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ABSTRACT

In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to
its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two
extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should
learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this
paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology
(PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain
peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of
the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles.
Then, particles within each subgroup are divided into three different types based on their evolutionary levels,
employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning
modes. Consequently, all particles play their respective roles in promoting the global optimization performance of
the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation
of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that
the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection
methods based on intelligent optimization algorithms in terms of overall performance in global search capability,
classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the
excellent performance of the PEPSO.
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1 Introduction

In recent years, with the rapid development of machine learning and data mining algorithms,
features have been widely introduced into datasets. Feature selection has become a crucial preprocess-
ing step for these algorithms. High-dimensional datasets often contain numerous features in the data
mining process across various domains. The presence of redundant and irrelevant features not only
increases the complexity of data processing but also reduces the accuracy of subsequent classification

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.057874
https://www.techscience.com/doi/10.32604/cmc.2024.057874
mailto:houjiyuan2002@163.com


2724 CMC, 2025, vol.82, no.2

algorithms to a certain extent [1]. Preprocessing high-dimensional datasets to reduce redundant and
irrelevant features is an important research focus in data mining.

Feature selection aims to select the most informative subset of features from the original feature
set, with the lowest redundancy and highest relevance, to reduce the number of features without
altering their meanings and improve classification accuracy. As an effective data dimensionality
reduction technique, feature selection is a combinatorial optimization task. It not only filters out
important features of the data, avoiding the problem of low classification accuracy caused by the
curse of dimensionality, but it also reduces computational complexity and enhances the performance
of classification models [2].

Feature selection techniques have been widely and successfully applied in various expert and
intelligent systems, including bioinformatics [3], where applying feature selection techniques to biology
and biomedicine can identify genes with unknown functions, reveal the intrinsic natural structure of
gene expression data, reduce the dimensionality of microarrays, and identify hidden relationships
between genes. However, gene microarray datasets still face many challenges: (1) severe sample
imbalance, with the number of features far exceeding the number of samples; (2) a large proportion of
useless and redundant features; (3) gene features are complex and may contain ambiguous noise. In
image processing [4], feature selection methods are applied to image classification, object detection,
and image clustering. Due to the presence of many image features in practical applications, the
selection of image features directly determines the performance of target applications. Examples of
image features include corners, edges, raw pixels, orientation gradient histograms, color channels, and
gradient values [5]. Additionally, in text mining [6], the classic model for representing documents
is the bag-of-words model. Feature selection is used to improve the efficiency and performance of
subfields of text mining, such as text classification and text clustering, and can also be used in intrusion
detection systems. One of the key tasks of intrusion detection systems is to identify the highest quality
features representing the entire original dataset and remove irrelevant and redundant features from the
dataset. In controller design processes [7], various techniques, including feature selection, are adopted
to improve the performance of controllers for more effective and efficient retrieval of information.
Feature selection techniques are also used in other industrial applications [8] to improve the accuracy
of fault detection.

Although feature selection has been an active research topic, it remains a challenging task. Feature
selection is an optimization problem with multiple competing criteria, mainly minimizing the number
of selected features and maximizing classification accuracy. Because reducing the number of features
during the feature selection process may lead to information loss and affect classification accuracy,
retaining more features to improve accuracy may increase model complexity and computational costs.
Therefore, feature selection can be regarded as a multi-objective optimization problem to find a set of
trade-off solutions between these two objectives.

The earliest feature selection methods were based on classical methods and search algorithms such
as dynamic programming, branch and bound, etc. [9]. However, to better accomplish feature selection
tasks, a more powerful and efficient search algorithm is needed.

Swarm intelligence optimization algorithms are well known for their powerful global search
capabilities, especially suitable for multi-objective optimization. PSO, proposed by Kennedy and
Eberhart in 1995, is a population-based search algorithm that belongs to the category of optimization
techniques [10]. This algorithm, similar to evolutionary algorithms and genetic algorithms, uses
algebraic updates to search for global optimal solutions and belongs to the realm of metaheuristic
stochastic optimization methods. Due to its advantages of fewer parameters, fast convergence speed,
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and good stability of particle collaboration, the particle swarm algorithm has received widespread
attention. Several feature selection methods based on particle swarm algorithms have been developed
for feature selection tasks.

For example, the feature selection technology based on catfish strategy and binary particle swarm
algorithm [11] introduced catfish particles to replace the worst particles trapped in local optima.
However, this method has not been validated on a wider range of datasets, including high-dimensional
datasets, imbalanced classes, or datasets from specific domains. In the feature selection method based
on chaotic binary particle swarm algorithm [12], two chaotic maps, namely, logistic map and tent
map, were embedded, and the binary version of CBPSO was used to determine the inertia weight
values, but this method suffers from late convergence. The method based on bare bones particle swarm
algorithm [13] still faces difficulties in stagnation and falling into local optima. In the method based
on hybridization of genetic algorithm and particle swarm optimization [14], although the classification
accuracy of the algorithm has slightly improved, the running time has significantly increased. In the
method based on a novel local search strategy and hybrid particle swarm optimization [15], HPSO-
LS is a wrapper-based method, and the algorithm needs to learn the model to compute the fitness of
each solution in each iteration, so it suffers from long running time. The main limitation of the hybrid
particle swarm optimization method with a spiral-shaped mechanism for feature selection [16] is that
for many datasets, the selected number of features is large, and the ability to remove redundant and
irrelevant features needs to be improved. In the method of feature selection based on two-level particle
cooperation for many-objective optimization [17], strict particles usually have better objective values,
may dominate the update process, gradually replace ordinary particles, and lose the diversity of the
population.

The capability of PSO to select optimal or near-optimal feature subsets is highly regarded.
However, it is important to note that some drawbacks of PSO have been overlooked in previous
studies. One major drawback of existing feature selection methods based on PSO is the loss of
population diversity during the search process, which reduces the efficiency of searching for optimal
feature subsets. Additionally, the original learning strategies fail to effectively balance between
exploring global optimal solutions and refining local solutions during the search process, potentially
compromising algorithm performance [18]. Moreover, particles primarily rely on known optimal
solution information to guide the search process, which can lead to the algorithm getting trapped
in local optima, especially in complex solution spaces or high-dimensional feature spaces.

To address the aforementioned issues, this paper proposes a PSO that simulates the evolutionary
survival of species in mountain ecosystems for feature selection. This approach utilizes a multi-strategy
approach to drive the feature selection method towards obtaining the optimal feature subset for
classification. The main contributions of this paper are as follows:

1. Simulating Mountain Ecosystems: Utilizing a pyramid topology structure to mimic the char-
acteristics of mountain ecosystems. Each particle is hierarchically arranged based on the competitive
results of fitness, with higher fitness particles assigned to higher levels in the pyramid structure. As
iterations progress, particles ascend or descend to different levels based on their fitness performance.

2. Dual-Mode Adaptive Learning Strategy: Designing a dual-mode adaptive learning strategy
to replace self-learning and global learning strategies. During iterations, winner and loser particles
are determined based on fitness comparisons. The algorithm automatically adjusts based on particle
performance (i.e., winner or loser), selecting different learning strategies to update their positions and
velocities.
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3. High-Peak-Guided Genetic Mutation Strategy: Introducing a genetic mutation strategy guided
by high peaks, which mutate powerful s top-level particles defined in the topology structure under
specific conditions.

The remaining sections of this paper are organized as follows: Section 2 introduces related work.
Section 3 elaborates on the proposed PEPSO and feature selection method. Section 4 analyzes and
discusses the experimental setup and results. Finally, Section 5 summarizes the work of the paper and
outlines future research directions.

2 Related Work
2.1 Evolutionary Algorithm-Based Feature Selection

In contrast to many early conventional (non-evolutionary computing) feature selection methods
[19], evolutionary algorithm-based feature selection does not require domain knowledge or any
assumptions about the search space, such as whether the search space is linearly separable or
nonlinearly separable, or differentiable. Another significant advantage of evolutionary computation
techniques is their population-based mechanism, which can generate multiple solutions in a single
run. Evolutionary algorithm-based feature selection methods are categorized based on three different
criteria: evolutionary computing paradigm, evaluation, and number of objectives, which are key
components of feature selection methods.

