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ABSTRACT

The Cyber-Physical Systems (CPS) supported by Wireless Sensor Networks (WSN) helps factories collect data and
achieve seamless communication between physical and virtual components. Sensor nodes are energy-constrained
devices. Their energy consumption is typically correlated with the amount of data collection. The purpose of data
aggregation is to reduce data transmission, lower energy consumption, and reduce network congestion. For large-
scale WSN, data aggregation can greatly improve network efficiency. However, as many heterogeneous data is
poured into a specific area at the same time, it sometimes causes data loss and then results in incompleteness
and irregularity of production data. This paper proposes an information processing model that encompasses the
Energy-Conserving Data Aggregation Algorithm (ECDA) and the Efficient Message Reception Algorithm (EMRA).
ECDA is divided into two stages, Energy conservation based on the global cost and Data aggregation based on ant
colony optimization. The EMRA comprises the Polling Message Reception Algorithm (PMRA), the Shortest Time
Message Reception Algorithm (STMRA), and the Specific Condition Message Reception Algorithm (SCMRA).
These algorithms are not only available for the regularity and directionality of sensor information transmission,
but also satisfy the different requirements in small factory environments. To compare with the recent HPSO-
ILEACH and E-PEGASIS, DCDA can effectively reduce energy consumption. Experimental results show that
STMRA consumes 1.3 times the time of SCMRA. Both optimization algorithms exhibit higher time efficiency than
PMRA. Furthermore, this paper also evaluates these three algorithms using AHP.
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1 Introduction

Cyber-Physical Systems (CPS) represent a new generation of intelligent systems that integrate
physical and digital technologies to achieve more efficient automation, control, and decision-making
across various applications. CPS incorporates sensors, processors, actuators, communication net-
works, and cloud computing to create systems capable of sensing, analyzing, and responding to
changes in their physical environments in real-time. Beyond merely integrating physical and digital
technologies, CPS relies on advanced algorithms and software to analyze vast amounts of data in
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real-time, make predictions and decisions based on this data, and optimize their behavior to achieve
specific goals [1].

CPS supported by Wireless Sensor Networks (WSN) have attracted widespread attention due to
their ability to integrate physical and computational elements for real-time data collection and analysis.
WSN plays a vital role in CPS, facilitating the collection of sensory data, enabling inter-connectivity,
and supporting seamless communication between physical and virtual components [2].

In WSN, data aggregation is crucial for reducing the amount of transmitted data. Large-
scale industrial applications are primarily based on wireless sensor nodes. In a real-time physical
environment, sensors operate with minimal power, encompassing sensing, communication, and data
processing. Data aggregation is the process of summarizing and combining sensor data to reduce
the amount of data transmitted across the network. Sensor nodes are energy-constrained devices,
and energy consumption is often correlated with the amount of data collected, as communication
is typically the most energy-intensive activity. This paper investigates the relationship between energy
and the data aggregation process and proposes the Energy-Conserving Data Aggregation Algorithm
(ECDA).

CPS is the foundation of modern smart factories. The CPS can explore new information and
communication technologies to improve production, service, and energy management. According to
information and communication technology, these factories can monitor all parts of production in
the time they are connected in the cloud [3]. Assembly lines play an important role in industrial
production. Assembly lines not only reduce the working time of workers but also reduces the human
losses. Besides, assemble lines can also improve the efficiency and success rate of overall production
and manufacturing. However, assembly lines require sensors to meet the requirements of high precision
and accuracy.

With the advancement of application technologies and the improvement of hardware perfor-
mance, the number of sensor devices cannot meet the demand for information collection [4]. To
achieve more accurate information sensing, analysis, and decision-making, CPS requires more sensors
to support the entire system. Due to the large number of nodes, high distribution density, and certain
dynamic characteristics of sensor networks, data redundancy and resource waste are prone to occur
in receiving data. This requires a decision on whether to use or discard the obtained information [5].
Mukhopadhyay et al. [6] mentions that sensors are an indispensable part of an automated chemical
plant. However, a lot of sensing devices transmitting to a single receiving device at the same time will
easily cause data loss. Working on an assembly line requires to satisfy the six conditions in Fig. 1.
Especially in the environment of intelligent factories, the completeness and regularity of the received
information are the most important during the process of assembly line.

Figure 1: Information conditions
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To reduce energy consumption and avoid incompleteness and irregularity of data transmission,
this paper studies the information processing model in CPS-WSN. It mainly has four contributions:

(1) We propose the Information processing model to enhance the efficiency of data transmission
and reception.

(2) We investigate the relationship between energy and data aggregation in sensor networks and
propose an Energy-efficient Data Aggregation Algorithm (ECDA).

(3) We develop an Efficient Message Reception Algorithm (EMRA), including PMRA, STMRA,
and SCMRA. These three algorithms are respectively applicable to message reception at any time, the
shortest time, and under specific conditions.

(4) We evaluate the comprehensive performance of EMRA using the Analytic Hierarchy Process
(AHP). AHP represents an innovative method to simplify data transmission.

