89 to carry out multi-processing tasks and to fully utilize the GPUs (Graphic Processing Unit).
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The hyperparameters used in the training are a learning rate of 0.01 and a weight decay rate of 0.0005.
The batch size for training is set to 16, and the number of epochs is set to 300 during the learning
phase.

4.3 Evaluation Metrics

The evaluation metrics have several components: precision, recall, mAP (mean Average Precision),
and F1-score. Precision is the ratio of the number of correctly predicted positive samples to the total
number of correctly or incorrectly predicted positive samples considered by the network. Recall is the
ratio of correctly predicted positive samples to the total number of actual positive samples. F1-score is
the harmonic mean of Precision and Recall. The PR (Precision-Recall) curve is typically generated by
adjusting the classification score threshold. AP (Average Precision) is the area under the PR curve. The
mAP is a key indicator in the COCO (Common Objects in Context) [33] benchmark evaluation, which
is used to assess the performance of object detection models. Once the AP for all classes is calculated,
the mAP is obtained by averaging these AP values. The mAP is calculated as:

mAP = 1
N

∑N

i=1
APi, (8)

where N is the number of classes, and APi is the A for the i-th class. mAP@50 average accuracy is
calculated only when IoU = 0.5, so more attention is paid to detection performance at low overlap
rates. mAP@50-95 evaluates the model under more stringent conditions (different IoU thresholds) to
gain a more complete understanding of the model’s performance for target positioning, especially for
high-precision positioning.

4.4 Comparison Experiment

In the same experimental environment, TSD-YOLO was evaluated alongside other classical
models in the field of target detection, and the results are reported in Table 1.

Table 1: Performance of models on the SEE-AI datasets

Model mAP@50 mAP@50-95 Precision Recall F1

Faster R-CNN 0.689 0.390 0.681 0.638 0.65
SSD 0.637 0.347 0.656 0.591 0.61
RetinaNet 0.656 0.373 0.670 0.620 0.63
RT-DETR 0.740 0.446 0.782 0.679 0.70
YOLOv3 0.702 0.421 0.737 0.645 0.66
YOLOv5s 0.715 0.423 0.756 0.658 0.67
TPH-YOLOv5 0.713 0.417 0.753 0.651 0.65
YOLOXs 0.731 0.422 0.777 0.671 0.69
YOLOv6n 0.743 0.455 0.780 0.684 0.70
YOLOv7_tiny 0.720 0.407 0.697 0.671 0.68
YOLOv8n 0.744 0.453 0.798 0.682 0.71

TSD-YOLO (Ours) 0.781 0.475 0.807 0.709 0.72
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As shown in Table 1, for the WCE dataset, compared with other advanced models, the YOLO
series models is improved greatly, and the evaluation indexes in YOLOv3, YOLOv5s, TPH-YOLOv5
and YOLOXs are improved substantially, while for YOLOv6n and YOLOv8n, the improvements tend
to stabilize, with a slight decrease observed in the mAP@50-95 and Recall metrics. This suggests that
further improvements to the existing advanced models are challenging. However, our TSD-YOLO
outperforms the benchmark model YOLOv8n, with a 3.8% higher mAP@50, a 2.2% higher mAP@50-
95, a 0.9% increase in precision, a 1% increase in F1-score, and a 1.7% increase in recall rate. Moreover,
the TSD-YOLO is visualized and compared with the benchmark model YOLOv8n. The results are
shown in Fig. 5.

Figure 5: Comparison with Benchmark Model. The train/box_loss represents the bounding box
loss during training, while the train/cls_loss refers to the classification loss during training, and
the train/obj_loss represents the objectness loss during training. The val/box_loss, val/cls_loss and
val/obj_loss are analogous to the training losses but are computed during evaluation on the validation
set. The metrics/mAP, metrics/mAP50, metrics/mAP50-95 and metrics/recall represent the mAP,
mAP@50, mAP@50-95 and recall of the model on the validation set

Combined with the visualization results in Fig. 5. TSD-YOLO basically outperforms the bench-
mark model in all metrics, indicating that our model can accurately locate and classify target objects
in detection tasks. This demonstrates its ability to improve the accuracy of model detection in the
WCE detection field. To further verify the performance of our model, we also compared it with other
common attention mechanism modules and convolutional modules. As shown in Table 2, TSD-YOLO
greatly improves the detection accuracy and performance of the network compared to other studied
attention mechanisms and convolutional modules. Although the recall rate is slightly lower than that
of the SE (Squeeze and Extraction)-YOLOv8 model, it is still competitive, and other evaluation metrics
of our model outperform those of SE-YOLOv8. Moreover, the recall of our model increases by 2.7%
compared to the benchmark model.
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Table 2: Comparison of TSD-YOLO with advanced modules

Model mAP@50 Precision F1 Recall

YOLOv8n 0.744 0.798 0.71 0.682
ShuffleNet-YOLOv8n 0.620 0.659 0.60 0.578
Ghost-YOLOv8n 0.736 0.776 0.68 0.672
SE-YOLOv8n 0.742 0.763 0.71 0.720
GSConv-YOLOv8n 0.748 0.781 0.70 0.701
Gam-YOLOv8n 0.729 0.800 0.69 0.668

TSD-YOLO (Ours) 0.781 0.807 0.72 0.709

4.5 Comparative Analysis of Lesion Labels

The SEE-AI dataset contains twelve lesion labels. To reduce variability and evaluate the proposed
model in detail, we specifically compare and analyze the mAP@50 of each lesion label and conduct
a comparative experiment with the benchmark model. The results are shown in Table 3. As seen
in Table 3, except for the two lesion features of angiodysplasia and lymphoid follicle, our model
demonstrates better accuracy on the other ten lesion labels compared to the benchmark model
YOLOv8n.