In feature selection, evolutionary algorithms are primarily used as search techniques. Virtually all
major evolutionary algorithms have been applied to feature selection. Khushaba et al. [20] proposed
the first feature selection method based on the differential evolution method. They used a real-valued
optimizer and applied differential evolution operators to feature indices, allowing the same feature to
be encountered multiple times in the solution vector. Al-Ani [21] utilized locally important features
and the overall performance of feature subsets in the feature space to search for optimal solutions
in a feature selection technique based on the ant colony algorithm. Kanan et al. [22] proposed an
improved feature selection method based on the ant colony algorithm, which did not require prior
information about the features. This method used the length of the feature vector and the accuracy of
the classifier as heuristic information for the ant colony algorithm. Genetic algorithms rely on a simple
scalar performance measure that does not require derivative information, which has attracted the
interest of researchers due to their simplicity in implementation. However, in genetic algorithms, once
the population changes, previous knowledge of the problem is discarded [23]. In contrast, algorithms
such as differential evolution, ant colony optimization, and particle swarm optimization tend to
achieve higher accuracy in similar feature selection problems. This is primarily due to their ability
to incorporate cooperative mechanisms. For example, in ant colony algorithms and particle swarm
optimization, particles or ants share information among themselves, enabling constructive cooperation
that helps guide the search process more effectively [24,25].

Numerous studies have shown that PSO are equally effective as genetic algorithms, differential
evolution, and ant colony algorithms in solving global optimization problems and sometimes even
outperform them. Therefore, PSO have demonstrated great potential and application value in various
tasks, including feature selection.

2.2 Canonical PSO

In the PSO, each particle has a position vector representing a potential candidate solution within
the search space. To find the global optimum, each particle adjusts its direction of movement based on
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its own previous best position and the best positions of all other particles [26,27]. More specifically,
let the dimension of the search space D be denoted as d. The position and velocity of the i-th particle
at time t are represented as X t

i = (X t
i,1, X t

i,2, . . . , X t
i,d) and V t

i = (
V t

i,1, V t
i,2, . . . , V t

i,d

)
, respectively, where

i = 1, 2 · · · N and N is the total number of particles. During the evolution process, the particle swarm
updates its velocity and position according to the following rules:{

Vt+1
i = wt · V t

i + c1 · r1 · (Bt
i − X t

i ) + c2 · r2 · (Gt − X t
i )

Xt+1
i = X t

i + V t+1
i

, (1)

where wt is called inertia weight controlling the velocity change, c1 and c2 are constants called
acceleration factors, r1 and r2 are two random variables between 0 and 1, Bt

i represents the best historical
position of the i-th particle in the last t generations, and Gt denotes the global best position among all
particles in the last t generations.

In canonical PSO, wt is usually linearly decreased to balance exploration and exploitation
capabilities, as shown in Eq. (2):

wt = wmax + t
T

(wmax − wmin), (2)

where wmax and wmin are the upper boundary and the lower boundary of the inertia weight, respectively,
and T is the maximum number of generations. In Eq. (1), Pt

i − X t
i and Gt − X t

i represent self-cognition
and social-cognition, respectively.

2.3 Topological Structures of Particle Swarm Optimization Algorithm

The topological structure of the PSO is one of its key concepts, defining the interaction among
particles and the flow of information. Different topological structures influence the algorithm’s global
search capability and local exploration efficiency, therefore determining the performance of the PSO.

The two fundamental topological structures of the PSO are the local best topology and the
global best topology. In the local best topology, each particle is only connected to a few neighboring
particles (typically neighboring on both sides), facilitating local information exchange and aiding
in fine exploration but potentially limiting global search capability. Conversely, in the global best
topology, each particle is connected to all other particles in the swarm, promoting rapid information
dissemination across the entire swarm, which is beneficial for fast global search but potentially leads
to premature convergence.

In addition to these two classic topologies, several other innovative topological structures have
been proposed to balance the need for global search and local exploration, as depicted in Fig. 1.
After evaluating cycle, random graph, star, and ring topologies on four 30-dimensional functions,
Kennedy [28] found that no single topology could perform optimally across all types of problems and
metrics. When designing or selecting the topological structure of the PSO, it is necessary to consider
the characteristics of the specific problem, such as the complexity of the solution space, the size of
dimensions, and the nature of optimization objectives. Wang et al. [29] proposed a novel topology
called Multilayer Particle Swarm Optimization (MLPSO), which utilized multiple swarms to enhance
diversity in the search space for improved performance. Inspired by a mixed hierarchical structure,
Yang et al. [30] introduced a hierarchical-based Large-Scale Optimization Learning Particle Swarm.
Leveraging this topology, the proposed PSO outperforms several state-of-the-art PSO variants in terms
of computational efficiency and solution quality.
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Figure 1: Circular topology structure diagram and wheel topology structure diagram

2.4 Competition and Cooperation in Particle Swarm Optimization Algorithm

In the PSO, a dynamic relationship of competition and cooperation exists among particles.
Particles compete with each other as they strive to find solutions that are better than the current best
solution. At the same time, particles also cooperate because each particle’s movement is influenced by
its own best experience and the best experiences of other particles in the swarm. This mechanism of
competition and cooperation helps the entire swarm conduct the effective search in the solution space,
as shown in Eq. (1).

Various studies have attempted innovative mechanisms to enhance the diversity of the PSO.
Wu et al. introduced the Lotka-Volterra model into PSO [31] and found that after studying the
cooperation and competition strategies within and between species, this strategy increased the diversity
of PSO and achieved good performance. Wu et al. [32] discovered that the cooperation mechanism
of particles on hub and/or non-hub nodes of scale-free networks can enhance diversity and flexi-
bility. Cheng et al. [33] proposed a competitive group optimizer for large-scale optimization, which
introduced a pairwise competition mechanism where losers learn from corresponding winners. Exten-
sive experiments showed that this algorithm outperforms several comparative advanced methods.
Zhang et al. [34] classified particles into different types through competition and then designed an
adaptive learning strategy to enhance the diversity of the particle swarm. Li et al. [35] proposed a
Switching Particle Swarm Optimizer (RSPSO) based on a ranking system, where particles are assigned
to different types of neighborhoods by the ranking system, and the learning strategies and parameter
settings used adaptively change according to the search stage. Liang et al. [36] introduced a Com-
prehensive Learning Particle Swarm Optimization (CLPSO) algorithm, which utilizes personal best
information from all other particles to update the velocity of a given particle. Song et al. [37] proposed a
Variable-Size Cooperative Coevolutionary Particle Swarm Optimization (VS-CCPSO) algorithm. This
algorithm decomposes the high-dimensional feature selection problem into multiple low-dimensional
subproblems and adopts a variable-size subpopulation evolutionary mechanism, significantly improv-
ing the scalability of PSO in handling high-dimensional data. Similarly, Song et al. [38] later proposed
a three-phase hybrid feature selection algorithm based on correlation-guided clustering and particle
swarm optimization (HFS-C-P), which effectively reduces the search space by filtering and clustering
relevant features in the early stages, thereby enhancing the overall computational efficiency.
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2.5 Discussion and Analysis

Although much research has delved into most of the topological structures of PSO, the pyramid-
shaped topology remains underexplored. By introducing a hierarchical concept based on the pyramid-
shaped topology and drawing inspiration from real-world hierarchical social structures such as
governmental systems, family pedigrees, and academic hierarchies, along with incorporating novel
competition and cooperation strategies among particles, information flow between hierarchies can be
effectively facilitated. To enhance the algorithm’s diversity and exploration capabilities, a mutation
strategy guided by high-level particles is devised. On this basis, this paper presents a novel approach
to enhance PSO’s performance, applied specifically to feature selection.