Overall, the rest of the article is divided into five sections. The rest of this article is organized as
follows. Section 2 represents related works. Then, Section 3 is the problem description. And the system
methods are introduced in Section 4. Furthermore, Section 5 compares and analyzes the performance
of the proposed algorithms. Finally, the conclusion is in Section 6.

2 Related Work

The IoT can receive and transmit information through devices such as infrared sensors, radio
frequency identification (RFID) [7], and global positioning systems. The IoT will realize efficient
information interaction, information exchange, and communication in the network. It’s a network
which can realize intelligent identification, positioning, tracking, monitoring, and management.

IoT sensors play an important role in improving operational efficiency, reducing production
costs, enhancing safety of worker, and providing early warning to prevent crashes of system.
Karunanithy et al. [8] propose a data collection system that utilizes IoT and WSN for continuous
monitoring of wild species in the area. An intelligent health detection system is designed for data
collection with the help of a wireless sensor network [9]. Belfkih et al. [10] focuse on sensor database
methods used in WSN. Sutiarittham et al. [11] develop a system that uses artificial intelligence to
predict student attendance. In addition, it performs optimal room allocation for courses to minimize
space waste.

Reference [12] defines Industry 4.0 as the fourth industrial revolution, which goes digital
through automated data exchange in manufacturing technology. To compare with the characteristics
of traditional production lines of factory, smart factory enables accurate information tracking,
which improves resource utilization. Besides, sensors connect various devices, which enable multiple
machines to communicate and track each device. Therefore, integrating sensors into industrial
environments can improve automation and sustainability. Time series data have become ever-present
within manufacturing systems with the proliferation of affordable and robust sensors available in the
market. Hence, time series analytics have experienced significant progress in Industry 4.0 [13].

Virtual sensing, in combination with physical sensors, has great potential in establishing a
reliable and informative sensing environment. Assembly lines heavily rely on the sensor network to
collect operational data. Virtual sensing, in combination with physical sensors, has great potential in
establishing a reliable and informative sensing environment. However, virtual sensors are subject to
their model uncertainties arising from input physical sensor errors and changes in system operations
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[14]. Although sensor networks are widely used in industry, real-time monitoring, and decision-
making face great challenges for heterogeneous and large-scale data. This is particularly evident in
time-sensitive industrial environments. Therefore, data and time are particularly important for the
development of IoT. The delay is the time it takes for the packet to traverse the network from the source
to the target. Connected to both the amount of energy consumption and the longevity of the network,
packet delay can increase energy consumption in the network and reduce life cycle of network.

Reference [15] proposes a system which integrates various data processing techniques. Continuous
casting steel lines integrates technology on the same Team Center platform. The results show that the
solution can be well used in real-world industrial environments. However, the problem of data loss will
occur in an environment with too much sensor data in a specific area. This issue requires further study
and clarification. Fortunately, when the technology of IoT is introduced into the production process,
the status of information management is gradually increasing. For example, even if the transmission
frequency of each sensor is different, there will be no loss of information and data.

Currently, there is an issue of data loss in information processing. This paper proposes an Efficient
Message Reception Algorithm for Sensors (EMRA), considering the message reception scenarios of
different time series. The time series considered in algorithm include series under specific conditions,
arbitrary time series, and the shortest time series.

AHP is a comprehensive evaluation method of systems analysis and decision-making founded
by Saaty [16]. Statistics involving data collected over decades show that the most used method
worldwide is AHP [17]. It presents for a full study of human thought processes. Also, AHP is a
quantitative processing process to solve qualitative problems. This paper summarizes the relevant
paper in recent years, as shown in Table 1. AHP is widely used in the following fields as an effective
comprehensive evaluation method for experimental result analysis. This paper will use AHP to evaluate
the experimental results of the three proposed transmission algorithms.

Table 1: Relevant references on AHP application

Algorithm Contribution

Hybrid MCDM-AHP Select the enterprise’s best resource planning system [18].
AHP Analyze and rank the users who perform better in

resource management [19].
AHP-VIKOR Search the parameters which have the greatest impact on

desertification [20].
Fuzzy AHP Evaluate university monitoring criteria with fuzzy AHP

method [21].
AHP and Fuzzy AHP Establish the distribution system based on the principle of

hierarchical construction [22].

Due to the inherent redundancy in raw data collected by sensor nodes, within-network aggre-
gation can usually reduce the communication cost by eliminating redundancy and forwarding only
smaller aggregated information. In a sensor network, the benefit of data aggregation increases if the
intermediate sensor node performs data aggregation incrementally when the data is forwarded to the
base station [23].
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Currently, WSN is facing four major issues namely power management, routing, localization
and deployment techniques. Out of these in power management, energy conservation is the major
constraint due to irreplaceable and limited power sources of the sensor nodes. Therefore, efficient
cluster formation is very challenging in WSN by considering the energy consumption of cluster heads.
The WSN area is divided into multiple clusters, with one node designated as the Cluster Head (CH).
As shown in Fig. 2, CH collects data from all cluster nodes, performs aggregation, and routes the
aggregated data to BS through direct transmission or with the help of adjacent CH nodes.

