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ABSTRACT

Aiming at the problems of information loss and the relationship between features and target tasks in multimodal
medical image segmentation, a multimodal medical image segmentation algorithm based on feature decoupling
and information bottleneck theory is proposed in this paper. Based on the reversible network, the bottom-up
learning method for different modal information is constructed, which enhances the features’ expression ability and
the network’s learning ability. The feature fusion module is designed to balance multi-directional information flow.
To retain the information relevant to the target task to the maximum extent and suppress the information irrelevant
to the target task, the feature decoupling module is designed to ensure a strong correlation between the feature
and the target task. A loss function based on information bottleneck theory was intended to improve information
quality and remove redundant information. Based on BraTs2021, BraTs2023-MET and ANNLIB datasets, the
proposed algorithm is analyzed qualitatively and quantitatively in this paper. In the quantitative experiment, the
Dice coefficient of the proposed algorithm was increased by 0.110 on average compared with other methods, and
the HD95 was decreased by 28.568 on average compared with other methods. In qualitative analysis, the proposed
algorithm can effectively segment the incoherent region between the lesion and the lesion boundary and achieve
accurate segmentation of the lesion.
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1 Introduction

In recent years, with the development of artificial intelligence algorithms, data-driven algorithms
are constantly changing from single-modal data to multimodal data. The theories and methods in
mathematics and information provide theoretical support for studying the mechanism of multimodal
data fusion and mining the potential information association of cross-modal data. Multimodal
medical image data analysis aims to improve the expression ability of features by fusing the input
data of different modalities according to a specific mechanism to identify the lesion area or stage the
lesion accurately. Among them, explaining the principle of multimodal medical image segmentation
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and building the algorithm through information change is a crucial task of multimodal medical image
analysis.

Medical image segmentation is mainly used to extract the contour of interest from medical
imaging data. This process performs pixel-wise partitioning by identifying anatomical structures
in the image. Multimodal magnetic resonance imaging (MMRI) medical images can help doctors
fully grasp the specific characteristics of anatomical information of different brain lesions and
improve the segmentation performance. In the segmentation task of abnormal brain lesions, the
location distribution, pixel intensity distribution, and lesion shape vary significantly among different
samples, which causes problems with the multimodal segmentation task, such as information loss
and inaccurate segmentation results. There is redundant information between medical images of
different modalities, which will cause the joint learning algorithm to misjudge the importance of
different modalities [1], ignore specific modality information and eventually reduce the prediction
accuracy and lead to overfitting [2]. Therefore, this paper studies multimodal brain tumor image
segmentation methods based on MMRI data. Currently, the standard image segmentation methods
based on deep learning, such as the model based on Fully Convolutional Networks for semantic
segmentation (FCN), the model based on U-Net, and the model based on Transformer, have gradually
become the mainstream methods for multimodal brain tumor image segmentation. The core of these
methods is to map the original data into a higher-dimensional feature space through complex, multi-
dimensional, nonlinear array operations and to abstract the data into features that are more satisfying
for downstream tasks through segmentation network training. The proof of Radmacher’s complexity
shows that the quality of feature space directly affects the accuracy and generalization of the model. We
expect to construct a feature space as complete as possible through the design of the network structure
to maximize the contribution of the feature space to the task. The feature space will provide the
information associated with the given task, suppress the information that interferes with the task, and
complete a task-oriented data “compression” work to avoid information redundancy and information
loss caused by the design of the network structure. However, these segmentation networks cannot
accurately classify at the pixel level because the size of the feature map will gradually decrease during
the downsampling process, which affects the effect of precise segmentation. For example, the FCN
model replaces the convolutional layer with the deconvolution layer to achieve upsampling. However,
the deconvolution layer lacks the mechanism of parameter sharing, leading to its failure to capture the
global features in the image, thus losing part of the semantic information. The U-Net model captures
image features by multiple down-samplings in the encoder, but when the original size of the image
is restored by various up-samplings in the decoder, some details and semantic features will be lost,
making the segmentation results inaccurate enough. The Transformer model only considers single-
scale feature representation, which will cause information loss.

Aiming at the problems of existing medical image segmentation algorithms, this paper proposes a
brain tumor MMRI segmentation network based on feature decoupling and information bottleneck
theory: FDIBMNet. The main contributions are as follows:

(1) Based on the reversible network, a multi-direction flow and multi-branch encoder with bottom-
up and multimodal information interaction is constructed, which allows information to flow across
layers among branches, realizes the transfer of low-level detailed information and high-level semantic
information between modes, enhances the expression ability of features and the learning ability of the
network and helps the network to maintain richer and more comprehensive information and avoid
information loss.
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(2) To maintain the information balance of multi-directional flow, the feature fusion module is
designed, and the interdependence between feature channels is established to realize the adequate flow
and fusion of features between different resolutions, maintain their information is not compressed or
lost, and form a feature representation without information loss.

(3) Construct a feature space as complete as possible, maximize its contribution and correlation
information to the task, and suppress information that has no contribution and correlation to
or interferes with the task. Firstly, based on the topological properties of medical images (pixel
connectivity and adjacency), a feature decoupling module is designed to decouple the relationship
between pixels and geometric properties of medical image features from the feature space and to
model and enhance the topological representation between interested pixels. Secondly, based on
the information bottleneck theory, loss constraints were applied to multimodal features to ensure
a strong correlation between features and tasks and remove redundancy, and third, based on the
mutual information constraint between input and output, decoupling the sharing and uniqueness of
multimodal features.

This paper is organized as follows: Section 2 introduces related work. Section 3 introduces the
network structure of the algorithm constructed in this paper in detail. Section 4 conducts detailed
experiments and evaluates the experimental results. Section 5 summarizes the findings, contributions,
and limitations of this paper.

2 Related Works

The medical image segmentation method based on deep learning, combined with the basic prin-
ciples of computer vision, can realize the automatic recognition and segmentation of the foreground
area of the lesion area and the background area, such as organs and tissues, through the fine pixel clas-
sification of the medical image, without the need for manual feature design and extraction. Through
convolution and pooling operations, finer high-level semantic features are gradually extracted, making
the segmentation results closer to the actual situation. Deep learning technology improves the accuracy
and segmentation efficiency of medical image analysis and supports the early detection, diagnosis, and
treatment of diseases. Standard supervised learning segmentation algorithms include medical image
segmentation algorithms based on the FCN framework, medical image segmentation algorithms
based on the U-Net framework, and medical image segmentation algorithms based on Transformer
framework.

FCN is a classical image segmentation method. By converting the Convolutional Neural Network
(CNN) structure into a fully convolutional structure, the network can output a segmentation result the
same size as the input image. FCN utilizes convolutional and deconvolution operations to learn the
category label of each pixel in the image to achieve pixel-level segmentation. Sun et al. [3] proposed
multi-channel FCN for liver tumor segmentation from CT images. Each stage of contrast-enhanced
CT images provides different information about pathological features, so a network is trained for each
stage of contrast-enhanced CT images, and their high-level features are fused to achieve automatic liver
tumor segmentation of CT images. Ben-Cohen et al. [4] proposed an algorithm for segmenting liver
cancer metastases on CT, combining FCN with super-pixel sparse classification to achieve accurate
segmentation of small lesions and reduce the false positive rate. Feng et al. [5] proposed a multi-stage
FCN architecture for 2D MRI segmentation of the prostate. The algorithm can capture more accurate
spatial information and prostate boundaries through different sequences of MRI. Compared with
CNN-based image segmentation methods, FCN can accept input images of any size and become
more efficient without size transformation. However, FCN does not fully consider the relationship
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between pixels, and the pixel-level segmentation results still cannot meet the requirements of accurate
segmentation. The medical image segmentation method based on the U-Net framework can deal with
the above problems of FCN well.

