
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.058248

ARTICLE

Improving Machine Translation Formality with Large Language Models

Murun Yang1,* and Fuxue Li2

1School of Computer Science and Engineering, Northeastern University, Shenyang, 110819, China
2College of Electrical Engineering, Yingkou Institute of Technology, Yingkou, 115014, China
*Corresponding Author: Murun Yang. Email: yangmurun@outlook.com
Received: 08 September 2024 Accepted: 18 November 2024 Published: 17 February 2025

ABSTRACT

Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization
objective of the training processes. This oversight can lead to translations that, though accurate, lack formality.
In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines
the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT
models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first
involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a formal translation
style. The second approach employs an LLM as a reward model for scoring translation formality, and then uses
reinforcement learning algorithms to fine-tune the NMT model to maximize the reward score, thereby enhancing
the formality of the generated translations. Considering the substantial parameter size of LLMs, we also explore
methods to reduce the computational cost of INMTF. Experimental results demonstrate that INMTF significantly
outperforms baselines in terms of translation formality and translation quality, with an improvement of +9.19
style accuracy points in the German-to-English task and +2.16 COMET score in the Russian-to-English task.
Furthermore, our work demonstrates the potential of integrating LLMs within NMT frameworks to bridge the
gap between NMT outputs and the formality required in various real-world translation scenarios.

KEYWORDS
Neural machine translation; formality; large language model; text style transfer; style evaluation; reinforcement
learning

Nomenclature

Translation Formality the generated translations in a formal style

1 Introduction

Ensuring that generated translations possess a formal style is a critical requirement in machine
translation tasks [1–3]. However, despite significant advances in neural machine translation (NMT),
the balance between translation quality and stylistic control remains a challenging issue. Traditional
NMT models often prioritize translation accuracy over the formality of generated text, as they do not
model translation style into their optimization objectives during training [4]. This oversight can lead
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to translations that, while semantically correct, lack the desired formality, resulting in content that
is inappropriate for formal settings. For instance, in the real-world scenario of translating French to
English, “Comment ça va?” may be translated as “What’s up?”. Although this translation is accurate,
it bears some colloquialism and lacks formality. Actually, we prefer it is translated as “How are you?”,
a more formal and accurate translation.

In response to this issue, recent works have attempted to train formal style-aware neural machine
translation (NMT) models [5], which prioritize generating more formal translations. However, these
efforts face a significant challenge in that they require a substantial size of manually annotated
bilingual sentence pairs for implementation. Additionally, some works have tried to leverage the strong
context learning ability of large language models to control the translation style via human language
prompting [3]. Despite some degree of style control, large language models (LLMs) have been shown
not to match the translation quality of systems trained on proprietary bilingual data [6].

Given these limitations, we propose a novel approach, named Improving NMT Formality with
Large Language Models (INMTF). Our INMTF method leverages the style transfer and evaluation
capabilities of LLMs, combined with the high-quality translation generation ability of NMT models,
to enhance the formality of translations. By introducing this method, we aim to bridge the gap
between the formality often lacking in NMT outputs and the formality demanded in various real-
world translation scenarios. Our INMTF encompasses two main approaches. The first is to propose
a revision approach for the formality of translation. This approach uses an LLM to further revise
the translation generated by the NMT, ensuring the final translation style is formal. The second
approach, inspired by [7], attempts to utilize the style evaluation capability of the LLMs to improve the
formality of translations. Specifically, we employ an LLM as a reward model for scoring the formality
of translations. We then use Reinforcement Learning (RL) algorithms, such as REINFORCE [8] and
Proximal Policy Optimization (PPO) [9], to fine-tune the NMT model to maximize the reward score,
making the style of the generated translations more formal. Furthermore, considering the substantial
parameter size of LLM could lead to high computational costs in practical applications, we further
investigate how to reduce the computational burden of our method. Here we attempt to transfer the
style transfer ability and style evaluation capability of the LLMs to a more lightweight language model
(LM), thus reducing the model parameters and achieving acceleration.