3 Particle Swarm Optimization Algorithm Based on Mountain Ecological Pattern Strategy and Its
Application in Feature Selection

In this section, we present a PSO tailored for feature selection, inspired by the ecological patterns
observed in mountainous terrain. We introduce a competitive-cooperative strategy and a high-level
particle mutation approach, integrated within a pyramid-shaped topology. This algorithm aims to
strike a balance between global exploration and local fine-tuning, therefore mitigating premature con-
vergence to local optima and enhancing the efficacy in searching for the optimal feature combination.

3.1 Application of Information Gain and ReliefF Pre-Screening

In the pre-screening phase, we integrate the concepts of Information Gain and ReliefF to assess
the relevance between each feature and the target variable, considering both the individual feature-
target relationship using Information Gain and the interactions among features using ReliefF. To
begin with, Information Gain is utilized to swiftly filter out a smaller subset of candidate features from
the entire feature pool, and efficiently discarding features that are evidently unrelated or contribute
minimally. Subsequently, ReliefF is applied to the candidate feature set for a more in-depth analysis,
further refining the selection to identify features most beneficial for classification. This combined
strategy harnesses the swift screening capability of Information Gain while leveraging the advantages
of ReliefF in handling complex data relationships, therefore enhancing the efficiency and accuracy of
feature selection.

Information Gain employs entropy to quantify the predictive capacity of features. While entropy
measures dataset uncertainty, Information Gain quantifies the reduction in uncertainty after incor-
porating a feature. Higher Information Gain indicates that a feature is more effective in classifying
data, reducing uncertainty, and thus, is more useful. Utilizing Information Gain helps identify and
select the most useful features, reducing the dimensionality of the feature space, and enhancing model
performance and efficiency [39]. The formula for Information Gain is as follows:

InfoGain (D, f ) = Entropy (D) −
∑V

v=1

|Dv|
|D| Entropy (Dv), (3)

where InfoGain (D, f ) represents the Information Gain of dataset D relative to feature f , Entropy (D)

is the entropy of dataset D, Dv represents the subset of dataset D when feature f has value v, |D| and
|Dv| are the number of samples in datasets D and |Dv|, respectively, and Entropy (D) is the entropy of
subset |Dv|.

ReliefF is a filter-based algorithm that assigns weights to features based on their capacity to
differentiate between samples belonging to different classes. By employing the Euclidean distance,
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the ReliefF algorithm identifies both “near-hit” (samples belonging to the same class) and “near-
miss” (samples belonging to a different class) instances for a given sample R. Feature weights are
then updated in accordance with their contribution to the separation of classes. The assignment of
higher weights indicates that the respective features possess greater discriminative power. The formula
for the ReliefF is as follows:

W [A] = W [A] −
∑k

i=1

diff (A, R, Hi)

m · k
+

∑
C �=class(R)

[
p(C)

1−p(class(R))

∑k

j=1 diff
(
A, R, Mj (C)

)]
m · k

, (4)

diff (A, R1, R2) =

⎧⎪⎪⎨
⎪⎪⎩

|R1 [A] − R2[A]|
max (A) − min(A)

if A is numerical

0 if A is nominal and R1 [A] = R2[A]
1 if A is nominal and R1 [A] �= R2[A]

. (5)

In the Eqs. (4) and (5), A represents a feature, R represents a randomly selected sample from the
training data, H and M stands for “close to hit” and “close to miss”, respectively, p(C) is the prior
probability that the sample belongs to the class C, the variable k denotes the number of neighboring
samples to be selected, and max(A) and min(A) stand for the maximum and minimum values of the
feature A, respectively.

3.2 Particle Swarm Optimization Algorithm Based on Peak Ecological Model Strategy

3.2.1 Construction of Mountain Ecological Model

A typical PSO can be viewed as employing a two-layer structure: the top layer consists of globally
optimal leader particles, while the bottom layer comprises particles exploring the solution space.
Bottom-layer particles update solely based on their own experiences and guidance from the top-layer
leader, leading to insufficient diversity during the search process. Consequently, the entire population
may quickly converge towards the currently perceived optimal solution set, increasing the risk of
premature convergence to local optima and limiting the algorithm’s ability to explore the potential
solution space thoroughly. Inspired by the real-world phenomenon of “multi-layered” structures,
a unique multi-layered topological structure called the “mountain ecological model” is proposed,
simulating the hierarchical characteristics of mountain ecological patterns found in nature.

In this ecological model, the particle swarm is organized into a hierarchical structure resembling
mountains, with the peak positions occupied by the most proficient particles, symbolizing the top
predators or leaders in the ecosystem. The layers below consist of particles with relatively inferior
performance, akin to different tiers of biological communities in mountain ecology. Similarly, the
quality of particles determines their hierarchical placement within the mountain ecological model; the
higher a particle’s performance, the higher its level within the model. Specifically, the top-tier particles,
positioned at the ecological peaks, possess the ability to guide the entire swarm’s search direction,
exerting a decisive influence on the search process of the entire ecosystem. Meanwhile, particles in
lower tiers are primarily responsible for exploring different regions of the search space. While they can
learn from the particles directly above them, their learning and search behaviors are more localized
and refined due to the constraints of their influence range.

Without loss of generality, this paper assumes that the optimization problem is a minimization
problem and utilizes the magnitude of particle fitness to determine their assigned levels. The fitness
of each particle is calculated as the average accuracy across 5-fold cross-validation, with each fold’s
accuracy defined as:
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Fitness = 1
k

∑k

i=1
Scorei, (6)

Scorei = correctly predicted samples
the total number of samples

, (7)

where k = 5, and Scorei represents the accuracy score for each fold. The accuracy score Scorei ranges
from 0 to 1, with higher values indicating better prediction accuracy.

Assuming a swarm of N particles P = {p1, p2, · · · , pN} with each level containing ni particles where
i = 1, 2, · · · , L, and L is the number of levels, such that N = ∑L

i=1 ni, we can sort the particles in
descending order according to their fitness F = {fp1

, fp2
, · · · , fpN

}, resulting in the corresponding sorted
particles P′ = {P′

1, P′
2, · · · , P′

N}. Then, the first n1 particles in P′ are assigned to the top level of the
mountains, followed by the next n2 particles assigned to the second level, and so forth. This process
repeats until the last nL particles in P′ are placed at the bottom of the mountains. Finally, the mountain
ecological model is constructed. The construction process is described in Algorithm 1.

Algorithm 1: Modeling the peak ecosystem
Input:

• N: Total number of particles
• P = {

p1, p2, · · · , pN

}
: Particle collection

• F = {f p1
, f p2

, · · · , f pN
}: Fitness value of the particle

• L : Number of layers
• ni(i = 1, 2, · · · , L): Number of particles in each layer

Output:
• PE: the particle set is structured as L-layers of peaked ecosystems, each layer containing ni(i =

1, 2, · · · , L) particles.
functionality PEB(P, F, L, ni)

The particles in P are sorted in descending order by their fitness F to obtain the ordered list
P′

idx1 ← 1;
for i = 1 → L do

idx2 ← idx1 + ni − 1;
PEi,1 : ni ← P

′
idx1 : idx2; //For particle assignment, PEi,j denotes the jth particle of the ith level of

the peak structure
idx1 ← idx2 + 1;

end for
return PE;

end function

From the pseudocode, it’s evident that the Peak Ecosystem possesses the following properties:

(1) Each particle is allocated to a specific level.

(2) Higher-quality particles are positioned at higher levels, with the global best particle located at
the top level and the poorest particles at the bottom level.

(3) Particles within the same level exhibit close fitness values.
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3.2.2 Competition-Cooperation Mechanism

In traditional PSO, the competition-cooperation mechanism is achieved through the sharing of
information among particles, whereby each particle updates its velocity and position based on its own
best experience and the global best position. This approach encourages particles to converge towards a
globally optimal solution; however, it often limits diversity, therefore increasing the risk of premature
convergence to local optima.

This paper introduces a competition-cooperation mechanism within a Mountain Ecological
Model with the objective of enhancing the particle swarm’s search ability. In this model, peaks
represent optimal solution points, with top-level particles occupying peak positions as current optimal
solutions, and lower-level particles exploring at the “foothills” to maintain diversity. By emulating
ecological patterns where species compete and adapt to survive, strategies are established for the
“winners” (more adaptable particles) to refine their positions, while the “losers” continue to explore
in order to improve their fitness.

