.W\ Computers, Materials &)
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2024.057814

ARTICLE Check for

updates

PIAFGNN: Property Inference Attacks against Federated Graph Neural
Networks

Jiewen Liu', Bing Chen'-”', Baolu Xue', Mengya Guo' and Yuntao Xu'

!College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 321002, China
?Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, 210023, China
*Corresponding Author: Bing Chen. Email: cb_china@nuaa.edu.cn

Received: 28 August 2024 Accepted: 28 November 2024 Published: 17 February 2025

ABSTRACT

Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for
graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving
the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior
work on inference attacks against centralized GNNG, the vulnerability of FedGNNS to inference attacks has not
yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be
introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack (PIA) against
FedGNNs. Compared with prior works on centralized GNNs, in PIAFGNN, the attacker can only obtain the global
embedding gradient distributed by the central server. The attacker converts the task of stealing the target user’s local
embeddings into a regression problem, using a regression model to generate the target graph node embeddings.
By training shadow models and property classifiers, the attacker can infer the basic property information within
the target graph that is of interest. Experiments on three benchmark graph datasets demonstrate that PIAFGNN
achieves attack accuracy of over 70% in most cases, even approaching the attack accuracy of inference attacks
against centralized GNNs in some instances, which is much higher than the attack accuracy of the random guessing
method. Furthermore, we observe that common defense mechanisms cannot mitigate our attack without affecting
the model’s performance on mainly classification tasks.

KEYWORDS
Federated graph neural networks; GNNs; privacy leakage; regression model; property inference attacks;
embeddings

1 Introduction

Graph Neural Networks (GNNs) have achieved significant success in the representation learning
of graph data in non-Euclidean spaces, providing a new approach for effectively extracting features,
processing, and training graph-structured data that are complex and unordered. However, current
GNN training methods primarily rely on centralized data, which differs from real-world scenarios
where source data may be distributed across different users. For instance, e-commerce platforms selling
various types of products maintain separate purchase and rating records for their users and items. Due

Copyright © 2025 The Authors. Published by Tech Science Press.
@ @ This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.057814
https://www.techscience.com/doi/10.32604/cmc.2024.057814
mailto:cb_china@nuaa.edu.cn

1858 CMC, 2025, vol.82, no.2

to privacy concerns, legal regulations, and business competition, the owners of these graph data are
typically unwilling to share their private data, leading to the problem of data isolation [1].

Federated Learning (FL) [2], as a new distributed machine learning paradigm, offers a promising
solution by enabling efficient joint modeling and GNN model training among multiple graph data
owners without sharing the original data, thereby effectively addressing the data isolation problem. It
is currently widely applied in various fields, including IToT [3]. Some studies have already utilized FL
to train GNNs [4-7], which we denote as Federated Graph Neural Networks (FedGNNs). But even
in federated learning scenarios, the node/graph embedding gradient and model gradient uploaded by
users during the training process can still carry local private information [8,9], leading to potential
privacy leakage. Malicious attackers can exploit this information to carry out property inference
attacks in FedGNNs, aiming to infer the private data of target users.

Previous research has demonstrated that trained GNN models can still leak sensitive information
about the graph data on which they were trained. Studies on property inference attacks against
centralized GNNs[10,11] have shown that attackers can use the target model architecture, target graph
embeddings, and posterior output information to launch property inference attacks by training attack
model, thereby inferring basic properties and group properties of the target graph. However, inference
attacks and privacy leakage issues against GNNs in federated learning scenarios have not been widely
explored. It remains unclear whether the privacy leakage problems encountered during the training of
GNNs will carry over to the federated learning scenario. In federated settings, malicious attackers face
challenges in directly obtaining prior knowledge such as complete target graph embeddings and model
architecture information shared by users, as they can in centralized training [10], making property
inference attacks against centralized GNNs potentially less effective in federated learning scenarios.