We conducted comprehensive experiments to validate the effectiveness of the proposed INMTF
on German-to-English (De-En) and Russian-to-English (Ru-En) translation tasks. The experimental
results demonstrate that INMTF outperforms all baselines in terms of translation formality. Notably,
our reward-based INMTF approach achieves an improvement of +9.19 style accuracy points in the
De-En translation task. Additionally, INMTF offers benefits in translation quality; for example,
compared to the MLE system, the reward-based INMTF approach gains a +2.16 COMET score on
the Ru-En translation task.

2 Related Work

The recent research pertinent to this paper revolves around stylized machine translation, text style
transfer, and text style evaluation.

2.1 Stylized Neural Machine Translation

Researchers have gradually realized that in addition to translation accuracy, the style of translation
is an equally significant factor. Style pertains not only to the formality of the text but also to the
regional and temporal characteristics of the language, as well as the personal traits of the author.
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Previous works have focused on training a style-controlled machine translation model, such as the
gender and speaker style controlled machine translation models trained by [10] and [11]. However, a
core challenge faced by stylized translation is the lack of training data with style labels. To address
this issue, several solutions have been proposed. Reference [3] introduced the StyleAP method, which
controls translation style by retrieving prompts from a stylized monolingual corpus. The key to this
method is that it does not require additional fine-tuning of the model, but rather leverages the model’s
latent generative capabilities to achieve style transfer. This method provides a solution for stylized
translation without the need for extensive labeled data. Additionally, Niu et al. [1] proposed Online
Style Inference (OSI), a method that dynamically predicts the formality level of translation pairs during
training. Reference [2] approached the problem from a different angle, proposing the Iterative Dual
Knowledge Transfer (IDKT) framework. This framework generates large-scale stylized paired data by
facilitating bidirectional knowledge transfer between the machine translation model and the text style
transfer model. In this work, we attempt to leverage the text style transfer and evaluation capabilities
of LLMs to improve the style control of NMT.

2.2 Text Style Transfer and Evaluation

As a key task in the field of Natural Language Processing, text style transfer aims to transform
sentence styles, such as from formal to informal, while ensuring that the original meaning of the
sentence is preserved. A basic and common approach to solving this task is to directly train a sequence-
to-sequence model using labeled sample pairs <source style, target style>, a method widely used in
previous research [12,13]. However, this method faces a significant challenge: training an efficient
style transfer model becomes particularly difficult when annotated data for specific style transfers
are scarce. To address this issue, researchers have fine-tuned pre-trained generative models, such as
GPT-2 [14] and BART [15], using small datasets. LLMs have consistently demonstrated exceptional
performance in text transfer tasks, often achieving state-of-the-art (SoTA) results and offering new
solutions for text style transfer [16]. Evaluating text style is also a critical area of research. For example,
Lai et al. [15] developed new evaluation metrics and enhanced the text style transfer model using
Reinforcement Learning (RL) techniques to optimize these metrics. Additionally, recent studies have
shown that LLMs possess significant capabilities for evaluating text style transfer [17].

3 Preliminaries
3.1 Machine Translation

Given an input source x, a NMT model generates a translated text y = {y1, y2, . . . , yT} with
T tokens. Each token yt is derived from a predefined vocabulary. During the training phase, the
translation model learns a probability distribution:

pθ (y|x) =
N∏

t=1

pθ (yt|y<t, x) (1)

where y<t is the prefix {y1, y2, . . . , yt−1}, and θ is the set of model parameters. In this process, the
conventional training objective is to maximize the likelihood of all tokens in the target sequence,
i.e., maximum likelihood estimation (MLE) [4]. During the inference phase, tokens are generated
sequentially according to pθ .
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3.2 Reinforcement Learning

The RL objective for NMT model is to maximize the long-term reward, written as arg maxθ E pθ

(ŷ|x)[r(ŷ)], where ŷ is the generated translation, and r(·) is the reward function that computes the
long-term reward of ŷ. r(·) is often defined as an evaluation metric, such as BLEU [18]. To achieve
this objective, we typically use policy gradient methods, such as REINFORCE [8], Proximal Policy
Optimization (PPO) [9], and Minimum Risk Training (MRT) [19]. In particular, REINFORCE uses
log derivatives to define the loss function:

LREINFORCE = −
∑

ŷ∈S(x)

log pθ (ŷ|x)r(ŷ) (2)

where S(x) is an approximation of the sampling space, consisting of sampled sequences. Further-
more, MRT utilizes these sampled sequences to approximate the posterior distribution through re-
normalization, and provides a new loss function:

LMRT =
∑

ŷ∈S(x)

Qθ (ŷ|x)[−r(ŷ)] (3)

where Qθ (ŷ|x) is a distribution defined over the approximation space, which can be defined as:

Qθ (ŷ|x) = pθ (ŷ|x)α

∑
ŷ∈S(x)

pθ (ŷ|x)α
(4)

where α is a smoothness parameter. Based on the posterior distribution, MRT can achieve better
performance compared to REINFORCE [20,21].

4 Our Method

In this work, our aim is to improve the NMT formality using LLMs. We propose the INMTF
method for this purpose. The overall method is illustrated in Fig. 1. As depicted in the figure,
our method leverages the text style transfer and evaluation capabilities of an LLM to improve
the translation formality. In the following subsections, we provide a detailed description of these
components in INMTF.

LLM As a Reviser

LLM As a Reward

Translation

Model

Translate

Source
LLM-based

Reviser

Style Transfer

Translation

Translation

Model
Source

LLM-based

Reward

Translation

Reward

Source
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Figure 1: The overview of INMTF. In INMTF, we endeavor to harness the capabilities of LLMs for
text style transfer and evaluation, with the aim of improving the NMT formality
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4.1 Employing Large Language Model as a Reviser

During the training phase of NMT models, it does not directly model style optimization objectives.
Consequently, it often overlooks the style of its translations during actual generation. Here, we
contemplate whether we can further revise the style based on the generated translations. Specifically,
we treat this style revision as a text style transfer task. That is, we transform the style of the translation
into a formal one while retaining all the content meanings in the original translation. Given this setup,
we attempt to employ an LLM as a reviser, utilizing its robust text style transfer capability to correct
the style of the translation.

Fig. 2 (left) illustrates the prompt we designed. In the prompt, we add the source language for
further constraint, preventing the LLM from changing the semantic information in the corresponding
translation during the style transfer process. Moreover, inspired by the context learning ability of
LLMs [22], we introduce a few-shot learning mechanism, i.e., adding some corresponding demon-
strations in the prompt to improve the performance of the LLM in text style transfer.

Figure 2: The designed templates for text style revise (left) and text style evaluation (right)

4.2 Large Language Model as a Reward Model

An ideal approach would be for NMT to rely on itself to generate more formal translations during
inference. Considering the LLM’s strong evaluation capability for text style, we speculate we can use an
LLM as a reward model and then fine-tune the machine translation using RL algorithms to maximize
the reward, thereby improving the NMT to generate more formal translations on its own. We employ
a policy gradient-based method for fine-tuning our translation model. The style evaluation prompt
we designed is shown in Fig. 2 (right).

Similar to [7], we fine-tune the NMT model using a loss function that combines RL loss and MLE
loss, as follows:

LWeighted = λ × LRL + (1 − λ) × LMLE (5)

where λ is a balance factor adjusted on the validation set. Here, we use Eq. (3) and MRT to calculate
LRL. In fact, whether it is a reviser or acts as a reward model in RL, we have provided certain constraints
to prevent the overfitting problem. For example, in reviser, we require LLM to ensure that the original
meaning remains unchanged, and in RL, we also add MLE loss for constraints. Here, we can guarantee
our translation instructions to a certain extent, and the experimental results also shows that our
COMET and BLEU are not particularly depleted due to our modification of the style.

When fine-tuning with reinforcement learning, training instability can often occur in practice [23].
To mitigate this issue, we extend the baseline reward technique proposed in [23]. Specifically, we use
a FIFO (First In, First Out) based baseline reward method, which uses a FIFO reward queue Q to
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calculate the baseline value. We denote the size of the reward queue as Qsize. At each training step, we
push the rewards of all sampled sequences into Q and pop out the “oldest” reward. Then, we calculate
the average reward in Q as the baseline value b. By using this baseline reward, we replace the reward
function in Eq. (3) with r(ŷ, y) − b.