Unlike the segmentation task of natural scene images, medical images usually contain artifacts,
and the boundary of the region of interest is blurred and unclear. U-Net can effectively combine
low-resolution features with high-resolution features through jump connections, and it has become
a benchmark framework for most medical image segmentation tasks. Chen et al. [6] proposed a long-
range sensing model for the segmentation of fuzzy boundaries of medical images, which has long-
range solid sensing ability and can effectively perceive the semantic context information of the entire
image. Experimental results show that the proposed algorithm is more effective in improving the
segmentation accuracy of fuzzy boundary regions than other long-distance sensing methods such as
Transformer. Yu et al. [7] proposed a differential evolution algorithm based on U-Net for medical
image segmentation. The algorithm relies on the expertise of differential evolution to search neural
networks automatically. The variable length encoding strategy is used to optimize the neural architec-
ture, effectively improving brain tumors’ segmentation effect. Zhang et al. [8] proposed an algorithm
integrating densely connected convolutional modules into the U-Net architecture. By replacing the
standard convolutional layer with dense connections, the width of the network is increased, and the
features are extracted without increasing the parameters to make the network deeper. In the research of
multimodal fusion data analysis algorithms for brain tumors, a downsampling block is used to reduce
the size of the feature map to accelerate learning, and an upsampling block is used to adjust the size
of the feature map to achieve accurate reconstruction of segmented images. The algorithm achieves
precise segmentation of brain tumors on MRI.

U-Net algorithm can obtain high-precision segmentation results in image segmentation tasks of
various modalities and diseases, especially when dealing with small targets or images with complex
details. U-Net network architecture is relatively simple, easy to implement, and understand. However,
the encoder part of U-Net mainly focuses on extracting local information, and it is challenging to
integrate global information, which may lead to poor performance in processing long-distance depen-
dency and context information, especially in the task of medical image segmentation. At the same
time, during the coding process of U-Net, the down-sampling operation will lose part of the spatial
information, which is a challenge for tasks that require accurate spatial localization. The decoder
part of U-Net makes it difficult to effectively recover global information during upsampling, which
may lead to decreased accuracy of segmentation results. Compared with U-Net, the medical image
segmentation algorithm based on the Transformer framework can deal with global information well.

The medical image segmentation algorithm based on the Transformer framework captures the
long-distance dependence through the self-attention mechanism and effectively processes the global
information in the image. Jiang et al. [9] proposed a label decoupling network with a space-channel
graph convolution and a dual attention enhancement mechanism. The algorithm constructs learnable
adjacency matrices and uses graph convolution to efficiently capture global long-range information
on spatial locations and topological dependencies between different channels in an image. The dual
attention enhancement mechanism is constructed, and the edge attention mechanism module is
designed in the edge branch to promote the learning ability of spatial region and boundary features.
The algorithm can retain the spatial location information in the medical image and improve the
accuracy of medical image segmentation. Zhang et al. [10] used spatial pyramid pooling instead of
pooling layers as encoders and integrated attention mechanisms to capture complex cross-dimensional
interaction information. Extensive experimental results on brain tumor segmentation datasets show
that the proposed algorithm performs excellently in medical image segmentation. Li et al. [11] proposed
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a mutually reinforcing multi-view information model for lung tumor segmentation. The model uses the
attention mechanism to enhance node attributes, designs the gated convolution strategy to integrate
the enhanced attributes and original features, constructs the learning context of the multi-channel
CT, and realizes cross-channel information fusion. Multi-view mutual information is fused through
an interactive attention mechanism. Finally, the node embedding, channel context embedding, and
original features are adaptively integrated, and the final output is obtained through the segmentation
decoder.

Medical image segmentation algorithms based on the Transformer framework can better model
the global context to understand the information in complex medical images. The framework is easy
to extend and can further improve the effect of medical image segmentation by increasing the number
of layers, input images of different sizes, and adjusting the model size. However, Transformer can only
consider global information and has a weak ability to extract cross-domain information.

In conclusion, the medical image segmentation method based on the deep learning framework
is superior to the traditional medical image segmentation method, but there are still the following
problems:

(1) The direction of segmentation will be limited when the algorithm based on the deep learning
framework is used for medical image segmentation. For MRI image segmentation with complex
boundaries, such as brain tumors, we can modify the direction of segmentation by adjusting the form
of the loss function further to improve the accuracy of brain tumor image segmentation.

(2) The core of the neural network is to map the input data into the feature space through complex,
multi-dimensional, and nonlinear array operations and perform feature transformation and nonlinear
transformation layer by layer. The original data is mapped into a higher dimensional feature space as
the hierarchy is gradually deepened. In this feature space, the data is abstracted into semantic features
that are more satisfying for the downstream task. The construction of feature space is closely related
to the accuracy and generalization ability of the model. This study expects to map data from the
original data space to the “representation space” through network design. Through the training of
neural networks, it is expected to maximize the information that contributes to the task and is related
to the task and suppress the information that does not contribute to the task, is not associated with the
task, or has interference with the task. Perform a kind of data “compression” for downstream tasks.

(3) During the construction of neural networks, avoiding the loss of information caused by
the design of network structure is necessary. For example, in the shared segmentation network
downsampling process, the size of the feature map will gradually decrease, which cannot represent
the specific contour of the object and cannot classify the organization of each pixel, so the goal of
accurate segmentation cannot be achieved. However, downsampling can reduce the computational
complexity of deep networks and is widely used in network structure design. Therefore, it is necessary
to balance feature extraction and computational complexity.

3 Methodology

Clinically common MRIs usually contain a variety of different sequences, and different sequences
are used to examine different anatomical structures, Common sequences include T1-Weighted Imag-
ing (T1WI), T1-weighted Gadolinium enhanced Imaging (T1Gd), T2-Weighted Imaging (T2WI),
and Fluid Attenuated Inversion Recovery (FLAIR). The T1WI sequence showed clear anatomical
structure and bleeding, and brighter adipose tissue, with relatively few artifacts, but the lesion was
not clearly displayed. The contrast between blood vessels and brain tissue is more obvious in T1Gd
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sequence, so the blood vessels and lesions of the brain can be more clearly displayed. T2WI sequence is
contrary to T1WI sequence, which is clearer for lesions and edema, especially for the diagnosis of brain
tumors. The FLAIR sequence can be used to determine the edema area around the tumor. Although
MRI takes a long time to image, it is widely used for accurate screening of diseases in clinic because
it has no radiation and can observe different anatomical structures and tissue information through
different sequences.

Fig. 1 shows the design of the feature decoupling and information bottleneck theory image seg-
mentation network (FDIBMNet) framework. The model consists of an encoder, a feature decoupler,
and a decoder. In the encoder part, X1, X2, X3, X4 correspond to the four modes of MMRI (T1WI,
T1Gd, T2WI, and FLAIR). Taking X1 as an example, the output information of Level1 of X1 will be
passed to the output of Level1 of X2 and fused with the output of Level1 of X2, which will be used
as the input of Level2 of X2 for subsequent processing. At the same time, the output information of
Level2 of X1 will flow to the input of Level1 of X2 and be fused with the input of X2, which will be used
as the input of Level1 of X2 for subsequent processing. After the four modes X1, X2, X3, X4 all adopt
bottom-up and information interaction between modes, the encoder is completed.

Figure 1: FDIBMNet’s framework

The information between different modalities may have shared or unique information related to
the target task, and the information between modalities may have similarities or differences. Only by
fully characterizing the information of the modalities can the results of the target task be maximized.
Through the interaction of information, the encoder fully represents the modal information and
ensures a strong correlation between the information in the feature and the target task. The basic design
principle of the feature decoupler comes from the region-growing algorithm. Firstly, the pixel value
of the center of the lesion will be given, and the relationship between the surrounding pixels and the
pixels of the lesion will further expand the segmented area. When the surrounding pixels are unrelated
to the pixels of the lesion area, the boundary delineation of the lesion will be completed. The feature
decoupler is set up based on this idea. Through feature coupling and combined with the decoupling
directional features, the feature decoupling device ensures the consistency of the anatomical position
in the image and completes the extraction of semantic information related to the lesion boundary. In
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the decoder part, high-level features, topological attributes, and information fusion are used to decode
the extracted semantic information and topological characteristics in parallel, which ensures that the
structure shape, pixel brightness, texture features, and the relationship between the representation pixel
and the surrounding neighborhood are preserved at the same time in the decoding process, and the
lesion segmentation is effectively realized.