Base 
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CH1 CH2 CH3

Sensor 
Node

Cluster 
Head

Base 
Sta�on Communica�on 

Line 

Figure 2: Wireless sensor network

The biologically inspired selection of cluster heads (CH) has always been an important topic in
the research of all clustering-based data aggregation methods. The choice of CH is usually based
on the following parameters, including the proximity to BS, the hop distance of cluster nodes, the
residual energy of the considered nodes, the computational and communication loads, and the cluster
density [24].

However, the challenge lies in determining the metrics for CH selection and deriving the optimal
mix to select the most suitable CH for a given application. This leads to a multi-objective optimization
problem. In IoT applications where the nodes are mobile, the transmission energies required by a
node varies widely. Therefore, estimation of residual energies of nodes and their hop-count to the BS
is nondeterministic.

Hierarchical protocols play a crucial role in improving energy efficiency and prolonging network
lifetime within Wireless Sensor Networks (WSNs) [25]. The LEACH is a popular clustering protocol
for WSNs that helps in reducing energy consumption by allowing nodes to form clusters and electing
cluster heads. However, some downsides of LEACH include the potential for CHs with low energy
reservation to deplete quickly, the lack of scalability in large networks, and the use of random cluster
head selection. They may not always result in optimal choices. To address this issue, Reference [26]
proposes a solution where hybrid particle swarm optimization (HPSO) is paired with improved low-
energy adaptive clustering hierarchy (HPSO-ILEACH) for CH selection in cases of data aggregation to
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increase energy efficiency and maximize the network stability of the WSN. Reference [27] proposes an
Energy-Aware Routing protocol for Homogeneous and Heterogeneous WSNs called MAX LEACH.
The proposed protocol improves the total network lifetime. PEGASIS follows greedy algorithm to
organize the nodes in the form of a chain. The simulation results show that PEGASIS protocol is
less effective when the long chain of sensor nodes is formed. More energy is consumed to transmit
data over the long chain and introduces lot of delay. Reference [28] proposes E-PEGASIS protocol for
enhanced energy-efficient data transmission based on PEGASIS protocol.

Sensor nodes consume a significant amount of energy during data transmission in network
operations, emphasizing the importance of energy efficiency and network longevity [25]. The above
article has made various improvements in reducing energy consumption. This paper further studies
the two cluster-based data aggregation algorithms, LEACH and PEGASIS, as well as the recent
improvements of the two algorithms through simulation experiments.

3 Problem Definition

Based on the characteristics of assembly line and sensor devices, the sensor group is divided into
multiple segments to achieve the integrity and regularity of information reception. Each segment does
not interfere with each other. They can work simultaneously. There is one sensor task group A within
each segment. Each sensor task group contains multiple sensors that send information in parallel. The
specific values of sensors are input by the user. The sensor task group transmits information to the
receiving device in a regular and continuous manner. The direction is from left to right. The receiver
remains in a receiving state. Sensor task group A can be represented by Formula (1). Table 2 shows
related symbols with corresponding meanings.

A =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 = A, n = 1
A2 = B, n = 2
A3 = C, n = 3

. . .

A10 = J, n = 10

(1)

Table 2: Symbol description

Symbol Meaning

Pi Receiver i
Aj Sensor j
Rj Sensors j transmit signals every Rj second
MaxST The sensor continuously sends the same signal in MaxST
RecvT This time is spent on the receiver which accepts the signal from the sensor
minRecvT Store the minimum RecvT
N The number of sensors
i The current traversal to sensor i
Ri The frequency of sensor i
ε The time delay in actual production
L Recursive layers

(Continued)
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Table 2 (continued)

Symbol Meaning

O The output optimal sequence
MT Mark the minimum record of cumulative receiving time
Ti−sum In a certain sequence of sensors, the time represents the receiver to accept

information until the sensor i
PiTi− now The current variable represents the time to accept information of sensor i
λmax The maximum eigenvalue of a matrix
CI The consistency indicators in AHP
CR The consistency rates in AHP
CR The route global cost
Er The remaining energy
TP

mn The predicted trust
TUP

mn The unpredicted trust

Information transmission frequency (Ri). Sensor group A sends a signal to the receiver every
Rj seconds. The number of sensor group A has limited range. Each sensors have different models.
Therefore, this article specifies the value of Ai in the experiment, as shown in Formula (2). ASCII (Ai)
represents the ASCII code of every sensor. The value of k represents the sensor information parameter
that is related to the experimental settings.

Ri = 2ASCII(Ai)−k−1 (2)

Signal repetition period (MaxST). The sensor group has a unified MaxST. As shown in
Formula (3).

MaxST = 2N−1 + 1 (3)

Time consumption (RecvT). Formula (5) represents the time it takes for the receiver group to
receive information from the sensor group in this environment. Formula (4) indicates that the time of
receiving the sensor i information is equal to the sum of the frequency of the sensor i and the delay in
the actual production.

Tinow = Ri + ε (4)

RecvT = TN =
{

Ri, i = 1
(Ti−1_sum/Ti_now) ∗ Ri + Ti_now, i > 1

(5)

Current minimum time consumption (MinRecvT). Formula (6) represents the shortest time for
the receiver group to receive information from the sensor group in this environment. The experimental
verification shows that this time is generated by the first sequential sequence of all sensor combination
sequences.