4.3 Enhancing Efficiency

From the exposition of the aforementioned methods, it is apparent that LLMs are frequently
called in our approach. However, one problem is that utilizing large LLMs for both revision and
reward modeling can result in significant computational overhead, making the approach resource-
intensive and less scalable, especially for real-time translation systems. Inspired by [7], we endeavor
to transfer the text style transfer and evaluation capabilities of LLMs to comparatively smaller LMs
for utilization in our methodology to solve the problem. Regarding text style transfer capability, we
employ knowledge distillation techniques [24,25] to migrate the text style transfer competence of LLMs
to GPT-2 [26]. For text style evaluation ability, we leverage the ECT method proposed by [7], to transfer
the evaluation capacity of an LLM to RoBERTa [27].

5 Experiments

We conduct experiments to evaluate this proposed INMTF method on German-to-English (De-
En) and Russian-to-English (Ru-En) translation tasks.

5.1 Datasets

Initially, we trained a neural machine translation (NMT) model using the Transformer base model
[28]. The training data consisted of the WMT2023 dataset, which includes the Common Crawl corpus
and News Commentary v18.1. Table 1 presents the statistics of this dataset. We preprocessed the
dataset following the approach of [29]. For testing, we utilized the informal-to-formal test set from
GYAFC [30], where both the source and target sentences are in English. To create the source-to-target
language formality test sets, we translated the original English sentences into German and Russian
using Google Translate. Indeed, various stylistic elements, such as formality and intonation, need to
be controlled in machine translation. In this paper, we focus on controlling formality in translations
to evaluate the effectiveness of our approach. In future work, we will extend our method to control
additional stylistic types.

Table 1: Statistics of De-En and Ru-En corpora

Dataset De-En Ru-En

#sentences #EN words #sentences #EN words

Common crawl 5,377,911 101,312,154 878,386 18,772,833
News commentary v18.1 388,482 8,554,360 331,508 7,668,112

5.2 Training Setups

5.2.1 Training Machine Translation Models

For the machine translation models, we directly trained a standard transformer base [28,31] using
MLE until convergence. The translation model was trained for 40 epochs, employing a batch size of
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4096 (token-level). In data preprocessing, we used the Byte Pair Encoding (BPE) method, with a merge
count of 32,000. During this preprocessing phase, we filtered out samples with the source language
length exceeding 250. All the experiments were conducted on four TITAN V GPUs.

5.2.2 Reinforcement Learning

For Reinforcement Learning (RL) training, we initialized a sequence generation model using the
MLE checkpoint that had the lowest validation set loss. During the RL training process, we generated
five candidate sequences for each source input sample. The balancing factor λ in Eq. (5) was set to 0.7.
For the De-En and Ru-En translation tasks, we conducted 10 epochs and 8000 steps of training on
the pre-trained model, respectively, with a batch size of 4096 tokens (token-level). We utilized top-k
sampling, generating five candidate samples for each input sample for training.

5.2.3 Transferring Capabilities from an LLM

We selected ChatGPT1 as our LLM. When using ChatGPT, we set the temperature to 0, and the
max length to 1024. During the generation process, we used top-p sampling method, where p was set
to 0.95. It was fine-tuned using RLHF [32] and has demonstrated excellent performance in sequence
generation evaluation [33]. For transferring the text style transfer capability, we selected 15 K training
samples from the training set. We then generated translations using our translation model, and let
ChatGPT perform text style transfer, thus forming the corresponding pairs of the source sentences and
the target style sentences. These data pairs were then used to fine-tune the GPT-2 model, completing
the transfer of text style transfer capability from the LLM. During fine-tuning, we used a learning rate,
batch size, and epoch size of 1e-5, 32, and 3, respectively.

For transferring text style evaluation capability, we designed an evaluation focused on formality.
These designed evaluation prompts are described in Fig. 2. For data collection, we randomly selected
15 K training samples from the training set and generated five output sequences for each input. For the
evaluation model architecture, we used RoBERTa-base as the encoder model. We trained the evalua-
tion model according to the COMET framework2. The learning rate, maximum epoch size, and batch
size were set to 1e-5, 10, and 32, respectively. We trained all the evaluation models on one TITAN V
GPU with 16-bit floating-point precision and applied early stopping during the training process.