3.1 Encoder Structure

The encoder comprises four parallel branch encoders containing different levels of feature
extraction blocks, and the transmission of lossless information is maintained by a multi-level reversible
connection between two adjacent columns. In forward propagation, this architecture scheme can
ensure that the information in the model flows in two ways: one is the “top-down” information trans-
mission to achieve single-mode feature extraction, and one is “bottom-up” information transmission
to achieve cross-modal and cross-level information interaction. Specifically, multimodal image data
X1, X2, X3, X4 are input, and feature extraction is performed as shown in Fig. 1. The feature mapping
process is divided into Level1, Level2, Level3, and Level4. Between each column, reversible joins are
introduced to preserve the propagation of lossless information. The feature transfer process is mainly
as follows:

Fl = Fi,j ⊕ Fi−1,j (1)

Fi,j+1 = LEi,j+1(Fl, Fi−1,j + 2) (2)

Fi,j = LEi,j(·) (3)

where, i represents the four modal numbers, i = {1, 2, 3, 4} corresponding to X1, X2, X3, X4, j represents
the four levels j = {1, 2, 3, 4}, corresponding to Level1, Level2, Level3, Level4. Fi,j represents the feature
extracted from the input information (feature information or source data) of the ith modality through
the feature coding module of the jth level. ⊕ means adding the corresponding elements to the feature
matrix. LEi,j represents the (Level encoder block, LB) coding module of the jth level under the ith
modal branch, as shown in Fig. 2.

Figure 2: Encoder structure: Level encoder block

This parallel branch structure gradually decouples features during the forward propagation
process to maintain the integrity of information and avoid information compression or loss. The
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bidirectional flow of information between multiple branch networks is allowed so that in the process
of forward propagation, each branch structure can receive the information of other branch structures
and pass the processed results to the next layer of other branches while retaining all the information
in the transmission process.

In forward information propagation, a CNN-based structure is constructed to realize the mapping
of input data to features. Ideally, if the extracted features can be “reconstructed” from the input
data through some backward process, the information is not lost and is effective in the forward
process. Combined with the background of multimodal medical image segmentation in this chapter,
it is hoped to design a network structure to ensure the effective extraction and lossless transmission
of information such as anatomical characteristics, structure shape, pixel brightness, texture features,
and the relationship with surrounding tissues of abnormal brain lesions during the information
transformation of input medical images. This is important for later brain lesion tissue segmentation
tasks.

Invertible Neural Networks (INNs) is a particular type of neural network whose main feature
is that the mapping from input to output is bidirectional and reversible. This property makes the
backpropagation and gradient calculation of the network more efficient and reliable and can better
achieve data reconstruction and reduction and maintain the integrity of information in the task.
INNs are a lossless feature extraction architecture, which is very suitable for information retention
and network training in multimodal image fusion. Based on INNs, this paper proposes constructing
LB with INNs blocks with affine coupling layers to realize feature extraction and lossless transfer, as
shown in Fig. 3a,b [12].

Figure 3: Encoder structure: Fusion block and bottleneck residual block

Firstly, the feature map FXi
l from mode Xi and network layer Levell−2 is fused with the feature map

F
Xj
l−2 from mode Xj and network layer Levell−2. The feature maps of different resolutions are unified

to the same size (h × w × c) by upsampling and downsampling operations and stacked along the
channel dimension to obtain the feature F ∈ R

h×w×2c. Through the combination of global pooling, full
connection and activation function, the stacked feature F ∈ R

h×w×2c is compressed and the channel is
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excited, and the importance degree of 2C channels is learned to obtain the weight W ∈ R
1×1×2c. Then

F ∈ R
h×w×2c and W ∈ R

1×1×2c sequence division (split) for specific characteristics to two groups of the
same number of channels Fc ∈ R

h×w×c and FC′ ∈ R
h×w×c and weight W ∈ R

1×1×c and WC′ ∈ R
1×1×c and

weighted as follows:

Ffusion = (Fc ⊗ Wc) ⊕ (FC′ ⊗ WC′) (4)

where, Fc and FC′ denote the features of the same number of channels obtained by sequential splitting,
and Wc and WC′ are the weights of Fc and FC′ . ⊕ indicates the addition of the corresponding elements
in the eigenmatrix and ⊗ indicates the multiplication of the corresponding elements in the eigenmatrix.
In this process, the interdependence between the feature channels is explicitly modeled, and the feature
map FXi

l from the mode Xi and the network layer Levell is projected into the feature space where
the feature map F

Xj
l−2 of the mode Xj and the network layer Levell−2 is located. To achieve effective

flow fusion of features between different resolutions and modes, maintain their information without
compression or abandonment, and generate a new feature representation Ffusion.

The information Bottleneck Residual block (BR) takes the low-dimensional compressed repre-
sentation as input, first extends it to higher dimensions, and then convolutional layers are used for
convolution. Features are subsequently projected back to a low-dimensional representation with linear
convolutions. The lossless feature FINNs is obtained by taking Ffusion as input to INNs with affine coupling
layers. As shown in Fig. 3, Ffusion is divided into two parts from the channel dimension, denoted as FF

[1: c]

(1 to c channels) and FF
[c: C] (c + 1 to C channels).

F 1
[c+1: C] = FF

[c+1: C] ⊕ BR(FF
[1: c]) (5)

F 1
[1: c] = FF

[1: c] ⊗ BR(F 1
[c+1: C]) (6)

F 2
[1: c] = BR(F 1

[c+1: C]) ⊕ F 1
[1: c] (7)

FINNs = Concat(F 2
[1: c], F 1

[c+1: C]) (8)

where, Concat represents the feature stack, FF
[1: c] represents the 1 to c channel features of Ffusion, FF

[c+1: C]

represents the c + 1 to C channel features of Ffusion, The new feature F 1
[c+1: C] of the c + 1 to C channels is

obtained by adding BR and corresponding elements. F 1
[c+1: C] and FF

[1: c] after BR and the corresponding
elements multiplication get to c channel new features FF

[1: c]. F 1
[1: c] and F 1

[c+1: C] get one after BR and
corresponding element addition to c channel new features F 2

[1: c]. F 2
[1: c] and F 1

[c+1: C] after feature stacking
give lossless features FINNs.

According to the properties and characteristics of the reversible network, the connection of two
side branches can be set to any mapping without affecting the lossless information transmission in this
reversible layer. Considering the trade-off between computational consumption and feature extraction
power, we adopt BR in MobileNetV2 as the connection of two side branches in the INNs structure. As
shown in Fig. 3b, after the features enter the BR, the dimension of the input feature map is increased
by 1 × 1 convolution, the number of channels is increased, and the mainstream information is stored in
the subspace of the high-dimensional space, which provides the basis for the reversibility of the model.
Subsequently, all channels were aggregated by 3 × 3 Depth wise separable convolution (DSC), and the
spatial features and channel features were extracted from the information after dimension upgrading.
DSC mainly performs group convolution on the feature dimension, first performing an independent
depth-by-depth convolution operation on each channel and then performing a 1 × 1 point-by-point
convolution operation on all channels. In this process, the number of channels remains unchanged,
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but the length and width of the feature map become smaller, thereby reducing the parameters required
by the convolutional layer and improving the computational efficiency. At the end of BR, the original
number of channels is restored by 1 × 1 convolution. This process of first dimension upgrading, DSC
convolution processing, and then dimension reduction allows the expressiveness of input and output
domains to be decoupled from feature extraction, improves the performance of the model, reduces
redundant information, and ensures that the information transmitted through the network can better
serve the segmentation task.