To implement the mountain ecological system strategy, firstly, when constructing the peaks, all
particles participate in sorting to determine their levels in the mountains. This process involves all
particles and is referred to as the species competition strategy. Secondly, after placing each particle
at a specific level, different treatments can be applied to particles within the same level to improve
efficiency. Based on this, another level of competition strategy is introduced. At specific “ecological
niches,” namely within levels, particles are randomly paired and compete, adapting and optimizing
their positions through direct competition. The particles are then divided into winners and losers
based on the competition results. This strategy simulates the competition and adaptation process that
occurs in nature as species compete for resources and living space within specific ecological niches.
Winners have the opportunity to learn from particles at higher levels and at the top level, while losers
seek opportunities for improvement within their level and choose to learn from winners within the
same level. Since the competition involves only particles within the same level, it is referred to as the
ecological niche competition adaptation strategy.

This niche competition approach can be further detailed in Algorithm 2, which outlines the
operational steps of this strategy.

Algorithm 2: Ecological niche competition
Input:

• N: Total number of particles
• P = {

p1, p2, · · · , pN

}
: Particle collection

• F = {f p1
, f p2

, · · · , f pN
}: Fitness values of particles

Output:
• PEL: collection of loss particles
• PEW : Winning Particle Sets

Function Competition (P, F)
r ← randperm(n); // A random arrangement of integers between 1 and n
for i = 1 → n/2 do

if f ri > f ri+n/2
then

PELi ← pri
;

PEW i ← pri+n/2
;

(Continued)
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Algorithm 2 (continued)
else

PELi ← pri+n/2
;

PEW i ← pri
;

end if
end for
return PEL, PEW;
end function

Employing the ecological niche competition strategy ensures that the global optimum particle
remains positioned at the top tier through continual competition. Unlike conventional PSO paradigms,
where learning is confined solely to the global optimum particle, all particles have the opportunity
to glean insights from various superior counterparts. Consequently, the ecological niche competition
strategy enriches the population diversity within the PSO framework.

Mathematically, under the ecological niche adaptation strategy, both winners and losers of each
tier (i = 1, 2, 3, . . . , L) update their velocity and position according to Eqs. (8) and (9).⎧⎨
⎩

V t+1
PELi,j

= r1 · V t
PELi,j

+ r2 ·
(

Bt
PELi,j

− X t
PELi,j

)
+ r3 ·

(
X t

PEWi,j
− X t

PELi,j

)
,

X t+1
PELi,j

= X t
PELi,j

+ V t+1
PELi,j

(8)

⎧⎨
⎩

V t+1
PEWi,j

= r4 · V t
PEWi,j

+ r5 ·
(

Bt
PEWi,j

− X t
PEWi,j

)
+ r6 ·

(
X t

Pi−1,k
− X t

PEWi,j

)
+ ρ · r7 ·

(
X t

P1,m
− X t

PEWi,j

)

X t+1
PEWi,j

= X t
PEWi,j

+ V t+1
PEWi,j

, (9)

where ri(i = 1, 2, . . . , n) are uniformly distributed random real values within the range (0, 1), ρ is a
constant used to control the influence of a top-tier particle on the current particle; Pi,j, PELi,j and
PEWi,j respectively denote the j-th particle, loser, and winner of the i-th tier; X t

p, V t
p and Bt

p represent
the position, velocity, and historical best state of particle p at generation t; k and m are random positive
integers, each not greater than ni−1 and n1. For top-tier particles, losers also use the updating strategy
in Eq. (8), while winners move directly to the next generation. Therefore, top-tier winners are retained
until they are replaced by new outstanding particles. It is worth noting that, unlike using the inertia
weight wt in Eq. (1) in typical PSO, the proposed collaboration strategy in this paper employs random
real values. Losers and winners use different strategies to update their velocities.

In addition to collaborating with their own historical best, losers learn from paired winners, and
each winner collaborates with random particles from the upper tier and random particles from the
top tier. Collaborating particles are all superior to learners. Therefore, by expanding the scope and
depth of cooperation between particles, the algorithm’s performance in global search processes can be
enhanced, avoiding premature convergence and exploring the solution space more effectively.

3.2.3 Summit-Guided Genetic Mutation Strategy (SGGMS)

In traditional PSO, particles adjust their search directions and velocities based on individual and
collective experiences to find the global optimum solution. However, this algorithm suffers from a
lack of population diversity and fast convergence rates, leading to the problem of getting trapped in
local optimum solutions. In nature, genetic mutation is a significant source of biological evolution,
introducing new gene variations to help populations adapt to environmental changes and increase
survival opportunities. Therefore, this paper proposes the Summit-Guided Genetic Mutation Strategy.
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Summits represent the locations where globally superior particles reside. The Summit-Guided
Genetic Mutation Strategy evolves particles towards better-performing solutions, simulating the
random mutation mechanism in biological genetic evolution in nature. This strategy defines the top
three layers of particles in the summit structure as summit particles and introduces slight random
mutations to these summit particles. Compared to traditional mutation strategies that randomly apply
changes across the entire population, our method focuses specifically on the summit particles. Since
these particles are already closer to the global optimum, mutating them increases the likelihood of
discovering new, high-quality solutions. This approach not only ensures a more focused and efficient
search but also strikes a balance between exploration and exploitation, helping the algorithm avoid
premature convergence and thoroughly explore the solution space.

In the Summit-Guided Genetic Mutation Strategy, the top three layers of particles in the summit
structure are traversed, and it is determined for each particle whether to perform a mutation operation.
After the mutation is completed, the fitness of the particles is recalculated to evaluate whether
the mutation operation contributes to improving the solution, and then the particle set of the
corresponding layer is updated.

The Summit-Guided Genetic Mutation Strategy can be described as Algorithm 3.

Algorithm 3: Peak-guided mutation strategy
Input:

• X_selected
• Y
• model
• positions: positions of the particles
• fitness: fitness values of the particles
• ni: Layer level of each particle
• mutation_rate

Output:
• new_positions: Updated positions of the particles
• fitness: Updated fitness values for the particles

Function Mutate And Evaluate For Top Layers (X_selected, Y, model, new_positions, fitness,
ni,particle,mutation_rate):

mutation_rate ← 0.3
top_layers_count ← sum(ni[ : 3])
for i = 1 to top_layers_count do

for j = 1 to len(mutated_particle) do
if rand() < mutation_rate

mutated_particle[j] ← NOT mutated_particle[j]
end if

end for
if mutated_fitness > fitness[i] then

new_positions[i] ← mutated_particle
fitness[i] ← mutated_fitness

end if
end for
return new_positions, fitness

end Function
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The Summit-Guided Genetic Mutation Strategy has been employed to introduce mutation
operations to the particles in the top layers of the pyramid structure. This operation aims to enhance the
algorithm’s exploration capabilities and prevent premature convergence to local optimum solutions.
This process simulates the mutation process in genetic algorithms, where particle states are randomly
altered in the hope of discovering better solutions.

3.2.4 Overall Algorithm Framework of PEPSO

The proposed PEPSO encompasses three main concepts: the summit structure, the cooperative
strategy that divides particles into losers and winners within the same layer through competition
and updates their velocity and position using different rules, and the introduction of slight random
mutations to the summit particles.

Combining these three concepts, the framework of the proposed PEPSO can be described as
Algorithm 4. The algorithm begins with initialization, tracking the total number of iterations executed
using an iteration counter. The algorithm enters the main loop, where in each iteration, a summit
structure is constructed by considering the fitness of particles. Subsequently, particles within each
layer are paired, and the competitive-cooperative strategy is executed. Finally, mutation operations
are performed on the summit particles in the top three layers. At the end of each iteration, the particle
fitness, as well as the global best solution and global best fitness, are updated. The algorithm stops
when the maximum number of iterations is reached.