Compared with the existing research works, in this paper, we demonstrate the vulnerability of
the FedGNNs framework to inference attacks for the first time and propose a property inference
attack against FedGNNSs. In a federated learning scenario, attackers can still launch property inference
attacks by controlling honest clients participating in the training process, using the global model
gradient distributed by the central server, and stealing local node embeddings uploaded by the target
user to train the property classifier. Next, we verify the effectiveness of the proposed attack on
multiple public datasets and FL architectures based on different GNN models, and we evaluate the
attack’s performance under FL-based GNN models of different complexity. Finally, we examined
the effectiveness of two potential defense mechanisms against the attack, further demonstrating the
robustness of the attack. In summary, the main contributions of this paper are as follows:

e We propose a property inference attack against FedGNNs, called PIAFGNN. Malicious
attackers can infer the basic property information of the target graph or properties irrelevant
to downstream tasks during the FedGNNSs training process. To the best of our knowledge, this
is the first work on inference attacks against FedGNNs.

e We further design a scheme based on a Generative Regression Network (GRN) to steal the
local node embeddings uploaded by the target user. The attacker converts the task of stealing
the target user’s node embeddings into a regression problem, utilizing GRN and querying the
global model gradient and global node embedding gradient sent by the central server to obtain
the target embeddings.

e Extensive experiments demonstrate that PIAFGNN achieves high attack accuracy on various
settings, with an average attack accuracy exceeding 70%. PIAFGNN not only generalizes to
most existing GNN models but also maintains good prediction accuracy under local models of
varying complexity.

CMC, 2025, vol.82, no.2 1859

o We verify the robustness of PIAFGNN under two potential defense mechanisms. While these
methods can mitigate the attack to some extent, they also negatively affect the performance of
the main classification task.

2 Related Works
2.1 GNNs and FedGNNs

GNNs have achieved remarkable success in processing data in non-Euclidean spaces and have
obtained extensive research attention. Currently, GNNs are widely applied in various fields such
as knowledge graphs [12], social networks [13], and chemical molecular structures [14], achieving
excellent performance in graph representation learning. However, with the growing societal emphasis
on data privacy, GNNs face the necessity of adapting to this new norm, leading to the rapid
development of research on FedGNNs. He et al. [7] proposed an open FL benchmark system for
GNNs, FedGraphNN, which can accommodate various graph datasets from different domains and
enables secure and efficient training while simplifying the training and evaluation of GNN models
and FL algorithms. Wu et al. [§] introduced a FedGNNs framework for recommendation systems,
which can capture higher-order user-item interaction information while preserving user privacy.
Chen et al. [9] conducted the first study on vertical federated graph neural networks, proposing
a federated GNNs learning paradigm for privacy-preserving node classification tasks in vertically
partitioned data scenarios, VFGNN, which can be generalized to most existing GNN models.

2.2 Inference Attacks

2.2.1 Inference Attacks against FL

Although FL allows clients to collaborate in training without sharing local data, it still faces
the risk of inference attacks. For example, Shokri et al. [17] first proposed a membership inference
attack to reveal the degree of privacy leakage in FL, aiming to determine whether the corresponding
data belongs to the target model’s training dataset. Zhang et al. [15] introduced membership infer-
ence attacks enhanced by Generative Adversarial Networks (GANs), which enriched the attacker’s
training data through GANSs to enhance the accuracy of membership inference attacks under FL.
Melis et al. [1 6] illustrated the vulnerability in the Federated Learning parameter update process, where
user training data can be unintentionally leaked. It also employs both passive and active property
inference attacks to exploit this vulnerability. However, these works are all based on traditional
machine learning models such as CNN and MLP, without considering the effectiveness of such attacks
on GNNSs. In federated scenarios, traditional inference attack methods for Euclidean data such as
images may not achieve ideal results in GNNGs.

2.2.2 Inference Attacks against GNNs

Studies has demonstrated that malicious attackers can infer sensitive information in graph
data by obtaining graph/node embeddings trained by centralized GNNs. Conti et al. [18] leveraged
the flexible prediction mechanism of GNNs to launch membership inference attacks using only
the provided prediction labels (Label-Only MIA), and achieved good performance even when the
assumptions of the attacker’s shadow datasets and additional information of the target model were
relaxed. Zhang et al. [10] studied the privacy leakage caused by shared graph embeddings in GNNSs,
demonstrating that these embeddings can also reveal sensitive structural information about the graph
data. They proposed several attacks against GNNSs, including property inference attacks, subgraph
inference attacks, and graph reconstruction attacks. On this basis, Wang et al. [11] focused on group
property inference attacks against GNNs, aiming to infer the distribution of specific nodes and links

1860 CMC, 2025, vol.82, no.2

within the training graph, such as whether the graph contains more female nodes than male ones.
These works mainly focus on the centralized GNN model, where attackers need to obtain the entire
graph embeddings as prior knowledge to launch inference attacks. Our work, however, investigates
property inference attacks against GNNs in federated learning scenarios. Attackers can acquire prior
knowledge about the target user by directly participating in training or controlling benign clients. They
can then train the attack model to infer the privacy properties of the target graph that the attacker is
interested in.