Based on INNs, a multi-direction flows multi-branch encoder with bottom-up and inter-modal
information interaction is constructed. This design avoids the common information loss problem in
traditional deep networks, especially when the network level is profound. Therefore, this design can
maintain rich feature representations in deep networks, improving the model’s ability to represent
data and learning efficiency. However, the output features of reversible networks mix the useful and
useless information of the current task, and it is not easy to achieve a good feature expression ability.
Therefore, features need not only to keep the information intact but also to decouple representations.

3.2 Feature Disentanglement

Feature disentanglement describes separating different features or factors in data representation.
In some cases, the input data may contain multiple related but distinct features that may be intricately
intertwined in complex ways. The goal of feature decoupling is to decompose these mixed features so
that the model can learn the representation of each feature independently to extract more meaningful
and practical information. The model can better understand the input data’s intrinsic structure and
hidden information with feature decoupling. Feature decoupling usually involves the specific design
of the network structure, such as using regularization techniques or adding penalty terms in the
loss function to encourage the independence of features. Through feature decoupling, the model is
expected to learn more robust and distinguishable feature representations to perform better when
facing unknown data. Feature decoupling is a strategy to ensure the quality of features.

Maintaining anatomical consistency in medical image segmentation is essential but extremely
challenging, as even minor geometric errors may alter global topological properties and lead to
functional errors in downstream clinical decisions. Anatomical consistency in an image can be rep-
resented by topological properties, such as pixel connectivity and adjacency [12]. Deep learning-based
segmentation methods have made significant progress in capturing inter-pixel dependencies within
the latent space of the network using encoder-decoder architectures. Currently, typical segmentation
networks model the segmentation problem as a pixel-by-pixel classification task and use segmentation
masks as unique labels. However, this pixel-by-pixel modeling scheme is suboptimal because it does not
directly exploit inter-pixel relations and geometric properties. Therefore, these models may lead to low
spatial coherence in the prediction, that is, inconsistent prediction of neighboring pixels with similar
spatial features [13]. When applied to medical data with high noise and artifacts, low spatial consistency
may lead to the problem of insufficient extraction of topological attributes. Pixel connectivity has
long been used to ensure the fundamental topological duality of separation and connectivity in
digital images [14]. For problem modeling, using connectivity masks essentially changes the problem
from pixel-by-pixel classification to connectivity prediction, thereby modeling and enhancing the
topological representation between pixels of interest. Compared with the segmentation mask, using the
connectivity mask as the training label representation provides more information in the following three
aspects: first, the connectivity mask stores the classification information between the connections of
pixels and has the perception of the relationship between pixels; Second, edge pixels can be represented
sparsely [15]; Third, it contains a wealth of directional connection information. Therefore, the latent
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space constructed by the neural network trained with the connectivity mask has both pixel category
features and directional features, and each feature exists in a specific subspace of the latent space. In
previous studies [16], these two sets of features are learned simultaneously, maintaining a high coupling
in the latent space and introducing redundancy [17]. However, the separation of meaningful subspaces
from feature Spaces has been shown to effectively explain the dependence and independence between
features. Inspired by feature space decoupling, this study considers decoupling subspaces with different
feature meanings from feature space when performing feature extraction and uses the decoupling
directional features to enhance the overall data representation for the convenience of subsequent
analysis.

The features from the four modalities were first fused. The features F = {F1, F2, F3, F4} from the
four modes were stacked. Through the combination of global pooling, total connection, and activation
function, the excitation weights W = {W1, W2, W3, W4} of multiple channels in the full mode were
obtained, which were added to the corresponding channel weights of feature F . The specific operation
process is shown in the figure above and explained by Eqs. (9) to (12).

F0 = Concat (F) = Concat (F1, F2, F3, F4) (9)

F1 = ReLu (Fully Connected (Global Pooling (F0))) (10)

W = Split (ReLu (Fully Connected (F1))) (11)

Ffusion,2 = (F1 ⊗ W1) ⊕ (F2 ⊗ W2) ⊕ (F3 ⊗ W3) ⊕ (F4 ⊗ W4) (12)

where, F0 represents the feature obtained by stacking four modal features, input to the global pooling,
and fully connected layers. F1 is obtained through the activation function, and then F1 is input to the
fully connected layer and the activation function for feature disassembly to obtain W . After element
multiplication of the weights of different modes with the corresponding modes, Ffusion,2 was obtained by
adding the elements of the results obtained from different modes. Since the network structure in this
paper is designed for multi-directional flow, the input information of encoders at different levels and
branches integrates the current and auxiliary modes’ characteristics. This design can reduce the loss of
different mode information, but it will also lead to the redundancy of features in different spatial states.
Through the design of the fusion module here, the features learned by different modes and branches
of encoders are uniformly mapped into the same feature space. Finally, the global spatial information
is integrated by global pooling. The importance of F = {F1, F2, F3, F4} is measured in the total modal
feature space so that the international characteristics of spatial information are retained, and it is more
robust to the spatial changes of the input image.

Due to the simultaneous connectivity between category features (whether they belong to a lesion
tissue) and orientations in different pixels, it is natural to store orientation information between
channels with the deepening of the network. Therefore, each channel of the fused multimodal feature
map FFusion,2 is highly coupled with topological properties and class features. Based on this feature,
we can decouple the orientation subspace from the shared latent space through a series of feature
channel processing, and we can use the extracted orientation features to enhance the overall topological
representation.

FFusion,2 is the final output feature of the encoder, which contains rich high-level semantic features,
topological features, and low-discriminative pixel category features and shows the high correlation
of pixel category features in the channel dimension. The purpose of dividing FFusion,2 on the channel
dimension is to disperse the topological features and pixel class features into each subspace so that
each partition set focuses on the feature changes in the current subspace domain. Because the pixel
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category features in different subspace domains are highly correlated, the topological features have
various degrees of implication. Therefore, based on this feature, when each subspace is updated with
feature values through network training, each subspace can gradually learn how to enhance the pixel
category features of each channel with the help of different degrees of topological features. In this
process, different subspaces also gradually learn different topological features. Finally, the topological
information and pixel category information embedded in FFusion,2 is naturally obtained by stacking all
subspaces.

As shown in Fig. 4, the weighted excitation WFusion,2 for each channel of FFusion,2 is first obtained. The
FFusion,2 of multi-modal feature fusion was globally averaged and pooled in spatial dimension to obtain
1 × 1 feature maps of C channels. Then, the result of global average pooling is fed into the subsequent
simple multilayer perceptron composed of 1 × 1 convolution and activation function, which is used
to learn the importance of C channels, namely the weight excitation of channels. FFusion,2 containing C
channels was divided into k groups, each group containing C/k different channels {Fk,1, Fk,2, . . .}, this
process completes the partition of the subspace, and its corresponding channel excitations are also
divided into k groups {Wk,1, Wk,2, . . .} are input to the feature decoupling module. The channel and
pixel position attention mechanisms were operated on multiple channel features within each group
to capture the correlations within and between feature maps. This is added to the initial weighted
excitation Wk,i. The final output is recorded by 1 × 1 convolution and connected with Fk,i residuals.
Finally, the feature channels obtained from all subspaces are stacked to achieve the integration of
information from multiple subspaces.

Figure 4: Feature decoupling structure

3.3 Decoder Structure

When medical images pass through each encoder level, the extracted features contain specific
topological properties. To ensure that the topological properties of each level are fully utilized, we
propose a decoder that can perform feature fusion. As shown in Fig. 5, the input of the decoder is
divided into two parts. One part we call high-level features Fmain, which are used for pixel classification.
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Some of them are called topological attributes Ftopology, which are used to characterize the relationship
between pixels and surrounding neighborhoods.