Algorithm 4: PEPSO overall algorithmic framework
Input:

• N: Total number of particles.
• MFE: Maximum number of iterations.
• L: Number of layers in the pyramid structure.
• ni: Number of particles in each layer.
• mutation_rate

Output:
• G: Position of the global best particle.
• f G : Fitness of the global best particle.

function PEPSO (N, MFE, L, ni, mutation_rate)
fe ← 1
Randomly initialize N particles as population P
Calculate the fitness F for all particles in P

The optimum particle and its fitness were assigned to G and f G respectively
while fe ≤ MFE do

PE ← PEB(P, F, L, ni) // Mountain building
for j = 1 → L do

Particle competition, divided into winners PEL and losers PEW
Update the velocity and position of PEL according to Eq. (3)
Update the velocity and position of PEW according to Eq. (4)
if j ≤ 3: // Mutating the top particles

Particle mutation
Update all particle fitness F of PE

(Continued)
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Algorithm 4 (continued)
Update global best G and f G

fe ← fe + 1
end while
return G, f G

end function

4 Experimental Results and Discussion

In this section, the performance of PEPSO is evaluated through a large number of experiments.
Particularly, comparisons are made with some variants of PSO and other advanced evolutionary
algorithms available in the literature. Parameter comparison experiments are conducted on PEPSO
to verify the influence of different parameters on algorithm performance, and the optimal parameter
settings for PEPSO are discussed.

4.1 Experimental Setup

4.1.1 Datasets

Eighteen gene microarray datasets were selected for experiments to validate the performance of
the algorithm. Table 1 describes the detailed information of these datasets, including the number of
features, the number of samples, and the number of class labels.

Table 1: Detailed information of the datasets

Datasets No. of total
features

No. of
samples

No. of
classes

Datasets No. of total
features

No. of
samples

No. of
classes

ALLAML 7129 72 2 Crohn disease 22,283 126 3
Arcene 10,000 199 2 Eleven_tumor 12,533 174 11
Brain_tumor_2 10,367 50 4 GLI 22,283 84 2
Breast 24,481 96 2 Leukemia 7129 71 2
Breastcancer1 24,481 95 2 Leukemia_3c 7129 71 3
Breastcancer2 22,283 103 2 Lung 12,600 202 5
CLLSUB 11,340 110 3 MLL 12,582 71 3
CNS 7129 59 2 Ovarian 15,154 252 2
Colon 2000 61 2 Prostate 12,600 101 2

4.1.2 Parameter Settings

For the real-valued algorithm conversion to binary algorithm for feature selection problem, the
following method is used for conversion. First, generate a matrix a of size N × D, where aij =
(ai1, ai2, . . . , aiD), and ai ∈ a, i = 1, 2, . . . , N. Each element aij in matrix A is a randomly generated
number within the range [0,1]. Then, generate another matrix P. Compare each element in matrix A
with 0.5. If the element is greater than 0.5, set the corresponding element in matrix P to 1. If the element
is less than 0.5, set the corresponding element in matrix P to 0. These steps represent the conversion
of real numbers to binary. Matrices A and P are shown in Eqs. (10) and (11).
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A =
⎡
⎢⎣

a11 · · · a1D

...
. . .

...
aN1 · · · aND

⎤
⎥⎦ , aij ∈ [0, 1] , i = 1, 2, · · · , N, j = 1, 2, · · · , D (10)

P =
⎡
⎢⎣

x11 · · · x1D

...
. . .

...
xN1 · · · xND

⎤
⎥⎦ , xij = 0 or 1, i = 1, 2, · · · , N, j = 1, 2, · · · , D. (11)

In Table 2, detailed information about the comparative algorithms and parameters used in PEPSO
is presented. To ensure fairness, the overall size of all algorithms is set to N = 100 with an iteration
count of 100. Given the small sample sizes, 5-fold cross-validation is applied for robust evaluation, with
80% of the samples allocated to training and 20% to testing in each fold. Each experiment is repeated
10 times, and the average performance is recorded to reduce random fluctuations. All algorithms
utilize the ReliefF method for feature filtering, retaining only the top k = 5% of features. Classification
accuracy, recall, F1 score, and runtime are evaluated using a K-Nearest Neighbors (KNN) classifier
with K = 5. All experiments are conducted on a PC with an Intel Core i7-8550U CPU @ 1.80 GHz
processor, running Windows 10 64-bit.

Table 2: Parameter settings for PEPSO and other comparative algorithms

Algorithm Parameter Value

DE [40] Crossover probability CR 0.9
Scaling factor F 0.5

BLDE [41] Mutation rate 0.5
Crossover Single point crossing

PSO [26] Inertia factor w 0.9
c1 2
c2 2

BPSO [42] Inertia factor w 0.4
c1 2
c2 2
Max_v 6
Min_v min v = −max v

BBPSO [43] Ub 1
Lb 0
Threshold for binary conversion 0.5

PPSO-EDT [44] c1 2 · sin2 (π · (Tmax − titer)/(2 · Tmax))

c2 = c3 2 · sin2 (π · titer/(2 · Tmax))

Inertia factor w 0.9 − 0.5 · (iter/max _iter)
Stransfer 0.6

ECSA [45] FL 1
AP_min 0.1
AP_max 0.8

ISSA [46] Maximum iteration for local search LSA 10

(Continued)
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Table 2 (continued)

Algorithm Parameter Value

TVBSSA [47] Maximum number of hidden neurons 1024
TMGWO [48] A [0,2]

MP 0.5

4.2 Self-Experiment Comparison

4.2.1 The Impact of Peak Structures on PEPSO

To assess the impact of peak structures on PEPSO, this study fixed other parameters and
conducted 100 iterations on 18 datasets by adjusting the peak structures. Four types of peak structures
were used: “L = 6, ni = [2,4,5,16,32,38]” (PEPSO6), “L = 7, ni = [2,6,8,10,14,20,40]” (PEPSO7),
“L = 8, ni = [2,4,6,8,10,20,20,30]” (PEPSO), and “L = 9, ni = [2,4,6,8,10,14,16,18,22]” (PEPSO9)
to run PEPSO. The population size was fixed at 100. The experimental results are shown in Table 3.
Classification accuracy, runtime, number of selected features, recall rate, and F1 score were used as
evaluation parameters.

Table 3: Performance results of PEPSO under different parameters
Algorithm Dataset Accuracy

(%)
Time
(s)

Number Recall F1 score DATASET Accuracy
(%)

Time
(s)