MinRecvT = 2N−1 (6)
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Based on the background of the above issues and the characteristics of sensors, it is particularly
important to verify the integrity of information, improve reception efficiency, and conform to different
reception requirements. There are two corresponding problems as below. (1) Verify whether the receiver
can receive all the signals sent by the group sensor within the MaxST. (2) Arrange the receiving
order for the group sensor and find a specific receiving order scheme, so that the receiver can receive
the signals sent by the group sensor according to the receiving scheme. In addition, it satisfies the
minRecvT.

4 System Architecture and Methods
4.1 System Architecture

As shown in Fig. 3, the CPS based on WSN is composed of an information layer and a physical
layer. The factory assembly line at the physical layer is equipped with sensor groups and information
receiver groups. The sensor groups are primarily responsible for converting effective information into
electrical signals during the factory production process. The receiver groups integrate information
from the sensor groups.

Informa�on Processing Model

EMRA

Informa�on Processing Model

EMRA

CPS - WSN

Physical
layer

Sensor groupsAssembly line

Data aggrega�on

PMRA

ECDA
Cluster forma�on based on global energy conserva�on

Route forma�on using ant colony op�miza�on

STMRA SCMRA

Informa�on   
layer

Informa�on processing groups

Shortest time series Speci�ic constraintsArbitrary time series

Applicable   situa�on

  Message
  Transmission

Figure 3: Wireless sensor network

In the information layer, this paper proposes the IPM that encompasses an Energy-Conserving
Data Aggregation Algorithm (ECDA) and an Efficient Message Reception Algorithm for Sensors
(EMRA).

The ECDA is divided into Energy conservation based on the global cost and data aggregation
based on ant colony optimization. The algorithm in the first step is based on a cluster formation of
a global energy-saving algorithm considering the cost. The algorithm in the second step is to use ant
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colony optimization for route formation. Finally, the aggregated data is transmitted to the Effective
Message Reception Algorithm for Sensors (EMRA).

EMRA comprises PMRA, STMRA, and SCMRA. Also, EMRA analyzes the regularity of sensor
signal transmission. Subsequently, according to specific factory environments, the PMRA, STMRA,
and SCMRA message transmission algorithms are employed to meet the varying needs of factories.
PMRA is suitable for any time series. STMRA is applicable to the shortest time series. SCMRA is
suitable for specific constraints in the factory.

4.2 Energy-Conserving Data Aggregation Algorithm ( ECDA)

To reduce energy consumption and extend the service life of sensors, this paper proposes an
Energy-Conserving Data Aggregation Algorithm (ECDA). This energy-saving method is used to
transmit information about trust and residual energy without increasing communication traffic. The
proposed energy-saving algorithm first calculates the global routing cost of the energy-saving route,
and then the source node compares and finds the global routing cost of the effective forwarding route
between the source and destination.

The residual energy is computed as the remaining energy Er of the sensors Aj which is expressed
as. The residual energy of the sensor set is the ER, as shown in Formula (7). Use the routing global
cost expression calculation as shown in Formula (10). Formula (7) represents the calculation of the
remaining energy Er of sensor Aj. Formula (8) shows the predicted trust. Also, Formula (9) represents
the unpredictable trust. In Formula (10), WHC mentions the WHC weight of hop count.

ER = Er

i∑
j=1

[
TAj

]
(7)

TP
mn = αmn

αmn+βmn

(8)

TUP
mn = 1 − αmn

αmn+βmn

(9)

CG
R = ER + TUP

mn + TP
mn + WHC (10)

The proposed energy conservation model will reduce the energy of a homogeneous node by proper
selection of obvious residual energy.

This algorithm completes the whole process in two phases. In Phase 1, The energy-saving
algorithm aims to reduce the energy loss of the wireless sensor network during the data aggregation
between the sensor nodes and the central base station. Phase 2 is liable for both setting up optimized
path using ant optimization and dependable delivery of packets to sink.

Phase 1: Optimize data aggregation through energy efficient cluster.

Take the data calculated by Formulas (7)–(10) and the sensor ID as input. For each sensor node,
add the data to its neighbor list. Each node compares the remaining energy of all its adjacent nodes. It
selects the neighbor with high remaining energy as its cluster head (CH). Secondly, each node checks
whether the received CH ID is the same as its own ID. If so, it adds the corresponding sender, i.e.,
its member list. The role of CH rotates in each round to balance energy consumption. The clustering
round depends on the clustering period. Cluster formation based on global energy conservation is
shown in Fig. 4.



2878 CMC, 2025, vol.82, no.2

Algorithm 1:Cluster formation based on global energy conservation 

Input: ID 

Output: Clusterhead

for j =1:N

Neighbor Node(i) save  ID and 

end 

for j =1:N

Node(i) select node with highest energy as CH

end

End

Figure 4: Code for Algorithm 1

Phase 2: Optimize data aggregation through ant colony.