5.3 Evaluation

In this work, we use two approaches to evaluate the effectiveness of the proposed methods. One
is by testing the accuracy of the translation model. Here, we compute the BLEU scores between the
translations and all the given references in the test set3. Furthermore, we report COMET-22 scores
between the translations and the first reference answer [34]. For the aspect of style formality, we use
a pretrained style classification model to score the style of translations, similar to the studies by [15]
and [35]. This classifier can reach a consistency of 87% with previous human accuracy classifications.
Additionally, we use ChatGPT to further score the style of translations.

5.4 Baselines

Our baseline is the standard MLE, which is the NMT model trained directly on WMT. We
compare results from direct translation with ChatGPT and controlled style translation in the prompt,

1 https://openai.com/blog/chatgpt (accessed on 17 November 2024).
2 https://github.com/Unbabel/COMET (accessed on 17 November 2024).
3 We use multi-bleu.perl for computing BLEU scores.

https://openai.com/blog/chatgpt
https://github.com/Unbabel/COMET
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referred to as ChatGPT and ChatGPT-style, respectively. Additionally, we report comparisons
between using ChatGPT directly and using transfer capabilities from ChatGPT as the reviser and
reward model. Furthermore, we compare our INMTF with other mainstream large language models,
including ChatGLM3-6b [36], LLaMA2-7b-Chat, and LLaMA2-3b-Chat [37]. We also compare our
INMTF with the method that fine-tunes the NMT model against a classification model.

5.5 Main Results

Our experimental results are summarized in Table 2. In terms of translation quality, as can be
seen, our INMTF achieves a translation quality comparable to that of MLE, demonstrating that
the adjustment of the translation style does not compromise its quality. Furthermore, our method
surpasses MLE in terms of COMET and BLEU scores. Notably, on the Ru-En translation task,
INMTF-Reward can yield +2.16 COMET score improvement compared to MLE. We conjecture that
due to the consideration of translation style in COMET evaluation, a more formal style may lead to a
higher COMET score. As for translation style, our method consistently outperforms MLE across all
the translation tasks. For instance, on the De-En translation task, our INMTF-Reward outperforms
MLE by 9.19 points on the Accuracy metric. Comparing our INMTF with the translations produced
by ChatGPT, we find that although ChatGPT controls the style well, there is a decrease in translation
quality, e.g., ChatGPT-style loses 2.98 BLEU points on the De-En translation task. We attribute this
loss to ChatGPT’s less optimal translation capability compared to specialized NMT models [6]. When
comparing to the MLE-Class baseline, we find that using a classification model to act as a reward
model is inferior. We assume that there are two main reasons: one is that this classification model’s
capability is poor, and the other is that this classification model does not consider the reference when
performing the style classification.

Table 2: The results of our INMTF on De-En and Ru-En translation tasks. The suffix “-Class” denotes
that we use a classification model to act as a reward model. The suffixes “-Reviser” and “-Reward”
denote the use of an LLM serving as a reviser and a reward model, respectively. We report scores
evaluated by ChatGPT in the “ChatGPT” column. The best results for each group are bolded

System WMT De-En WMT Ru-En

BLEU COMET Accuracy ChatGPT BLEU COMET Accuracy ChatGPT

MLE 52.37 76.58 84.51 3.65 50.86 74.62 80.12 3.23
MLE-Class 51.54 73.21 87.61 3.79 47.65 72.10 84.32 3.56
ChatGPT 48.11 72.34 82.90 3.41 48.12 72.55 76.49 3.01
ChatGPT-style 49.39 74.80 90.87 4.02 49.83 72.87 85.93 3.98
ChatGLM3-6b 40.56 68.01 78.43 2.97 42.10 66.78 74.48 2.89
ChatGLM3-6b-style 42.33 68.75 79.65 3.65 43.16 69.34 75.56 2.99
LLaMA2-7b-Chat 43.12 69.88 79.64 2.79 45.24 69.70 73.94 3.50
LLaMA2-7b-Chat-style 44.23 70.05 80.98 3.18 47.84 71.79 76.74 3.55
LLaMA2-13b-Chat 45.40 71.56 80.15 3.15 49.83 72.16 74.58 3.23
LLaMA2-13b-Chat-style 47.97 72.83 80.83 3.27 50.70 73.37 76.88 3.58
Using ChatGPT as Reviser or Reward
INMTF-Reviser 52.53 78.11 93.70 4.23 51.88 75.89 86.76 4.01
INMTF-Reward 53.02 78.23 92.91 4.19 51.65 76.78 87.71 4.13