Figure 5: Decoder Structure structure

When i = 4, that is, when the feature information flows into the first feature decoder, we initialize
Fmain and Ftopology to Fdis (Fdis is the feature output of the decoupled module), and they will be updated
iteratively in the subsequent decoding process. Firstly, the topology attribute feature Ftopology is enhanced
by global average pooling, and then it and the high-level feature Fmain are mapped into a shared
manifold by 1 × 1 convolution.

Ft,1 = Conv_3(Ftopology) (13)
Fm,1 = Conv_2(Fmain) (14)
Ft,m = normalize(Ft,1 ⊗ Fm,1) (15)

where, Ftopology represents the topological attribute feature, obtained by passing through 3 × 3 convolu-
tional layers to obtain Ft,1. Fmain represents high-level features passed through 2×2 convolutional layers
to obtain Fm,1. The similarity between the mapped Ft,1 and Fm,1 is calculated by channel dot product,
and then the regularization function is integrated to obtain the regularized category-direction attention
feature map Ft,m. The attention feature map enhances direction-related features across channels, and
irrelevant features are suppressed across channels. Furthermore, we use the attention feature map
to improve the direction information of the high-level feature Fmain by dot multiplication. Then, the
features of the encoder output are added with the help of an upsampling operation.

F
′
topology = Conv_1(Fmain) ⊗ Ft,m (16)

F
′
main = F

′
topology + Conv(Upsampling(Conv(F

′
topology))) (17)

The attention feature map Ft,m is multiplied with the Fmain processed by a 1 × 1 convolutional layer
to obtain F ′

topology. F ′
main is obtained by adding F ′

topology together with F ′
topology after the convolution layer,

upsampling, and convolution layer processing. F ′
topology and F ′

main, respectively represent the topological
attribute features and high-level features after the above processing, which are also the input of the
next layer decoder. Through the above operation, the direction information is effectively fused into
the space of the high-level feature stream, and the feature information from different levels of the
encoder is effectively fused.
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3.4 Loss Function

For medical images, system noise caused by device type and information loss caused by data
transmission will cause different degrees of impact on image quality. From the perspective of imaging,
although it will not affect human vision in discriminant decision-making, from the perspective of the
model, the addition of noise and other disturbances will introduce information that is not related to
the decision, affect the data distribution, and then degrade the performance of the model. To avoid the
interference of redundant information on the accuracy of the segmentation network, the loss function
is constructed based on the information bottleneck theory.

The Information Bottleneck (IB) theory understands the neural network as an encoder and a
decoder; the encoder encodes the data into features, and the decoder decodes the features into the
output. Its essence maximizes the mutual information between features and production and reduces
the information between input and features. To retain the information most relevant to the input and
the task. Information bottleneck theory definition:

RIB (θ) = I (Z, Y ; θ) − βI(Z, X ; θ) (18)

where, RIB (θ) represents the information bottleneck, θ represents the network parameters, I (Z, Y ; θ)

represents the mutual information between the output Y and the feature Z, I(Z, X ; θ) represents the
mutual information between the input and the feature Z.

The experience of Jia et al. [18] shows that using IB as the objective function of Deep Neural
Network (DNN) learning will indeed increase the robustness of the model and reduce the sensitivity
of feature extraction to input disturbances. However, the calculation of IB is very complex and
cumbersome, and researchers use the Hilbert-Schmidt Independence Criterion (HSIC) as a practical
computational alternative to IB. HSIC, a statistical dependence measure proposed by Gretton, is
the Hilbert-Schmidt norm of the cross-covariance operator between distributions in the reproducing
kernel Hilbert space. Like mutual information, HSIC captures the nonlinear dependence between
random variables. Loss constraints on multimodal features based on HSIC can ensure a strong
correlation between features and tasks and remove redundancy, which is defined as:

HSIC (X , Y) = E [kX (X , X ′) kY ′ (Y , Y ′)] + E [kX (X , X ′)] E [kY (Y , Y ′)]

− 2E [E [kX (X , X ′)] E [kY (Y , Y ′)]] (19)

where, k denotes the kernel function, X and Y are two random variables, and X ′ and Y ′ denote the
transpose of X and Y . E is the expectation. As a variant of the more classical information Bottleneck,
proposed the Hilbert-Schmidt information bottleneck (HSIC Bottleneck), which is defined as follows:

RHB (θ) = HSIC (Z, Y ; θ) − βHSIC (Z, X ; θ) (20)

where, RHB (θ) represents the Hilbert-Schmidt information bottleneck, HSIC (Z, Y ; θ) represents the
independence criterion between feature Z and target task Y , HSIC (Z, X ; θ) denotes the independence
criterion between feature Z and input data X , θ denotes the network parameters, and β is the
hyperparameter.

Based on the above analysis, we re-examine the HSIC Bottleneck. When extracting cross-modal
information, we take it as part of the constraints of multi-modal feature information. Firstly, we ensure
that the features extracted from each layer of the network are as highly relevant to the task as possible,
and secondly, we ensure that the feature information is unique and shared between modes. Finally,
the redundancy of feature information is reduced to ensure that the information contained in the
feature map can serve the downstream tasks to the greatest extent, reduce the interference of redundant
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information, and increase the model’s learning ability and generalization ability. The characteristic loss
function based on HSIC Bottleneck is defined as follows:

LHSIC = α

4∑
i=1

L∑
l=1

[HSIC(Xi, Zi,l)] − β

4∑
i=1

L∑
l=1

[HSIC(Y , Zi,l)] (21)

where, the setting of hyperparameters is empirically selected according to reference, where α = 0.001,
β = 0.0005. i represents the ith mode, and i = {1, 2, 3, 4} corresponds to the four modes of MMRI. l
represents the first layer, and l = {1, 2, 3, 4} corresponds to the four levels of the encoder. X represents
the input image, Z represents the feature, and Y represents the target task. By constraining the loss
of multimodal features, the strong correlation between features and tasks is ensured, redundancy is
removed, and the interference of redundant information on feature extraction is reduced.

Multimodal images are different descriptions of the same target. MRI images with other modal-
ities have different representation advantages for the lesion area, with the uniqueness and sharing
of information between modalities. When multimodal data is combined with a specific task, the
information contained in the data is first classified: one is the information shared between different
modalities related to the task, one is the information that is unique to each modality about the task, and
the last is the redundant information that is not associated with the task. Three kinds of information
are defined based on mutual information:

(1) All the mutual information between all modal data and tasks.

I (X1, X2, X3, X4; Y) = I (X1; X2; X3; X4; Y) + I (X1; Y |X2, X3, X4) + I (X2; Y |X1, X3, X4)

+ I (X3; Y |X1, X2, X4) + I (X4; Y |X1, X2, X3) (22)

where,

I (X1, X2, X3, X4; Y) =
∫

. . .

∫
p(x1, x2, x3, x4, y)log

p(x1, x2, x3, x4, y)

p (x1, x2, x3, x4) p(y)
dx1dx2dx3dx4dy (23)

where, denote all mutual information between joint random variables X1, X2, X3, X4 and task Y .
I (X1; Y |X2, X3, X4) denotes information unique to task-related X1 modes, I (X2; Y |X1, X3, X4) denotes
task-related information unique to X2 modes, I (X3; Y |X1, X2, X4) denotes information unique to X3

modes relevant to the task, and I (X4; Y |X1, X2, X3) denotes information unique to the mode X4

associated with the task.

(2) Shared and unique information related to modality and task.

I (X1; X2; X3; X4; Y) = I (X1; X2; X3; X4) − I (X1; X2; X3; X4|Y)

=
∫

. . .

∫
p (x1, x2, x3, x4) log

p (x1, x2, x3, x4)

p (x1) p (x2) p (x3) p (x4)
dx1dx2dx3dx4

− I (X1; X2; X3; X4|Y) (24)

I (X1; X2; X3; X4|Y) =
∫

. . .