Ant Colony Optimization (ACO) has the advantages of strong robustness and good convergence.
It has a good effect in solving large-scale and complex optimization problems [29]. In ACO, ants
forward to their nearest neighbors, which then forward the ants to one-hop, two-hop, and three-hop
for neighbors to find an optimized route. Ultimately, the node with the highest pheromone value and
the highest energy is selected as the next intermediate node. During the search process, ants release
pheromones on the path, forming positive feedback of information to influence subsequent ants. Each
node communicates only with the nearest neighbor nodes and forwards data to the BS. Therefore, the
ant algorithm minimizes the energy used in one round [28].

Here, data may be collected in preparation for transmission to reduce the energy wasted in the
process. The ant colony optimization is then used to choose the route once for the data which has been
aggregated. Suppose there are ants randomly distributed in cities. When ants move from their current
city to the next one, the probability is calculated according to Formula (11).

Pk
ij =

⎧⎪⎪⎨
⎪⎪⎩

τ δ

ij (t)∑
s∈allowed τ δ

is

0

(11)

τ δ

ij (t) shows the pheromone concentration on the path between cities i and j at t time. The distance
length between the two cities is represented by dij. ηij is the heuristic factor, and its calculation method is
shown in Formula (12). Every ant will leave pheromones on its path. After n time, every ant will traverse
all the cities. And the pheromone quantity on each path will be updated. The updated calculation
method is the Formula (13). Route formation using ant colony optimization is shown in Fig. 5.

ηij = 1/dij (12)

τij (t + n) = ρτij + Δτij (13)
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Algorithm 2: Route formation using ant colony optimization

1  Initialization M, i

2  for j = 1:M

3  Sorting and computing resources for each task to rent and run. 

4  if M(j) has path to destination

5  Than call Fun BANT().

6  Else

7  Find the path through formulas (11), (12), and (13).

8  end

9  Fun BANT()

10  if M(j) > Temporary global optimal solution

11  Global optimal solution = M(j) 

12 End

Figure 5: Code for Algorithm 2

The basic process of the ant colony algorithm includes steps such as ants constructing paths and
updating pheromones. For a problem with N nodes on the graph, each ant needs to traverse the entire
network for selecting the next node in each iteration. As each ant requires an average of M nodes to
visit to construct a complete solution, there are A ants participating in the search. The complexity of
a single iteration is roughly O(AMN). Considering that each ant searches for a path in parallel and
independently, the total time consumption during actual execution is much less than O(AMN).

Fault detection is an essential pre-requisite for any data aggregation mechanism. A common
mechanism to detect faults is to periodically assess the health status of the sensor nodes. A watch-
dog timer is often used to detect node faults, where the nodes periodically broadcast “I AM ALIVE”
message to proclaim that they are healthy. Non-receipt of such message from a node is an indication
for its neighbors that the node is dead or faulty [24].

4.3 Effective Message Reception Algorithm (EMRA)

Based on the finite area of the assembly line, the role of sensors is particularly tremendous.
The reason is that sensors can receive information efficiently and completely. Therefore, this paper
develops EMRA that includes three algorithms to satisfy different requirements in the production of
assembly line.

4.3.1 Polling Message Reception Algorithm

Polling Message Reception Algorithm (PMRA) is suitable for the situation of arbitrary time
series as shown in Fig. 6. PMRA includes function A and time sorting algorithm. The function A
compares the leaf node of the solution space tree and the recursive layers with the number of sensors.
If the number of the leaf node is equal to the recursive layers, stop recursion. If not, continue with
the recursive algorithm. Then, by comparing RecvT and MaxST, it can be determined whether the
generated sequence is reasonable. If RecvT is less than MaxST, the current generated sequence is
feasible and superior. Then update the time sorting algorithm to generate the sequence and RecvT.
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Algorithm 3: PoSMRA

1 Input: N, i, Ri, MaxST

2 Output: RecvT and Optimal time series O

3 Fun A(N, i, Ri, MaxST)

4 Begin

5 if (L < N) then

6 {

7 for i do

8 if (i has not been visited) Then

9 {

10 Call AddTimeSchedule1(i, Ri).

11 Arrange sensor i into timeline.

12 Renew RecvT.

13 Call Fun A(N, i, R, MaxST) recursively.

14 Remove the time of sensor i.

15 }

16 end for

17 }

18 End

19 AddTimeSchedule1(i, Ri)

20 Begin

21 Initialize RecvT = Ri;

22 while (the current time is not the last sensor receiving time point on the timeline) do

23 RecvT += Ri;

24 End while

25 Insert sensor i into timeline.

26 End

Figure 6: Code for Algorithm 3

4.3.2 Shortest Time Message Reception Algorithm

Shortest Time Message Reception Algorithm (STMRA) can satisfy the demand of the shortest
time series as shown in Fig. 7. STMRA prunes sequences which do not have the possibility of being
the optimized solution. While traversing various sorting schemes, the optimization process introduces
MinRecvT for pruning.

4.3.3 Specific Conditions Message Reception Algorithm

Specific Conditions Message Reception Algorithm (SCMRA) can satisfy the specific constraints
of factory as shown in Fig. 8. In actual production, different restrictions will occur in actual produc-
tion. Algorithm 5 is suitable for this situation. According to different constraints, it can determine
pruning based on PMRA.
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Algorithm 4: StSMROA

Input: N, i, Ri, MaxST

Output: RecvT and Optimal time series O

Fun B(N, i, Ri, MaxST)

Begin

minRecvT = pow(2, Ri).

if (L < N) then

{

for i do

if (i has not been visited) Then

{

Call AddTimeSchedule1(i, Ri).