(Continued)
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Table 2 (continued)

System WMT De-En WMT Ru-En

BLEU COMET Accuracy ChatGPT BLEU COMET Accuracy ChatGPT

Transferring capabilities from ChatGPT
INMTF-Reviser 51.98 78.01 92.98 4.17 51.26 75.10 85.90 3.95
INMTF-Reward 52.83 78.21 92.02 4.10 51.08 76.53 86.78 4.10

When comparing the direct use of ChatGPT and its transferred use, we can observe that they
have similar effectiveness in improving the NMT formality. However, transferring from ChatGPT
significantly reduces computational costs. Furthermore, we further investigate the performance gain
on two different approaches to improving the NMT formality. From the results, we can find that
both the reviser-based and reward-based approaches can effectively improve the style across various
translation tasks. The comparison results indicate that the ability of the reviser or forward model
positively correlates with our method’s performance. Specifically, the stronger these models are, the
better our method performs. Ideally, using a powerful model like GPT-4 would yield optimal results;
however, such models are often resource-intensive. Therefore, in practice, it is advisable to select the
strongest models available as the reviser or reward model whenever possible.

5.6 Analysis

5.6.1 Transferring Capabilities with Different Data Sizes

The scale of data used is an important factor when transferring the capability of LLMs. We aim
to explore the impact of different dataset sizes on transfer. Specifically, we create datasets with {5,
10, 15, 20, 25 K} samples for both text style transfer and evaluation. For the transfer of text style
transfer capability, we employ the test set’s PPL for measurement. For text style evaluation capabilities,
following [7], we measure the consistency between the transferred evaluation model and ChatGPT.
Note that our test set is randomly selected from the training set, excluding samples used during the
transfer process. Fig. 3 includes the corresponding test results, showing a long-tail distribution for both
transfers. To balance performance and transfer costs, we opt to use 15 K data for both style transfer
and evaluation transfer.

5.6.2 Performance on Different Temperature Settings

In real-world applications, varying temperature settings are typically employed by the LLM.
Consequently, we have also evaluated the impact of these different temperature settings on our method.
For this purpose, we have applied various temperature settings for our INMTF-Reviser and INMTF-
Reward, including 0, 0.25, 0.5, 0.75, and 1. The experiments are conducted on WMT De-En translation
task. The results are shown in Fig. 4. From the results, we can see that our INMTF consistently
achieves favorable outcomes under different temperature settings, surpassing the MLE baseline. This
also demonstrates that our INMTF has a well robustness when using different temperature settings.
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Figure 3: Sample-level Spearman (Spear.), Kendall-Tau (Kend.), and Pearson (Pear.) correlation scores
of the transferred models learned employing different sizes of LLM-annotated samples for text style
transfer (left) and text style evaluation (right). Note that these two figures share a legend

Figure 4: Performance of our INMTF-Reviser and INMTF-Reward with different temperature
settings

5.6.3 Performance on Different Sampling Methods

During RL training, continuous sampling is required for exploration. We compare different
sampling methods on the WMT De-En task, including greedy search and top-p sampling [38]. The
comparative results are shown in Table 3. This comparison shows that top-k sampling yields the best
results. We assume that top-k sampling strikes a favorable balance between generation diversity and
accuracy, which is beneficial for RL exploration [23]. Note that although top-p yields superior results
compared to top-k, we observe that in our tests that the diversity of top-p is not as good as that of
top-k. This can potentially lead to poorer exploration in RL, making it less efficient in finding more
formal translations.

5.6.4 Combining Reviser-Based and Reward-Based Approaches

We have endeavored to combine our reviser-based and reward-based approaches. Specifically, we
initially employ an LLM as a reward model to fine-tune the NMT model using RL. Subsequently, we
engage the LLM as a Reviser to revise the translation generated by the NMT, thereby elevating the
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formalism of the translated text. We conducted experiments on the WMT De-En translation task. The
results of these experiments are delineated in Fig. 5. From the results, we can observe that a combined
approach can achieve superior performance in terms of both translation style and quality. However,
this comes at the expense of a considerable computational cost. This is attributable to the fact that, in
the process of implementation, we need to carry out RL training and also engage an LLM as a Reviser.