Table 3: mAP@50 of different lesion labels on the SEE-AI dataset

Model Lesion label

Angiodysplasia Erosion Stenosis Lymphangiectasia Lymph
follicle

SMT Polyp-like Bleeding Erythema Diverticulum Foreign
body

Vein

YOLOv5s 0.533 0.708 0.845 0.720 0.614 0.743 0.749 0.757 0.601 0.632 0.758 0.919
YOLOv8n 0.603 0.728 0.895 0.770 0.621 0.780 0.769 0.794 0.612 0.692 0.756 0.922
TSD-YOLO
(Ours)

0.591 0.764 0.935 0.788 0.620 0.856 0.790 0.807 0.650 0.863 0.771 0.941

4.6 Ablation Study

The effectiveness of each module is validated through extensive ablation studies, and the sum-
marized results are presented in Table 4. We progressively incorporate modules from each layer into
the baseline to showcase their contribution to enhancing model performance. The first row represents
the performance of the baseline model. From the first row to the last, there is a gradual increase in
mAP@50/mAP@50-95/Precision values from 0.744/0.453/0.798 to 0.781/0.475/0.807.

Compared with other improved methods, it can be observed from Table 4 that adding a tiny
detection layer leads to an overall increase in mAP@50 by 1.1%, indicating its ability to discern
tinier targets more effectively. Subsequently changing the loss function to DIoU results in a relative
improvement of the model with an increased mAP@50 by 0.5%. Finally, incorporating SimAM
attention mechanism significantly enhances the original YOLOv8 model’s feature extraction capability
and recognition performance for intestinal diseases, leading to a 2.1% increase in mAP@50. By
simultaneously integrating all three modules, there is a substantial boost in mAP@50 by 3.8%, and
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precision increases by 0.9%, aligning better with the actual requirements of computer-aided medical
machines.

Table 4: Ablation study of the proposed TSD-YOLO on the SEE-AI validation datasets

Improvement measures Evaluation indices

Tiny detection layer DIOU SimAM mAP@50 mAP@50-95 Precision

0.744 0.453 0.798√ 0.755 0.475 0.777√ √ 0.760 0.469 0.798√ √ √ 0.781 0.475 0.807

In addition, we separately performed ablation studies of each TSD-YOLO module on the SEE-AI
validation dataset, and as shown in Table 5.

Table 5: Ablation study of the proposed SDS-YOLO on the SEE-AI validation datasets

Methods mAP@50 mAP@50-95

Baseline 74.4 0.45.3
+head 75.5(+1.1) 0.47.5(+2.2)
+DIOU 75.8(+1.4) 0.46.2(+0.9)
+SimAM 77.6(+3.4) 0.46.9(+1.7)

It can be seen from Table 5 that even when each module is added separately, each has a positive
effect on improving the baseline model. This also demonstrates the effectiveness and practicality of
each module.

4.7 Case Study

The output image detection box in Fig. 6 shows the label class and the confidence level, represent-
ing the degree of similarity between the lesion in the diagram and the lesions that the algorithm can
identify. This indicates the level of confidence that the model has in the results of this detection. From
the above analysis of the SEE-AI dataset and Fig. 6 can be seen that the dataset contains numerous
tiny objects and multiple types of lesions, which are densely and unevenly distributed.

Unlike typical datasets used for traditional computer vision tasks, the SEE-AI dataset is a large
WCE dataset that involves multiple scales and scenes, making it more challenging than general
computer vision tasks. Some rare conditions in this dataset, such as diverticula and veins, have fewer
data points compared to common abnormalities. Additionally, due to the limited pixel resolution in
WCE videos, certain abnormalities, like polyps, may appear blurry. Comparing the results shown in
Fig. 6, our proposed model outperforms the baseline model in detecting these features. Specifically,
compared to the experimental detection results of the baseline model Fig. 6a, the number of detected
frames and the accuracy in Fig. 6b are significantly better, indicating that our model reduces the
leakage rate and enhances overall detection performance.
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Figure 6: Inference results of two different models on the SEE-AI dataset: (a) Inference results of
YOLOv8n model on the SEE-AI datasets; (b) Inference results of TSD-YOLO model on the SEE-AI
datasets

5 Conclusions

WCE is a promising technology that combines computer vision and medicine, achieving impres-
sive diagnostic results. The use of computer-aided diagnostic tools to assist or even replace manual
WCE diagnosis holds significant application value. To address the challenges of WCE video, such as
tiny targets, large interference, and blurred fields of view, this paper presents a reliable method based
on deep learning for the detection of WCE images, specifically proposing the TSD-YOLO model. The
model was validated using a large-scale WCE dataset, and the evaluation metrics for 12 types of lesions
demonstrate its superiority, outperforming existing advanced models on this dataset. In the future, it
is hoped that this study will provide valuable insights to developers and researchers working on WCE
image analysis.
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