Arrange sensor i into timeline.

Renew RecvT.

if(RecevT < minRecvT){

Call Fun B(N, i, Ri, MaxST) recursively.

Remove the time of sensor i.

}

}

end for

}

End

AddTimeSchedule1(i, Ri)

Begin

Initialize RecvT = Ri;

while (the current time is not the last sensor receiving time point on the timeline) do

RecvT += Ri;

end while

Insert sensor i into timeline.

End

Figure 7: Code for Algorithm 4
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Algorithm 5: ScSMROA

Input: N, i, Ri, MaxST

Output: RecvT and Optimal time series O

Fun C(N, i, Ri, MaxST)

Begin

minRecvT = pow(2, Ri).

if (L < N) then

{

for i do

if (i has not been visited) Then

{

Call AddTimeSchedule1(i, Ri).

Arrange sensor i into timeline.

Renew RecvT.

if(RecevT < minRecvT){

if(RecevT < maxST){

Call Fun C(N, i, Ri, MaxST) recursively.

Remove the time of sensor i.

}

}

}

end for

}

End

AddTimeSchedule1(i, Ri)

Begin

Initialize RecvT = Ri;

while (the current time is not the last sensor receiving time point on the timeline) do

RecvT += Ri;

end while

Insert sensor i into timeline.

End

Figure 8: Code for Algorithm 5

5 Experimental Result and Analysis

The experiments are divided into two parts: message transmission algorithm and data aggregation
algorithm. For the message transmission algorithm, the parameters considered in this paper include
running time and CPU usage. In addition, this paper also uses AHP to evaluate the overall perfor-
mance of the message transmission algorithm. For the data aggregation algorithm, this paper mainly
considers the situation of energy consumption.

5.1 Experimental Setup

The settings for message transmission algorithm include both hardware and software environ-
ments. For data aggregation algorithm, this paper simulates the experimental scenario and sets various
parameters.
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5.1.1 Message Transmission

The hardware environment includes the CPU Intel Core i7-5200. The main frequency is 2.2 GHz
with 2 cores. The memory is DDR3L and the size is 4 GB. Also, the hard disk is 500 GB. The software
environment includes the operating system Windows 8.1 with Eclipse 4.5.2 for IDE.

Due to the large number of sensors deployed in the factory, this paper conducts experiments on
a unit in the sensor network. A unit has 6 sensor groups, and each group has 15 sensor nodes. This
experiment sets the value of k to 64. In other words, this paper subtracts 64 from the values of ASCII
code. This operation can realize the unity of ASCII code and signal frequency.

5.1.2 Data Aggregation

Table 3 shows the simulation parameters considered during execution. The study considers a
100 m × 100 m area as the wireless sensor network. The proposed scenario consists of 100 nodes
in the network area. Five algorithms, including LEACH, PEGASIS, E-PEGASIS, HPSO-ILEACH,
and ECDA, are initially assigned to each node in the network with the same energy level.

Table 3: Simulation parameters

C C1 C2 C3 C4

C1 1 1/6 1/5 1/4
C2 6 1 2 2
C3 5 1/2 1 2
C4 4 1/2 1/2 1

5.2 Experimental Result and Analysis

For information transmission algorithms, the runtime of the algorithm and CPU usage are crucial.
Additionally, this paper utilizes AHP to evaluate the comprehensive performance of three information
transmission algorithms. As for data aggregation algorithms, this paper considers the scenarios of
Energy consumption and Residual Energy.

5.2.1 Comparison of Running Times of Three Algorithms

As shown in Fig. 9a, with the increasingly number of sensors, the two optimization algorithms
have mor significant time advantages than PMRA. As shown in the Fig. 9b, when the number of sensor
groups exceeds 8, there is a significant difference in time consumption among the three algorithms.
When the number of sensor groups is less than 7, the average time to receive information can be
controlled within 30 ms. However, as the number of sensors increases, the time consumption of the
PMRA increases exponentially. The time consumption of optimization algorithms is at most ten times
higher than the PMRA. This situation is due to the addition of pruning operations in the optimization
algorithm, which reduces time consumption.
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Figure 9: Time performance of PMRA, STMRA, and SCMRA

5.2.2 Comparison of CPU Usage of Three Algorithms

As shown in Fig. 10, the CPU utilization of all three information receiving algorithms is increasing
with the growing number of sensors because it is the increase of the judgment and processing of
information. In addition, it is clear that the CPU usage of the three information receiving algorithms
is divided into three distinct intervals, 1 ≤ N ≤ 6, 6 ≤ N ≤ 8, and 8 ≤ N ≤ 10. In the first interval, the
CPU utilization of the PMRA algorithm is more than twice of the other two optimization algorithms
because this is the optimization operation of STMRA and SCMRA. In the second and third intervals,
the overall CPU utilization of SCMRA is slightly higher than that of STMRA. It increases 3.5% and
2.8% in the second and third intervals. This is related to the addition of specific judgments of SCMRA,
while STMRA doesn’t have this operation.