Table 3: Performance of INMTF on different sampling methods. The experiments are conducted with
INMTF-Reward

Method BLEU COMET Accuracy

Greedy search 50.35 74.71 87.29
Top-p sampling 51.14 77.22 90.54
Top-k sampling 52.83 78.21 92.02

Figure 5: Performance of combining reviser-based and reward-based methods on the De-En transla-
tion task

5.6.5 Enhancing Consistency through Flexibility and Extensibility

Relying on LLMs to evaluate formality in translations can introduce subjectivity, as perceptions
of formality often vary across cultural contexts, domains, and individual preferences. This variability
can lead to inconsistent scoring and evaluation outcomes. However, our method exhibits significant
extensibility and flexibility, allowing for the incorporation of additional layers of prior knowledge
and constraints to enhance consistency. For example, develop and integrate comprehensive knowledge
bases that capture cultural and domain-specific information. These can be used to adjust the formality
evaluation process, ensuring that it aligns with the intended context. In Table 2, we focus on the
domain of news translation. During the evaluation process, we apply the a priori constraint by adding
“This is a new domain...”. This addition enhances the precision of the evaluation. We re-execute our
experiments. The results of this experiment are shown in Table 4. This experiment demonstrates that
adding constraints significantly enhances performance, highlighting the scalability and flexibility of
the approach.
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Table 4: Performance on INMTF-Reviser with domain constraint

System WMT De-En WMT Ru-En

BLEU COMET Accuracy ChatGPT BLEU COMET Accuracy ChatGPT

MLE 52.37 76.58 84.51 3.65 50.86 74.62 80.12 3.23
MLE-Class 51.54 73.21 87.61 3.79 47.65 72.10 84.32 3.56
INMTF-Reviser 52.53 78.11 93.70 4.23 51.88 75.89 86.76 4.01
INMTF-Reviser-addCont 53.14 79.13 93.98 4.45 52.00 75.93 87.12 4.23

5.6.6 Performance on Low-Resource Machine Translation

In this section, we test the applicability of our proposed method in low-resource MT environments,
specifically focusing on Hebrew to/from English translation. This analysis is crucial in addressing the
concerns regarding the reliance on LLMs in resource-constrained settings. As a morphologically rich
language with limited parallel corpora, Hebrew presents unique challenges in MT. The scarcity of data
often leads to suboptimal performance of conventional NMT systems. However, by incorporating
LLMs, we aim to mitigate some of these challenges through enhanced style transfer capabilities and
more robust evaluation metrics. We conduct experiments on the Hebrew→English4 translation task.
The results are summarized in Table 5. From the results, we can observe that our method still performs
remarkably well. The application of our method in the Hebrew-English translation task illustrates its
potential to enhance translation quality in low-resource settings.

Table 5: Performance on low-resource machine translation

System Hebrew → English

BLEU COMET Accuracy ChatGPT

MLE 26.73 42.15 74.17 2.86
MLE-Class 26.94 41.81 72.98 2.98
ChatGPT 23.13 45.87 78.94 3.03
ChatGPT-style 22.67 43.11 79.02 3.12

Using ChatGPT as Reviser or Reward

INMTF-Reviser 26.94 45.85 83.89 2.93
INMTF-Reward 27.01 45.06 83.11 3.27

Transferring Capabilities from ChatGPT

INMTF-Reviser 26.54 43.85 81.21 2.88
INMTF-Reward 27.00 43.93 81.72 2.90

4 This data and test set are both from WMT2023.
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6 Conclusion

In this paper, we highlight the critical importance of maintaining formal style in neural machine
translation (NMT) processes. The integration of large language models (LLMs) within the NMT
frameworks, as demonstrated by our proposed method INMTF, offers a promising solution to address
the formality gap in translations. By leveraging the style transfer and evaluation capabilities of LLMs
alongside the translation generation proficiency of NMT models, we have successfully improved the
formality of the translated content.
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