Number Recall F1 score

PEPSO6 ALLMAL 100 76.72 36 98.00 98.45 Crohn disease 92.03 113.45 99 82.82 84.19
PEPSO7 100 96.63 34 98.00 98.45 92.86 188.75 114 82.01 83.68
PEPSO 100 86.21 35 98.00 98.45 92.09 130.89 116 75.60 76.97
PEPSO9 100 119.98 36 96.00 96.88 92.09 158.35 102 79.13 80.42
PEPSO(6) Arcene 91.47 124.91 49 88.58 88.32 Eleven_tumor 91.36 134.68 65 77.81 77.62
PEPSO(7) 90.97 146.77 55 87.11 86.81 90.24 166.25 79 78.63 79.14
PEPSO 92.47 133.95 51 89.47 80.32 91.34 147.09 63 77.87 79.75
PEPSO(9) 90.97 244.16 53 87.56 87.31 90.24 162.72 65 78.31 79.52
PEPSO(6) Brain_tumor_2 88.00 75.48 56 84.29 85.26 GLI 96.47 108.76 106 85.15 87.68
PEPSO(7) 88.00 93.33 49 80.71 81.71 96.40 127.02 107 87.15 89.38
PEPSO 90.00 90.19 45 75.71 75.20 97.65 107.49 120 89.15 91.02
PEPSO(9) 88.00 102.06 57 75.60 76.71 97.65 131.34 119 87.15 89.38
PEPSO(6) Breast 88.68 104.05 123 84.30 84.33 Leukemia 100 75.10 33 97.92 98.41
PEPSO(7) 88.68 127.35 144 80.22 80.19 100 96.18 32 95.83 96.78
PEPSO 89.78 115.14 110 79.30 79.17 100 113.63 33 100 100
PEPSO(9) 89.74 141.94 119 81.30 81.24 100 102.98 33 100 100
PEPSO(6) Breast cancer1 90.53 101.00 121 83.22 83.14 Leukemia_3c 98.67 76.60 39 89.35 91.72
PEPSO(7) 88.42 124.51 117 80.89 80.85 98.67 97.28 33 89.81 92.72
PEPSO 90.53 117.28 125 82.11 82.07 98.67 89.41 34 94.91 96.48
PEPSO(9) 88.42 136.31 115 83.33 83.16 98.67 101.53 25 87.09 89.36
PEPSO(6) Breast cancer2 98.04 102.05 115 96.80 96.97 Lung 95.54 129.16 61 81.39 86.08
PEPSO(7) 98.05 129.30 79 97.99 97.99 95.04 165.84 55 77.88 81.78
PEPSO 99.04 125.46 119 97.99 97.99 95.54 192.56 59 77.66 82.20
PEPSO(9) 98.05 142.91 124 96.80 96.97 95.05 172.76 69 80.82 84.02
PEPSO(6) CLLSUB 76.36 95.42 57 75.12 74.60 MLL 100 80.58 66 98.33 98.54
PEPSO(7) 75.45 116.64 57 73.24 73.16 100 103.45 61 100 100
PEPSO 79.09 114.36 53 73.30 73.29 100 94.76 62 93.89 94.23
PEPSO(9) 74.55 150.27 55 68.59 68.51 100 110.24 54 98.33 98.54
PEPSO(6) CNS 93.18 74.16 36 84.15 84.87 Ovarian 99.60 155.48 76 97.80 98.26
PEPSO(7) 91.36 90.81 37 82.83 83.18 99.60 194.39 76 97.80 98.26

(Continued)
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Table 3 (continued)

Algorithm Dataset Accuracy
(%)

Time
(s)

Number Recall F1 score DATASET Accuracy
(%)

Time
(s)

Number Recall F1 score

PEPSO 94.70 81.28 39 81.77 82.77 99.60 173.65 67 97.80 98.26
PEPSO(9) 94.70 96.20 41 75.69 76.71 99.60 203.21 82 97.80 98.26
PEPSO(6) Colon 90.13 77.48 10 73.57 74.79 Prostate 96.00 112.54 64 94.10 94.05
PEPSO(7) 90.00 133.56 11 81.96 83.04 96.00 112.84 67 93.10 93.07
PEPSO 90.26 87.44 6 81.96 83.04 97.00 108.31 61 94.10 94.05
PEPSO(9) 90.13 107.77 9 77.20 78.66 97.00 121.49 66 94.10 94.05

Considering these five key performance indicators, the PEPSO and its variants demonstrated out-
standing performance across the 18 datasets. In terms of classification accuracy, PEPSO outperformed
other algorithms on 17 datasets except for Eleven_Tumor. As the number of peak layers increased, the
complexity of particle interactions and intra-layer calculations also increased, leading to an overall
increase in algorithm runtime. However, PEPSO still achieved the best performance on 2 datasets
and remained competitive with the best runtime on other datasets. Regarding the number of selected
features, the performance of the four algorithms was generally comparable, with PEPSO typically
selecting a number of features between those of other variants. This indicates that PEPSO is more
precise in feature selection, avoiding excessive feature selection while retaining necessary features. In
terms of F1 score, PEPSO generally matched or slightly outperformed its variants, indicating its ability
to achieve a good balance between precision and recall.

In summary, although certain variants may perform better on specific datasets and performance
metrics, PEPSO provides a comprehensive balance, especially in terms of accuracy and F1 score, while
maintaining reasonable runtime and feature selection. PEPSO exhibits balanced performance relative
to its variants. Therefore, the parameters of PEPSO should be selected for subsequent experiments.

4.2.2 Fitness Function Comparison

To further assess the effectiveness of the fitness function used in our feature selection process, we
conducted experiments on four datasets: Arcene, Prostate, Breast Cancer1, and GLI. These datasets
were selected due to their varying Feature-Sample Ratios (FSR), representing a diverse range of data
characteristics.

As shown in Table 4, when accuracy was used as the fitness function, it produced the best overall
results in terms of both classification accuracy and runtime across the four selected datasets. While
recall, as a fitness function, resulted in the selection of the fewest features in three of the datasets, its
performance in other key metrics was not as strong.

Given these results, accuracy was ultimately selected as the fitness function for our experiments,
as it provided the most balanced and reliable outcomes across all the datasets, particularly in terms of
the overall effectiveness of feature selection and computational efficiency.

4.3 Comparison with Other Algorithms

This subsection compares PEPSO with other competing algorithms from various perspectives,
including classification accuracy, the number of selected features, and runtime.
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Table 4: Comparison of fitness functions on datasets with different feature-to-sample ratios

Dataset Fitness function Accuracy (%) Time (s) Number

Arcene Accuracy 92.47 133.95 51
Recall 91.82 195.72 64
F1 score 91.96 152.54 52

Prostate Accuracy 97.00 108.31 61
Recall 96.00 147.01 55
F1 score 96.04 115.70 66

Breast cancer1 Accuracy 90.53 117.28 125
Recall 89.44 156.56 115
F1 score 88.43 130.37 131

GLI Accuracy 97.65 107.49 120
Recall 96.00 146.49 104
F1 score 96.41 123.79 111

4.3.1 Classification Accuracy

The experiment result is shown in Table 5. Table 5 presents the evaluation of the classification
accuracy of PEPSO and other comparative algorithms on 18 gene microarray datasets. To assess the
statistical significance of the difference in average accuracy between PEPSO and other comparative
algorithms, the Wilcoxon signed-rank test is employed with a significance level of 0.05. In Table 5,
symbols “+”, “≈”, and “−” indicate whether the performance of PEPSO is better, similar, or worse
than the corresponding comparative algorithm, respectively.

Table 5: Evaluation of classification accuracy of PEPSO and comparative algorithms on 18 gene
microarray datasets
Dataset Method Mean

accuracy
(%)

Winner Dataset Method Mean
accuracy
(%)

Winner Dataset Method Mean
accuracy
(%)

Winner

ALLAML DE 100 ≈ CLLSUB DE 79.09 ≈ Leukemia DE 100 ≈
BLDE 100 ≈ BLDE 71.81 + BLDE 100 ≈
PSO 100 ≈ PSO 77.27 + PSO 100 ≈
BPSO 100 ≈ BPSO 82.72 — BPSO 100 ≈
BBPSO 100 ≈ BBPSO 82.72 — BBPSO 100 ≈
PPSO-
EDT

100 ≈ PPSO-
EDT

67.27 + PPSO-
EDT

100 ≈

ECSA 100 ≈ ECSA 72.72 + ECSA 100 ≈
ISSA 100 ≈ ISSA 79.09 ≈ ISSA 100 ≈
TVBSSA 100 ≈ TVBSSA 70.90 + TVBSSA 100 ≈
TMGWO 100 ≈ TMGWO 81.81 — TMGWO 100 ≈
PEPSO 100 PEPSO 79.09 PEPSO 100

Arcene DE 91.98 + CNS DE 93.18 + Leukemia_3c DE 98.57 ≈
BLDE 92.46 ≈ BLDE 91.36 + BLDE 95.90 +
PSO 91.97 + PSO 89.69 + PSO 98.57 ≈
BPSO 91.96 + BPSO 93.09 + BPSO 91.54 +
BBPSO 92.47 ≈ BBPSO 93.33 + BBPSO 98.57 ≈
PPSO-
EDT

89.40 + PPSO-
EDT

85.91 + PPSO-
EDT

100 —

(Continued)
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Table 5 (continued)

Dataset Method Mean
accuracy
(%)

Winner Dataset Method Mean
accuracy
(%)

Winner Dataset Method Mean
accuracy
(%)

Winner

ECSA 90.47 + ECSA 86.36 + ECSA 95.80 +
ISSA 90.97 + ISSA 89.69 + ISSA 98.57 ≈
TVBSSA 90.96 + TVBSSA 84.54 + TVBSSA 95.80 +
TMGWO 91.48 + TMGWO 87.87 + TMGWO 98.57 ≈
PEPSO 92.47 PEPSO 94.70 PEPSO 98.66