Figure 10: CPU utilization of PMRA, STMRA, and SCMRA
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5.2.3 Comprehensive Comparison of Three Algorithms

Experimental verification shows that all three algorithms can fully receive information from
sensors. The difference is that PMRA can output different sequences of sensors. In other words,
PMRA can output sequences of different time series. This algorithm is relatively flexible, but it takes
a lot of time. The application of two optimization algorithms is more targeted than PMRA. They also
have low time consumption than PMRA. STMRA can output all sequences for the shortest time. This
scheme prunes sequences that do not satisfy the shortest time. SCMRA can output all sequences for
the shortest time and specific constraints. This scheme prunes sequences that do not satisfy the shortest
time and specific constraints.

Besides, every algorithm has its priorities for influencing factors such as the number of sensors,
signal frequency, and signal repetition period. Therefore, this paper uses AHP to evaluate the compre-
hensive performance of the three algorithms. The evaluation process is divided into the following two
processes.

Process 1: Establish a hierarchical model. The hierarchical model is shown in Fig. 11.

Determina�on of algorithm

N Rj MaxST minRecvT

PMRA STMRA SCMRA

Target layer M

Criterion layer C

Scheme layer P

Figure 11: Hierarchical analysis diagram of sensor information reception algorithms

Process 2: Model solving. There are four steps:

(1) Establish a judgment matrix. The ninth percentile scale is used to measure the importance of
two factors. With the help of the ninth percentile scale, the experiment can create the judgment matrix.
As shown in Table 4, by comparing the elements in the benchmark layer in pairs, the experiment creates
a paired comparison matrix.

Table 4: Paired comparison matrix

C C1 C2 C3 C4

C1 1 1/6 1/5 1/4
C2 6 1 2 2
C3 5 1/2 1 2
C4 4 1/2 1/2 1

(2) Normalize the judgment matrix. With the help of the paired comparison matrix, the experiment
calculates the weights of the solution layer. And then the experiment calculates to determine the
final solution. However, while using judgment matrices to calculate weights, consistency checks are



2886 CMC, 2025, vol.82, no.2

essential. It helps avoid logical errors which is caused by subjective evaluations. The operation of
column normalization is shown in Table 5.

Table 5: Matrix normalization processing

C C1 C2 C3 C4 ω AW nω

C1 0.0625 0.0769 0.0541 0.0476 0.0603 0.2436 0.2411
C2 0.3750 0.4615 0.5405 0.3810 0.4395 1.8016 1.7580
C3 0.3125 0.2308 0.2703 0.3810 0.2986 1.2230 1.1945
C4 0.2500 0.2308 0.1351 0.1905 0.2016 0.8118 0.8064
λmax = 4.065844199, CI = 0.022, RI = 0.89, CR = 0.025 < 0.1. It is reasonable.

λmax =
∑n

i=1

[AW ]i

nωi

(14)

CI = λmax−n
n−1

(15)

CR = CI
RI

(16)

After normalization, it is necessary to use the normalized matrix A, matrix W, and the number
of elements in the criterion layer to obtain λ. Then the experiment can calculate the value of CR by
using the consistency index (CI) and average consistency index (RI) [21]. The value of RI is fixed.
Formulas (14)–(16) reflect the relevant calculation. If the CI value is less than 0.1, it indicates that
the data has passed the consistency test. The closer the CI approaches 0, the better the consistency is.
When the data fails the conformance testing, it requires other operation to solve it.

(3) Implement similar steps for each element of the criteria layer. As shown in Tables 6–9, this
experiment calculates the weights of each layer’s elements. The four factors in the criterion layer have
all passed the consistency test. The data consistency is within a reasonable range. Therefore, this
experiment can calculate the score of different schemes.

Table 6: Consistency test analysis of C1

C3 P1 P2 P3 Normalized P1 Normalized P2 Normalized P3 ω3 A3W3 nω3

P1 1 1/5 1/7 0.0770 0.0625 0.0870 0.0755 0.2266 0.2264
P2 5 1 1/2 0.3846 0.3125 0.3043 0.3338 1.0065 1.0015
P3 7 2 1 0.5395 0.6250 0.6087 0.5907 1.7868 1.7722
λmax = 3.014176993, CI = 0.007, RI = 0.58, CR = 0.012 < 0.1. It is reasonable.
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Table 7: Consistency test analysis of C2

C4 P1 P2 P3 Normalized P1 Normalized P2 Normalized P3 ω3 A3W3 nω3

P1 1 2 2 0.5000 0.5000 0.5000 0.5000 1.5000 1.5000
P2 1/2 1 1 0.2500 0.2500 0.2500 0.2500 0.7500 0.7500
P3 1/2 1 1 0.2500 0.2500 0.2500 0.2500 0.7500 0.7500
λmax = 3.000000000, CI = 0.000, RI = 0.58, CR = 0.000 < 0.1. It is reasonable.