∫
p (x1, x2, x3, x4|y) log

p (x1, x2, x3, x4|y)

p (x1|y) p (x2|y) p (x3|y) p (x4|y)
dx1dx2dx3dx4dy

(25)

where, I (X1; X2; X3; X4; Y) represents the task-related shared information, and I (X1; X2; X3; X4) repre-
sents the shared information between modes, I (X1; X2; X3; X4|Y) denotes shared information that is
not relevant to the task. The proposed model is assumed to be f (θ), and the ability of f (θ) to extract
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task-related shared features Zs and unique features Zu from multimodal data is expected to be obtained
by training.

Zs,i,l = argmax
Zi,l

I
(
Zi,l; X−i; Y

)
(26)

Zu,i,l = argmax
Zi,l

I
(
Zi,l; Y |X−i

)
(27)

where, i = {1, 2, 3, 4} corresponds to the four modes of MMRI, l = {1, 2, 3, 4} corresponds to the four
levels of encoder, and Zi,l represents the features generated by mode Xi in the Lst-layer network coding.
Zs,i,l represents task-relevant features extracted from the Xi modality and produced by the lth layer
network that are shared with other modalities simultaneously, and X−i represents all other modalities
that are unexpected from the Xi modality. Zu,i,l represents the task-relevant and mode-unique features
extracted from Xi modes and generated by the L-layer network.

In view of this, the multi-modal feature loss function based on mutual information is defined as
follows:

LMulti = 1 −
4∑

i=1

L∑
l=1

[
I
(
Zi,l; X−i; Y

) + I
(
Zi,l; Y |X−i

)]
(28)

Loss constraints on multimodal features decouple the task-related unique information and
shared information. The effective representation of multimodal feature information is enhanced by
maximizing task-related unique information and shared information and minimizing task-irrelevant
redundant information. Starting from this idea, we establish the loss function based on HSIC and
mutual information as follows:

L = Ldice + Lcross−entropy + LMulti + LHSIC (29)

where, Ldice is the Dice loss of image segmentation, and Lcross−entropy is the cross-entropy loss.

4 Experimental Result
4.1 Experimental Detail

This paper was carried out in a hardware environment with an Intel® Core™i9-10900X CPU and
an NVIDIA Geforce GTX Titan A100 GPU. The network model is based on the PyTorch framework,
Torch version 1.10.2, Cuda version 11.3, and Python version 3.8.10. The model was trained using the
Adam optimizer after 300 iterations. The initial learning rate was set to 0.0001, the weight decay to
0.0005, the batch size to 16, and the patch size to 128 × 128.

To quantitatively evaluate the proposed method, the Dice coefficient, and HD95 were selected as
the evaluation indexes of all segmentation algorithms. Dice is a set similarity measure function com-
monly used to calculate the similarity between labels and segmentation results. A more considerable
Dice value indicates better segmentation. HD95 determines the Hausdorff distance between labels and
segmentation results. The smaller the HD95 value, the better the segmentation effect.

The training and testing experiments are carried out on the BraTs2021 dataset to verify the
algorithm’s effectiveness proposed in this paper. The effectiveness of the proposed algorithm is further
verified on the ANNLIB dataset. Further, to confirm the generalization performance of the proposed
algorithm, the trained model is directly used in the test experiment of BraTs2023-MET. Among
them, the Tumor segmentation labels of the BraTs2021 dataset included background, Edema (ED),
Necrosis and Non-Enhancing Tumor (NCR/NET), and Enhancing Tumor (ET). The purpose of the
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segmentation task in this chapter is to segment the Whole Tumor (WT), Enhancing Tumor (ET), and
Tumor Core (TC) regions.

4.2 Ablation Experiments

Ablation studies were performed on the BraTS2021 dataset to evaluate the contribution of the
main modules in the methodology. The baseline method is set as follows: the feature decoupling
module is replaced by a simple feature stacking method for feature fusion, the decoder uses a
simple convolution combination method for feature decoding, and the loss function uses the most
straightforward Dice loss and cross-entropy loss weighting. The ablation experiments of four modules
(loss function LMulti, loss function LHSIC, feature decoupling module, and decoder) were carried out
successively to observe the effects of the above four modules on the model performance.

It can be found from Table 1 that the segmentation results of FDIBMNet reached the optimal
in terms of Dice and HD95 in WT, TC, and ET. The effect of the decoder on the whole model was
investigated. The ablation experiment showed that the HD95 of WT reached 62.628, the Dice of TC
reached 0.829, the Dice of ET was 0.787, and the HD95 was 44.420, all of which achieved suboptimal
results. However, although the tumor segmentation effect was practical, it was still not as good as the
proposed FDIBMNet model. Considering the impact of LMulti loss function on the proposed model,
the segmentation performance of the proposed model deteriorates sharply, and the segmentation of
TC and ET regions is close to the baseline model, which indicates that LMulti seriously affects the
segmentation effect. Decoupling task-related unique and shared information is crucial to the model’s
performance. The absence of the loss function LHSIC reduces the model’s overall performance by more
than 0.15 in the Dice score. The essence of LHSIC is to ensure.

Table 1: Results of ablation experiments on the BraTs2021 dataset

Method WT TC ET

Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓
Baseline 0.523 139.718 0.629 93.228 0.636 91.998
Ours − LMulti 0.615 104.811 0.639 93.640 0.655 90.411
Ours − LHSIC 0.806 51.489 0.734 41.197 0.724 66.213
Ours-feature disentanglement 0.715 62.695 0.747 49.536 0.753 47.972
Ours-decoder 0.774 62.628 0.829 48.715 0.787 44.420
Ours 0.896 32.300 0.861 37.308 0.854 38.220
Note: For a given task, ↑ indicates that larger values are better, ↓ indicates that smaller values are better, the red subject represents
the model with the best performance, and the blue subject represents the model with the second best performance.

In the feature disentanglement module, the information stacked matrix after the fusion of four
modes is input. Through the combination of global pooling, full connection and activation function,
the excitation weights of multiple channels in the full mode are obtained, and then the initial dimension
reduction work is completed through channel selection and global average pooling. The results were
input into the Pixel wise attention and Channel Wise attention of the feature decoupling module
to complete the feature decoupling. The results of ablation experiments combined with the network
framework to remove the feature decoupler module showed that the Dice of the model decreased by
0.181, 0.082, and 0.101, and the HD95 increased by 30.395, 12.228, and 9.752, respectively. This result
indicates that the feature decoupling module can effectively influence the results of the network on the
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segmentation task. At the same time, to further understand the basic situation of the algorithm, we
calculated the number of parameters and floating-point numbers of different structures, as shown in
Table 2.

Table 2: Computational complexity of algorithms

Module Encoder block Disentanglement block Deconder block Total

Para. (M) 6.69 2.3 12.84 21.79
FLOPs 75.49 G

To better prove the convergence of the algorithm proposed in this paper, the epoch of BraTs2021
data set is plotted with the change of loss. Based on Fig. 6, it can be found that after removing
the Dice module, the loss function gradually converges when the epoch = 10. After removing the
Cross-entropy module, the loss function converges gradually after epoch = 15, and after removing
the multimodal fusion module, the loss function converges gradually after epoch = 8. After removing
the HSIC module, the loss function gradually converges after the epoch = 9. The convergence of the
algorithm is proved.

Figure 6: The convergence curve of each loss term

4.3 Contrast Experiments

To verify the effectiveness of the proposed method more comprehensively, this paper selects seven
segmentation methods that have performed well in the field of multimodal medical image segmentation
in recent years for comparative experiments. It includes multimodal medical image segmentation
methods based on the CNN framework, multimodal medical image segmentation methods based on
the GAN framework, and multimodal medical image segmentation methods based on the Transformer
framework Table 3, and the experimental results are presented and analyzed from the perspective of
quantitative experiment and qualitative experiment.



CMC, 2025, vol.82, no.2 3299

Table 3: Comparison of different methods in medical image segmentation

Category Methods Characteristic

AACNN (2023) The axial attention is introduced into CNN to capture
semantic information, and deep supervision and mixed
loss are used to deal with category imbalance, which
improves the segmentation performance.