Brain_
Tumor_2

DE 88.00 + Colon DE 93.58 — Lung DE 96.03 —
BLDE 88.00 + BLDE 91.66 — BLDE 94.56 +
PSO 86.00 + PSO 93.58 — PSO 95.54 ≈
BPSO 88.14 + BPSO 91.80 — BPSO 95.54 ≈
BBPSO 86.00 + BBPSO 93.46 — BBPSO 96.53 —
PPSO-
EDT

90.00 ≈ PPSO-
EDT

91.79 — PPSO-
EDT

95.52 ≈

ECSA 84.00 + ECSA 91.92 — ECSA 95.04 +
ISSA 84.00 + ISSA 90.25 ≈ ISSA 95.04 +
TVBSSA 84.00 + TVBSSA 90.25 ≈ TVBSSA 94.07 +
TMGWO 86.00 + TMGWO 91.79 — TMGWO 95.04 +
PEPSO 90.00 PEPSO 90.26 PEPSO 95.54

Breast DE 90.57 — Crohn
Disease

DE 92.86 — MLL DE 100 ≈
BLDE 87.57 + BLDE 88.12 + BLDE 100 ≈
PSO 90.57 — PSO 92.83 — PSO 100 ≈
BPSO 90.62 — BPSO 92.85 — BPSO 100 ≈
BBPSO 91.63 — BBPSO 95.23 — BBPSO 100 ≈
PPSO-
EDT

75.79 + PPSO-
EDT

87.29 + PPSO-
EDT

100 ≈

ECSA 86.42 + ECSA 89.66 + ECSA 100 ≈
ISSA 87.42 + ISSA 91.26 + ISSA 100 ≈
TVBSSA 85.36 + TVBSSA 88.86 + TVBSSA 100 ≈
TMGWO 89.57 ≈ TMGWO 90.46 + TMGWO 100 ≈
PEPSO 89.79 PEPSO 92.09 PEPSO 100

Breast
Cancer1

DE 89.47 + Eleven
_Tumor

DE 89.69 + Ovarian DE 98.81 +
BLDE 88.42 + BLDE 86.78 + BLDE 99.20 +
PSO 86.31 + PSO 89.10 + PSO 98.42 +
BPSO 89.49 + BPSO 87.28 + BPSO 99.60 ≈
BBPSO 89.47 + BBPSO 92.57 — BBPSO 98.02 +
PPSO-
EDT

75.79 + PPSO-
EDT

91.33 ≈ PPSO-
EDT

99.60 ≈

ECSA 85.26 + ECSA 86.80 + ECSA 98.42 +
ISSA 85.26 + ISSA 90.82 + ISSA 98.81 +
TVBSSA 85.26 + TVBSSA 86.23 + TVBSSA 98.42 +
TMGWO 87.36 + TMGWO 89.66 + TMGWO 98.81 +
PEPSO 90.53 PEPSO 91.34 PEPSO 99.60

Breast
Cancer2

DE 98.04 + GLI DE 95.22 + Prostate DE 95.09 +
BLDE 99.04 ≈ BLDE 92.87 + BLDE 96.00 +
PSO 98.04 + PSO 93.97 + PSO 95.09 +
BPSO 99.02 ≈ BPSO 96.42 + BPSO 95.05 +
BBPSO 98.04 + BBPSO 95.22 + BBPSO 95.09 +
PPSO-
EDT

96.05 + PPSO-
EDT

94.04 + PPSO-
EDT

93.00 +

ECSA 98.04 + ECSA 96.47 + ECSA 95.09 +
ISSA 98.04 + ISSA 93.97 + ISSA 94.09 +
TVBSSA 98.04 + TVBSSA 92.79 + TVBSSA 94.14 +
TMGWO 98.04 + TMGWO 96.47 + TMGWO 94.09 +
PEPSO 99.05 PEPSO 97.65 PEPSO 97.00
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Except for the three datasets where all algorithms achieve a classification accuracy of 100%,
PEPSO demonstrates superior classification accuracy on 9 datasets, indicating its strong capability
in data fitting and generalization. In the Wilcoxon signed-rank test, except for the Ovarian dataset, 17
out of 18 datasets show more than half of the results marked as “+”. In some datasets, even if PEPSO’s
classification accuracy is not the best, the “+” in its Wilcoxon test results still indicates a significant
difference in classification accuracy compared to other algorithms. PEPSO exhibits outstanding
performance on multiple datasets, demonstrating competitiveness not only in classification accuracy
but also in statistical significance compared to other algorithms.

More information regarding the accuracy of classifying is shown in Fig. 2. The comparison results
are represented using violin plots, providing information about changes in data probability density and
median. Each violin plot represents the distribution of classification accuracy for all algorithms on a
dataset.

From Fig. 2, it can be observed that the PEPSO exhibits lower dispersion and higher density
on each dataset. In most datasets, the classification accuracy of the PEPSO in both early and late
iterations surpasses that of other algorithms. By comparing the boxplots within the violin plots, it can
be noted that the interquartile range of the PEPSO is smaller than that of most algorithms, especially
on datasets such as BreastCancer1 (Fig. 2e) and CNS (Fig. 2h), where the classic deviation of the
PEPSO is smaller, indicating lower dispersion of intermediate data. The white dots within the boxplots
provide information about the median classification accuracy of the PEPSO on the respective datasets.
The median classification accuracy of the PEPSO is lower than that of other comparative algorithms
only on datasets CLLSUB (Fig. 2g), Colon (Fig. 2i), Crohn Disease (Fig. 2j), and Lung (Fig. 2o),
while remaining the highest or similar on other datasets, indicating the efficiency and comparability
of the PEPSO compared to other algorithms.

Figure 2: (Continued)
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Figure 2: Comparison of classification accuracy between PEPSO and nine comparative algorithms on
fifteen datasets
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4.3.2 Analysis of Feature-Sample Ratio

This study analyzes the impact of Feature-Sample Ratio (FSR) on algorithm performance. Sorted
by FSR from low to high, a higher FSR indicates an extreme imbalance between the number of features
and the number of samples, implying the presence of a large number of noisy features. Fig. 3 illustrates
the results of PEPSO and other comparative algorithms on various datasets. In datasets with low
FSR, such as Ovarian and LUNG, the difference in classification accuracy between algorithms is
minimal. As FSR increases, there is a significant improvement in classification accuracy between our
algorithm and other comparative algorithms, indicating a notable enhancement in the performance
of our algorithm on datasets with high FSR compared to other algorithms. Even with an increase in
FSR, PEPSO does not drop in its ranking among the algorithms, which demonstrates the robustness
of the PEPSO.

Figure 3: Impact of feature-sample ratio on algorithm performance

4.3.3 Iteration Effects of PEPSO and Comparative Algorithms on Datasets with Different Feature-
Sample Ratios

Fig. 4 displays the classification accuracy variation of the PEPSO and other algorithms over 100
iterations on four datasets with low, medium, and high Feature-Sample Ratios. It can be observed that
PEPSO maintains a lead or performs comparably to other algorithms at the beginning of iterations.
As the number of iterations increases, the classification accuracy of PEPSO converges rapidly to the
highest accuracy and remains stable, indicating the effectiveness and fast convergence of the algorithm.
Across different FSR levels, PEPSO outperforms other algorithms, especially at high FSR levels, where
PEPSO achieves higher accuracy, faster convergence, and superior performance.

4.3.4 Number of Selected Features

In feature selection, a smaller number of features often implies lower model complexity. A
simplified model not only improves computational efficiency but also helps reduce performance
degradation caused by overfitting. In many cases, removing redundant or irrelevant features can make
the model more accurate and stable. Especially when dealing with large-scale datasets, fewer features
mean less data for the algorithm to process when learning and optimizing model parameters, leading
to a significant reduction in training time and enhancing the model’s generalization ability.
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Figure 4: Iteration effects of PEPSO and comparative algorithms on different feature sample ratios
dataset

Fig. 5 illustrates the comparison of the number of selected features by PEPSO and other com-
parative algorithms during the feature selection process. It can be observed that PEPSO selects fewer
features than other algorithms across 18 datasets, yet the classification accuracy is not compromised
and even improved on most datasets. These results indicate the superior performance of PEPSO in
effectively identifying and retaining informative features.