To better demonstrate the position of our PIAFGNN in addressing security challenges, we
compare PIAFGNN with other privacy threats against FL. and GNNSs, as shown in Table 1. Our
PIAFGNN is the first work to apply property inference attacks to FedGNNSs, revealing the privacy
threats faced by FedGNNs.

Table 1: Comparison of attack types in federated learning

Attack type Target object Attack method Impactscope Attacker’s prior Scenario

knowledge
Membership Individual data Use model Data privacy ~ Partial model FL
inference sample outputs to leakage output
attacks [15] predict whether
a sample is in
the training set
Property Data properties Infer specific Data property Partial training FL and
inference or features properties of privacy leakage data or outputs centralized
attacks [10,16] users’data GNNs
involved in
training
Backdoor Global Malicious Global misclas- Knows local FedGNNs
attacks [6] FedGNNs clients inject sification client datasets
model local triggers triggered by and can
into their local triggers generate local
training data triggers
PIAFGNN Node Infer node Node property Global FedGNNs
(Ours) properties in properties using privacy leakage embedding
federated global model in federated gradients and
GNNs gradients during graph data external
federated shadow
learning datasets

3 Problem Formulation
3.1 Problem Definition

Definition (Federated Graph Neural Networks): FedGNNs combine the advantages of federated
learning and graph neural networks, enabling learning and inference on distributed graph data while
protecting data privacy. As shown in Fig. |, in FedGNNs framework, each client possesses its graph
datasets D? = (g, Y"), where g” = (V'?, E?), V' represents the set of nodes, E® represents the set

CMC, 2025, vol.82, no.2 1861

of edges and Y represents the label set of the graph data. Each client has a GNN model to learn the
representation of the graph and make predictions. FedGNNs facilitate collaboration among multiple
clients via a central server to improve their respective GNN models without necessarily revealing
the local graph datasets of the clients. For each client, the neighborhood aggregation is the same
as traditional GNNs. After completing £ rounds of local training, client i uploads the trained local
model gradient Vw“ (i) and node embedding gradient VH (i) as local gradient Vg (i) to the central
server. The central server applies FedSGD gradient aggregation algorithm to aggregate the gradient
received from the clients and distributes the aggregated global gradient Vgy,,,,, which include the global
model gradient Vw},,, and global node embedding gradient VH,,,, to each client. Finally, clients
use the received global node embedding gradient VHy,,, to optimize the local node embeddings and
update the local GNN model parameters through the model gradient Vgy,,,,, which is crucial for node

classification tasks. This process is repeated until the client’s local model converges.

Server

Vg('-'} ‘ Vg(0
global global
Vel

Local Graph Dataset Local Graph Dataset Local Graph Dataset

Mttt W it it T A

Client 1 Client 2 Client i

Figure 1: The framework of FedGNNs

In this paper, we consider three representative GNN models as the local models of the clients
in FL: Graph Convolutional Network (GCN) [19], GraphSAGE [20], and Graph Attention Network
(GAT) [21], taking node classification as the primary learning task. For this task, the readout function
is typically a softmax function, where the prediction output of each node v, is a probability vector, each
of which corresponds to the predicted probability (posterior) of v; being assigned to a class. Table 2
provides an explanation of the symbols used in this paper.

1862 CMC, 2025, vol.82, no.2

Table 2: Symbols and notations

Symbol Descriptions

D® Local graph datasets of client i

g Graph data of client i

yo Set of nodes in the graph data of client i

E® Set of edges in the graph data of client i

Yo Label set of the graph data of client i

A Global model gradient

N The dimensions of the embedding vector or gradient
d Dimensions of attacker’s local node embeddings

pP; Output probability of the target user’s node embeddings
GS Shadow graph datasets of malicious attacker

H, Local node embeddings of malicious attacker

H. Target node embeddings

Tc Target model

D Auxiliary datasets

G’ Shadow graph of attacker

Ts Shadow model of attacker

K The number of clients participating in the FedGNNs training
F Target property collection
f Target property in F