CNN ESAB (2023) Segmentation method based on fusion of deep semantic
and edge information in MMRI.

nnUNet (2020) By configuring the segmentation pipeline with fixed
parameters, rule-based parameters and empirical
parameters, the automated configuration process enables
nnUNet to adapt to a variety of different medical image
segmentation tasks.

GAN

DualMMP-GAN (2022) Patches were used to represent lesions of different sizes,
and perceptual consistency loss was used to learn the
mapping relationship between the generated modality and
the target modality at different semantic levels.

CycleGAN (2023) Transfer learning techniques are used to inject valuable
features into the network.

UNETR (2022) Pure Transformers are used as encoders to learn the
sequence representation of the input and to efficiently
capture global multiscale information.

NestedFormer (2022) A nested Transformer was used to establish the
long-range intra- and inter-modal dependence of MMRI
for brain tumor segmentation.

Transformer BTSwin-U-Net (2023) 3D U-shaped symmetric brain tumor segmentation
network based on Swin Transformer to solve the problem
of scarce training data.

CIML (2024) Task decomposition is used to reduce the information
dependence between modalities, and a message passing
mechanism is used to extract non-redundant information
from other modalities. Inspired by the variational
information bottleneck, this framework transforms
redundant filtering into complementary information
learning and is implemented through variational inference
and cross-modal spatial attention mechanisms.

Table 4 reports the experimental results of the seven methods and the method proposed in this
chapter on the BraTS2021 dataset under the same experimental environment. FDIBMNet was optimal
in Dice and HD95 of WT, TC, and ET. Combining the results of Table 4 and Fig. 7 can be found,
compared with the method based on the CNN framework, the Dice of FDIBMNet in WT, TC,
and ET were increased by 0.130, 0.074, and 0.083 on average, and the HD95 were decreased by
27.980, 20.323, and 31.252 on average. Compared with the CNN framework, the information flow
and feature fusion of FDIBMNet ensure the richness of information in the downsampling step, which
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can improve the accuracy of image segmentation and reduce the distance between the target region
and the segmentation region. Compared with the method based on the GAN framework, the Dice of
FDIBMNet in WT, TC, and ET were increased by 0.115, 0.108, and 0.105 on average, and the HD95
decreased by 17.451, 31.486, and 33.933 on average. Compared with the GAN framework, the feature
decoupling and topological attribute features of FDIBMNet ensure the quality of the information
in the upsampling step, which is conducive to mapping the segmentation results back to the source
image. Compared with the method based on the Transformer framework, the Dice of FDIBMNet in
WT, TC, and ET were increased by 0.113, 0.080, and 0.071 on average, and the HD95 were decreased by
23.123, 18.557, and 23.065 on average. Like the Transformer framework, FDIBMNet captures multi-
scale features and solves the feature relationships within and between modes through information flow.
The difference is that FDIBMNet adopts a parallel structure in the down-sampling step, which retains
topological attributes and high-level features. This is conducive to improving the effect of medical
image segmentation. According to the results of the quantitative analysis, FDIBMNet is significantly
better than CNN, GAN, and Transformer in terms of the segmentation effect of WT, TC, and ET of
brain tumors.

Table 4: The comparative experimental results of different algorithms in BraTs2021 dataset

Categories Methods WT TC ET

Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓
AACNN 0.704 84.441 0.728 79.639 0.725 79.484

CNN ESAB 0.779 48.898 0.798 52.384 0.753 71.952
nnUNet 0.816 47.502 0.835 40.871 0.834 56.981

GAN
DualMMP-GAN 0.763 54.190 0.750 73.564 0.748 74.816
CycleGAN 0.799 45.311 0.756 64.023 0.750 69.490

Transformer

UNETR 0.768 54.467 0.742 71.189 0.731 76.181
NestedFormer 0.702 82.716 0.724 75.707 0.727 74.102
BTSwin-U-Net 0.843 38.708 0.851 38.104 0.832 45.355
CIML 0.818 45.800 0.808 38.560 0.843 49.503

Ours Ours 0.896 32.300 0.861 37.308 0.854 38.220
Note: For a given task, ↑ indicates that larger values are better, ↓ indicates that smaller values are better, the red subject represents the model
with the best performance, and the blue subject represents the model with the second best performance.

Figure 7: Line plot of the error of BraTs2021 and ANNLIB results
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Qualitative analysis was performed using visualization to judge FDIBMNet’s effect further. In this
chapter, two sample images are selected to visually compare the impact of different methods on the
segmentation task. Fig. 8 shows the segmentation results of brain tumor slices, labels, and techniques.
In the source image, the brain tumor was not significantly imaged in the T1WI mode, and there was no
noticeable pixel difference from the surrounding tissue. In the FLAIR mode, the edema area was very
significant and had a clear boundary with the surrounding tissue, but the tumor core and the enhanced
tumor pixel area were concealed, which was challenging to distinguish significantly. In T1Gd mode,
only the tumor core and enhanced tumor showed pixel intensity that differed from other tissues, and
there was a clear boundary between them. The appearance of the whole tumor was clear on T2WI.

Figure 8: The first example picture contrast method visualizes the results

Combined with Fig. 9, it is found that the medical image segmentation method based on the
CNN framework has a poor processing effect on the incoherent lesion area. For example, there are
non-tumor areas inside the enhanced tumor area of the first example, and the segmentation effect
of the CNN framework on this part is poor, with the phenomenon of under segmentation. At the
same time, the boundary segmentation of the tumor core and all tumors was not precise. From
the perspective of the network framework, the two methods based on CNN did not enhance the
boundary information, resulting in unclear boundaries. The medical image segmentation method
based on the GAN framework has a better processing effect on incoherent regions than CNN. The
main reason for this phenomenon is that the GAN-based method can extract semantic information at
different scales, ensuring the multi-scale richness of information, but a certain degree of boundary still
needs to be added. Medical image segmentation methods based on the Transformer framework have
poor processing effects on incoherent regions and boundaries. For example, the NestedFormer and
BTSvin-U-Net methods in the second example think that there are non-tumor regions in the center
of the tumor. The UNETR method showed poor segmentation of the left lower area of all tumors.
Although the medical image segmentation method based on the Transformer framework considers
the multi-scale information within modalities and the spatial information between modalities, its loss
function does not constrain the information. It cannot achieve the effect of accurate segmentation. The
FDIBMNet method proposed in this chapter can accurately segment the non-tumor regions inside the
tumor and segment the boundaries of the cancer with a good segmentation effect.
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Figure 9: The second example picture contrast method visualizes the results

To better verify the effectiveness of the algorithm, ANNLIB dataset was used to further verify the
effectiveness of the algorithm. According to the results in Table 5, it can be found that our proposed
method achieves the optimum in both Dice and HD95 indices, in which nnUNet achieves the second-
best. Combined with the line chart results, the Dice index was increased by 0.098 on average, and
the HD95 index was decreased by 37.936 on average, which further verified the effectiveness of the
FDIBMNet method.

Table 5: The comparative experimental results of different algorithms in ANNLIB dataset

Categories Methods Dice↑ HD95↓
AACNN 0.772 86.158

CNN ESAB 0.717 68.776
nnUNet 0.905 36.588

GAN
DualMMP-GAN 0.821 72.789
CycleGAN 0.864 71.835

Transformer

UNETR 0.809 40.029
NestedFormer 0.821 71.636
BTSwin-U-Net 0.869 79.528
CIML 0.857 87.796

The experimental results of qualitative analysis and quantitative analysis show that the CNN-
based image segmentation method could be more friendly to boundary segmentation. The image
segmentation method based on the Transformer will segment the tumor area into non-tumor areas
prone to undersegmentation. The image segmentation method based on GAN has a better effect than
CNN and Transformer, but there is still a certain degree of clarity. Due to the feature decoupling
module, the FDIBMNet method proposed in this paper extracts the topological attribute features,
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ensuring incoherent lesion regions’ segmentation effect. In addition, information flow and fusion
combined with mutual information loss function safeguard the richness of information and the
extraction of crucial details, thereby improving the performance of the overall segmentation model.