4.3.5 Runtime

The runtime of an algorithm is an important metric for evaluating its performance, directly
impacting its efficiency. The scalability of an algorithm is also closely related to its runtime. If an
algorithm’s runtime grows too quickly as the dataset size increases, it may limit its application in
processing large-scale data.

Table 6 presents the comparison results of runtime between the PEPSO and other algorithms.
Experimental results show that the TVBSSA exhibits the shortest runtime across 18 datasets, indi-
cating its significant advantage in computational efficiency despite its relatively lower classification
accuracy compared to PEPSO. However, it is worth noting that the PEPSO achieves the best runtime
on 2 datasets and is second only to TVBSSA on the remaining 13 datasets, demonstrating its
competitiveness in runtime efficiency. Compared to other reference algorithms, the runtime of PEPSO
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is shortened by 2 to 5 times in most cases. This result implies that the PEPSO significantly improves
computational efficiency while maintaining high classification accuracy.

Figure 5: Comparison of number of selected features by PEPSO and comparative algorithms
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Table 6: Comparison of runtime between PEPSO and other algorithms

Dataset Algorithm Time (s) Dataset Algorithm Time (s) Dataset Algorithm Time (s)

ALLMAL DE 97.81 CLLSUB DE 181.63 Leukemia DE 100.75
BLDE 944.42 BLDE 835.12 BLDE 651.92
PSO 101.09 PSO 145.16 PSO 99.98
BPSO 194.77 BPSO 258.12 BPSO 269.39
BBPSO 93.57 BBPSO 129.05 BBPSO 94.14
PPSO-
EDT

245.23 PPSO-
EDT

415.31 PPSO-
EDT

299.95

ECSA 163.29 ECSA 258.17 ECSA 163.37
ISSA 99.85 ISSA 142.24 ISSA 100.52
TVBSSA 54.49 TVBSSA 78.31 TVBSSA 55.69
TMGWO 307.53 TMGWO 577.73 TMGWO 353.89
PEPSO 86.21 PEPSO 114.36 PEPSO 113.63

Arcene DE 211.19 CNS DE 90.30 Leukemia_3c DE 98.29
BLDE 999.59 BLDE 701.77 BLDE 700.92
PSO 206.54 PSO 95.22 PSO 101.29
BPSO 256.89 BPSO 189.99 BPSO 248.78
BBPSO 198.64 BBPSO 87.36 BBPSO 93.39
PPSO-
EDT

607.80 PPSO-
EDT

261.65 PPSO-
EDT

272.55

ECSA 298.70 ECSA 159.49 ECSA 165.15
ISSA 214.57 ISSA 92.63 ISSA 100.18
TVBSSA 106.18 TVBSSA 54.75 TVBSSA 55.41
TMGWO 704.44 TMGWO 363.48 TMGWO 298.95
PEPSO 133.95 PEPSO 81.28 PEPSO 89.41

Brain_tumor_2 DE 106.15 Colon DE 82.63 Lung DE 290.52
BLDE 685.31 BLDE 681.98 BLDE 1012.87
PSO 103.37 PSO 79.90 PSO 238.72
BPSO 196.36 BPSO 229.54 BPSO 403.83
BBPSO 92.04 BBPSO 79.10 BBPSO 227.23
PPSO-
EDT

360.76 PPSO-
EDT

212.27 PPSO-
EDT

518.45

ECSA 185.35 ECSA 100.43 ECSA 371.87
ISSA 101.02 ISSA 85.59 ISSA 253.75
TVBSSA 59.19 TVBSSA 42.30 TVBSSA 119.30
TMGWO 367.53 TMGWO 141.62 TMGWO 989.49
PEPSO 119.65 PEPSO 87.44 PEPSO 192.56

Breast DE 193.88 Crohn
disease

DE 268.92 MLL DE 118.59
BLDE 770.28 BLDE 908.67 BLDE 740.84
PSO 193.53 PSO 219.42 PSO 119.07
BPSO 286.12 BPSO 386.72 BPSO 326.75
BBPSO 168.67 BBPSO 195.50 BBPSO 106.82
PPSO-
EDT

603.29 PPSO-
EDT

667.97 PPSO-
EDT

404.66

ECSA 386.76 ECSA 389.25 ECSA 229.14
ISSA 178.00 ISSA 210.17 ISSA 115.97
TVBSSA 117.51 TVBSSA 119.46 TVBSSA 69.23
TMGWO 1106.58 TMGWO 1490.51 TMGWO 673.96
PEPSO 115.14 PEPSO 130.89 PEPSO 94.76

Breastcancer1 DE 221.05 Eleven_tumor DE 270.09 Ovarian DE 355.97
BLDE 792.04 BLDE 953.29 BLDE 1178.24
PSO 196.48 PSO 209.97 PSO 369.96
BPSO 315.33 BPSO 388.96 BPSO 505.95
BBPSO 163.88 BBPSO 191.81 BBPSO 355.09
PPSO-
EDT

576.19 PPSO-
EDT

689.56 PPSO-
EDT

550.88

ECSA 383.15 ECSA 358.62 ECSA 412.94
ISSA 174.49 ISSA 211.51 ISSA 375.10

(Continued)
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Table 6 (continued)

Dataset Algorithm Time (s) Dataset Algorithm Time (s) Dataset Algorithm Time (s)

TVBSSA 108.49 TVBSSA 104.62 TVBSSA 181.33
TMGWO 1122.74 TMGWO 919.97 TMGWO 1986.37
PEPSO 117.28 PEPSO 147.09 PEPSO 173.65

Breastcancer2 DE 204.44 GLI DE 197.64 Prostate DE 139.69
BLDE 837.92 BLDE 789.73 BLDE 821.91
PSO 189.44 PSO 165.99 PSO 142.82
BPSO 321.32 BPSO 378.40 BPSO 353.61
BBPSO 163.59 BBPSO 143.64 BBPSO 130.03
PPSO-
EDT

556.39 PPSO-
EDT

599.07 PPSO-
EDT

411.58

ECSA 383.85 ECSA 328.18 ECSA 257.74
ISSA 174.03 ISSA 149.97 ISSA 138.30
TVBSSA 114.95 TVBSSA 100.52 TVBSSA 79.62
TMGWO 1155.90 TMGWO 1230.53 TMGWO 830.11
PEPSO 125.46 PEPSO 107.49 PEPSO 108.31

A detailed examination of PEPSO’s performance on different datasets reveals that, although the
Breast dataset is approximately ten times larger than the Colon dataset, the runtime increases by less
than onefold. This indicates that PEPSO is capable of effectively handling larger datasets without
significantly increasing computational cost, demonstrating a certain degree of scalability.

5 Conclusion

This paper introduces a variant of PSO for feature selection, integrating the patterns and strategies
of species survival evolution in mountain ecosystems into PSO to enhance the classification accuracy
of feature selection problems. The proposed PEPSO makes several contributions: (1) Simulating the
characteristics of mountain ecosystems using a pyramid topology structure. (2) Designing a dual-mode
adaptive learning strategy to replace the self-learning and global learning strategies. (3) Introducing a
high-peak-guided genetic mutation strategy.

Comprehensive comparisons with state-of-the-art algorithms on 18 gene microarray datasets
validate the effectiveness of PEPSO. Numerical results demonstrate that PEPSO achieves higher
classification accuracy and smaller feature subsets compared to other methods on most datasets,
making it a competitive feature selection approach. Therefore, PEPSO proves to be a promising
method for addressing feature selection problems.

In future research, we plan to optimize PEPSO further to enhance its applicability across various
domains. We will focus on optimizing and improving the time consumption and parameter adjustment
mechanisms of the PEPSO.
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