Table 8: Consistency test analysis of C3

C3 P1 P2 P3 Normalized P1 Normalized P2 Normalized P3 ω3 A3W3 nω3

P1 1 1/2 1/8 0.0909 0.1429 0.0769 0.1036 0.3125 0.3107
P2 2 1 1/2 0.1818 0.2857 0.3077 0.2584 0.7845 0.7752
P3 8 2 1 0.7273 0.5714 0.6154 0.6380 1.9833 1.9141
λmax = 3.054108954, CI = 0.027, RI = 0.58, CR = 0.047 < 0.1. It is reasonable.

Table 9: Consistency test analysis of C4

C3 P1 P2 P3 Normalized P1 Normalized P2 Normalized P3 ω3 A3W3 nω3

P1 1 1/5 1/3 0.1111 0.1176 0.1000 0.1096 0.3289 0.3288
P2 5 1 2 0.5556 0.5882 0.6000 0.5813 1.7475 1.7438
P3 3 1/2 1 0.3333 0.2941 0.3000 0.3092 0.9285 0.9275
λmax = 3.003696088, CI = 0.002, RI = 0.58, CR = 0.0 < 0.1. It is reasonable.

(4) As shown in Table 10, by summarizing the results, this experiment can obtain the weight matrix.

Table 10: Scheme layer weight matrix

ω P1 P2 P3

C1 0.0603 0.0755 0.3338 0.5907
C2 0.4395 0.5000 0.2500 0.2500
C3 0.2986 0.1036 0.2584 0.6380
C4 0.2016 0.1096 0.5813 0.3092
Scheme score 0.2773 0.3244 0.3983

From Table 11, the scheme score of PMRA is 0.28 as the STMRA and SCMRA scores are 0.32 and
0.40. Therefore, the best solution is SCMRA of multiple factors. It can receive information completely
and efficiently.
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Table 11: Evaluation and analysis of various algorithms in terms of energy consumption

Algorithm Mean energy
consumption

Standard
deviation

Sample size
(n)

Standard
error (SE)

Margin of
error (MOE)

95% Con-
fidence
interval

LEACH 0.7680 0.07866 20 0.01524 0.02110 [0.26018,
0.30117]

HPSO-
ILEACH

0.6821 0.05189 20 0.00803 0.01725 [0.24752,
0.29035]

PEGASIS 0.7198 0.06974 20 0.01386 0.01894 [0.25815,
0.29176]

E-PEGASIS 0.6522 0.07011 20 0.00815 0.01755 [0.23641,
0.27336]

EDCA 0.6109 0.04505 20 0.00744 0.01502 [0.22758,
0.27104]

5.2.4 Energy Consumption and Residual Energy

Fig. 12a clearly depicts that ECDA consistently exhibits lower average energy consumption.
LEACH has the highest energy consumption. Meanwhile, when the number of rounds is less than
800, the energy consumption of Pegasus, HPSO-ILEACH, and E-PEGASIS is similar. When the
number of rounds reaches 800, the energy consumption of E-PEGASIS will be close to the proposed
ECDA. Fig. 12b illustrates the remaining energy of the algorithms. In terms of residual energy, HPSO-
ILEACH, E-PEGASIS, and ECDA show similar performance.

Figure 12: Energy consumption and residual energy

The overall statistical evaluation results of five algorithms in terms of energy consumption and
residual energy are shown in Tables 11 and 12. Compared to other algorithms, ECDA demonstrates
lower average energy consumption and residual energy. Additionally, the narrow width of the confi-
dence interval suggests that ECDA has greater potential in minimizing energy consumption within the
network.



CMC, 2025, vol.82, no.2 2889

Table 12: Evaluation and analysis of various algorithms in terms of residual energy

Algorithm Mean
residual
energy

Standard
deviation

Sample size
(n)

Standard
error (SE)

Margin of
error (MOE)

95%
Confidence
interval

LEACH 67.2225 0.07341 20 0.01225 0.01995 [0.25802,
0.30034]

HPSO-
ILEACH

58.4823 0.06470 20 0.00826 0.01206 [0.22815,
0.27174]

PEGASIS 66.9884 0.06679 20 0.01013 0.01901 [0.23751,
0.29851]

E-PEGASIS 66.3401 0.06757 20 0.00919 0.01899 [0.23660,
0.28211]

EDCA 53.7031 0.06152 20 0.00813 0.01413 [0.22019,
0.25933]

6 Conclusion

This paper explores the issue of factory sensor data acquisition and transmission in CPS based on
WSN and proposes the information processing model. Firstly, this paper proposes Energy-Conserving
Data Aggregation Algorithm (ECDA). According to simulation results, the proposed methodology
efficiently reduces energy consumption and increasing the transmission reliability. Secondly, this paper
developed Efficient Message Reception Algorithm for Sensors (EMRA), which includes PMRA,
STMRA, and SCMRA. Experiments show that EMRA helps in receiving information from the sensor
regularly and completely. However, Due to resource constraints, WSN is easily targeted by Sinkhole,
Sybil, wormhole, interference, and eavesdropping attacks. Therefore, providing Quality of Service
(QoS) related to network security in terms of data confidentiality and privacy has become a major
challenge for secure data communication. In the future, this article can further investigate an intelligent
factory environment for bidirectional information detection and analysis.
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