4.4 Generalization Experiments

The trained model based on the BraTS2021 glioma dataset was directly used in the brain
metastases segmentation test task of the BraTS2023-MET dataset to verify the generalization of the
method proposed in this chapter. The experimental results of Dice and HD95 for all network methods
are listed in Table 6 and Fig. 10.

Table 6: The comparative experimental results of different algorithms in BraTS2023-MET dataset

Categories Methods WT TC ET

Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓
AACNN 0.682 55.992 0.707 44.264 0.710 43.908

CNN ESAB 0.505 129.283 0.630 71.007 0.628 74.129
nnUNet 0.765 37.001 0.718 38.833 0.721 44.172

GAN
DualMMP-GAN 0.662 82.118 0.696 72.951 0.700 73.603
CycleGAN 0.718 66.322 0.692 71.188 0.714 69.734

Transformer

UNETR 0.703 84.177 0.612 91.199 0.641 76.181
NestedFormer 0.748 54.470 0.712 69.832 0.721 67.757
BTSwin-U-Net 0.775 47.435 0.721 38.548 0.722 43.682
CIML 0.729 48.244 0.696 41.328 0.712 44.029

Ours Ours 0.796 35.537 0.746 33.957 0.744 38.559
Note: For a given task, ↑ indicates that larger values are better, ↓ indicates that smaller values are better, the red subject represents
the model with the best performance, and the blue subject represents the model with the second best performance.

Figure 10: Line plot of the error of BraTS2023-MET results and the convergence curve of Dice of WT,
TC, WT

Table 6 and Fig. 10 report the experimental results obtained by the abovementioned methods
on the BraTS2023-MET dataset under the same experimental environment. The Dice index of
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FDIBMNet in the three WT regions, TC regions, and ET regions was 0.796, 0.746, and 0.744,
respectively, and the HD95 index was 35.537, 33.957, and 38.559, respectively, which were all optimal
values. Compared with the method based on the CNN framework, the Dice scores of FDIBMNet
in WT, TC, and ET were increased by 0.145, 0.061, and 0.058 on average, and the Dice scores of
HD95 were decreased by 38.555, 17.411, and 15.511 on average, with the most significant performance
improvement. Compared with the method based on the GAN framework, the Dice of FDIBMNet
in WT, TC, and ET were increased by 0.106, 0.052, and 0.037 on average, and the HD95 were
decreased by 38.683, 38.113, and 33.110 on average. Compared with the method under the Transformer
framework, the Dice of FDIBMNet in WT, TC, and ET were increased by 0.057, 0.061, and 0.045 on
average, and the HD95 were decreased by 23.045, 26.270, and 19.353 on average. On the BraTs2021
dataset, the GAN-based image segmentation method is significantly better than the CNN-based image
segmentation method, and the opposite is observed on the BraTS2023-MET dataset. The reason is that
the T1Gd modality is missing in the generalization dataset, so the information on the lesion is relatively
less, which is not enough to describe the disease state. On the BraTs2021 dataset and BraTS2023-MET
dataset, the FDIBMNet method showed the best performance, and this result further verified the
segmentation performance of the FDIBMNet method.

To better prove the generalization of the algorithm proposed in this paper, a graph of the change
of epoch with Dice of the BraTS2023-MET dataset is drawn as Fig. 10b. Based on the graph, it can
be found that when the TC, WT, and ET regions are divided, the Dice gradually converges when the
epoch = 15. The generalization of the algorithm is proved.

Qualitative analysis was performed using visualization to judge the generalization effect of
FDIBMNet further. In this section, an example image is selected to visually compare the impact of
different methods on the segmentation task. According to the visualization results Fig. 11, ESAB and
UNETR judged the brighter pixel area in the imaging as the lesion area. Methods BTSLOU-U-NET
classifies all tumors with dark pixels as usual, and most of the pixels with strong pixels as tumors, which
will lead to misdiagnosis or missed diagnosis. However, the WT region, TC region, and ET region can
be segmented relatively entirely by the method proposed in this paper, and the normal tissue is rarely
misclassified as the lesion area, reducing misdiagnosis. In particular, the segmentation effect is suitable
for regions with blurred edges and strong pixels, showing good anti-interference ability. This is because
FDIBMNet emphasizes the decoupling of multimodal information, directional information, and
category information so that the extracted information can be directed to the lesion area with direction
guidance and reduce the interference of pixel light and dark. In addition to inaccurate brain tumor
detection, the ET and TC regions should be included in the WT region, but the BTWCN-U-NET
method shows that the WT region does not contain the TC region. The visualization experimental
results of the method proposed in this chapter show that FDIBMNet can effectively capture robust
correlation information with the help of the LHSIC loss function, which ensures that the ET region and
TC region are included in the WT region, which is consistent with the actual situation of brain tumor
detection and segmentation.

By combining the quantitative and qualitative analysis of the generalization experiment, FDIBM-
Net flows the information between different modes through the bottom-up flow, combines the
mutual information and the information bottleneck loss function, and ensures the adequate flow
of information and improves the quality of feature extraction. The feature decoupling method can
effectively obtain high-level features and topological attributes of image segmentation, and with the
parallel upsampling structure, the accurate segmentation of incoherent lesion regions and lesion
boundaries can be ensured.
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Figure 11: Generalization of experimental results

4.5 Hyperparametric Analysis

We drew the pre-experiment loss function curve to determine the number of training rounds and
found that FDIBMNet began to decline smoothly when Epoch was 50 and became stable around
Epoch 100. Therefore, Epoch 100 was selected for formal experiments in this paper (Fig. 12).

Figure 12: Hyperparametric analysis

5 Conclusion

This paper proposes a novel multimodal segmentation framework for brain tumors based on
feature decoupling and information bottleneck theory (FDIBMNet). The proposed framework con-
tains a multi-branch encoding structure, a feature decoupler, and a two-branch decoding structure.
Firstly, based on INNs, a multi-direction flow and multi-branch encoder with bottom-up and inter-
modal information interaction was constructed, and a “complete” “representation space” was built to
maximize the information that contributed and correlated to the task and suppress the information
that did not contribute and correlated to the task or interfered with the task. Secondly, based on the
topological properties of medical images (pixel connectivity and adjacency), a feature decoupling mod-
ule was designed to decouple the relationship between pixels and geometric attributes of medical image
features from the feature space and to model and enhance the topological attribute representation
between interested pixels. From the information bottleneck, loss constraints are applied to multimodal
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features to ensure a strong correlation between features and tasks and remove redundancy. Finally,
based on the mutual information constraint between the input and output, the sharing and uniqueness
of multimodal features are decoupled, and the effectiveness and generalization of the proposed seg-
mentation method are verified on BraTS2020 and BraTS2023-MET datasets. As a visualization task
of segmentation results, this paper can combine image fusion and image classification tasks to form a
multimodal and multi-task medical image auxiliary diagnosis system for brain tumors. Accurate brain
tumor segmentation can help doctors better understand the location, size and morphology of tumors,
to develop more precise treatment plans and reduce the damage to healthy brain tissue. In addition,
multimodal methods can integrate information from different imaging modalities, such as structural
information, functional information and metabolic information, to provide a more comprehensive
description of tumor characteristics, which is of great significance for personalized medicine and
precision medicine. Therefore, the research in this paper not only promotes the application of machine
learning technology in the field of medical image processing, but also provides technical support for
improving the efficacy and safety of brain tumor treatment. But there are still some shortcomings
in this paper. With the continuous development of multimodal fusion technology, the multi-modal
image fusion segmentation technology can be studied from the perspective of diffusion model. It is
also possible to consider extending to large model directions.
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