Zike Generator output gradient

A Cross-entropy loss

Lgry The loss function of the generator

¢ Discriminator parameter

A Parameters of property classifier

0 Generator parameter

E Feature extractor

M Parallel prediction layers

3.2 Threat Model

Scenario: Unlike traditional machine learning benchmark datasets, graph datasets in federated
learning, and real-world graph datasets may exhibit non-independent and identically distributed (No-
IID) characteristics due to the non-Euclidean structure and heterogeneous features of graph data [7].
We assume that there are K (K > 2) clients using FedGNNSs to jointly train a GNN model on No-IID
datasets to perform node classification tasks on graph data. The server is semi-honest, that is, the server
shares the aggregated global model gradient and global embedding gradient with all participating
clients to update their local model. In addition, we assume that the attacker can fully control at least
one honest client (excluding the target user) and up to 20% of the honest clients, or directly impersonate

CMC, 2025, vol.82, no.2 1863

an honest client to participate in federated training (equivalent to the scenario where the attacker only
controls one client), while the target user is unaware of the existence of the malicious attacker.

Knowledge of the Malicious Attacker: The attacker can access the local graph dataset and local
GNN model architecture of the controlled client, and by accessing the local graph datasets of the
controlled client, the attacker can expand the proportion of its local graph dataset G™. Additionally,
in federated training, the attacker can also obtain information such as the global model gradient and
global embedding gradient delivered from the central server, but the attacker cannot directly obtain the
specific client’s local gradients from the central server. This means that the attacker cannot collude with
the central server, which increases the difficulty of obtaining the target node embeddings. However,
the attacker can acquire multiple graph datasets from publicly available datasets in different domains
or datasets with distributions similar to the target graph dataset, which serve as auxiliary datasets for
training the attack model. These auxiliary datasets can be validated using the stolen local embeddings
of the target user and obtaining such datasets has been proven feasible in practice [10]. During the
training of PIAFGNN, the attacker divides their local dataset and acquired auxiliary datasets into
several shadow graph datasets G¥ of the same size to facilitate subsequent training.

Goal of the Malicious Attacker: Given an honest client C with local graph dataset and its local
GNN model T, the goal of the malicious attacker is to train an attack model based on the limited
background knowledge and the auxiliary datasets it obtained, using it to infer fundamental property
information of interest or properties irrelevant to downstream tasks within the target user’s local graph
data, such as the number of nodes, number of edges, and node density. When the graph contains
valuable information, such as molecular structures, these properties can be proprietary, and inferring
these properties can directly infringe on the data owner’s intellectual property.

4 Methodology

We adopted the FedGNNs framework described in Section 3.1, where each participating client
retains its local graph data and related feature information. Fig. 2 shows the overall framework of
PIAFGNN. Clients participate in federated training by uploading their local GNN model gradient
and local node embedding gradient to the central server. During the training process, the target honest
client C first uses the embedding layer to convert the nodes in its local data into embeddings, denoted
asle.., .., - . ., e.,], where n represents the number of nodes in the graph. Then, the local GNN model is
used to aggregate the embedding information of the neighbors through message passing to obtain the
final graph hidden representation, that is, the local node embeddings. Algorithm 1 illustrates the overall
process of PIAFGNN. PIAFGNN is mainly divided into four stages: 1) Stealing Target Embeddings;
2) Shadow Model Training; 3) Attack Model Training; and 4) Property Inference. Next, we will explain
the specific details of these four stages:

Algorithm 1: PIAFGNN
Input: number of participants K, dimensions of local node embeddings d, number of nodes N, target
node v;, GRN’s initial parameters 6 and ¢, model weight W,
Output: the property f that the attacker aims to infer.

1: Train the FedGNNS to obtain the local embedding gradient VH® (m) and a local model gradient
Vg (m).

2: Generate a random noise vector z,,, and noise gradient VA", (m)

(Continued)

1864 CMC, 2025, vol.82, no.2

Algorithm 1 (continued)
3: Concatenate VH

1 noise A 5
4:0andy — < 3, (Dis (VH,..:) — Dis (VH;j,ie,i; ¢>)) .
5: Save 6’ and ¢'.
6: VH"(C) « Gen(z,, VH (m); 60').
7
8
9

(m) and VH" (m) as input of discriminator.

:fori=1to K do
. PisP2s -5 Dk < TS < £,(G)

diff
: pi < aggregate%;,pff;‘. .. ,pk?m
. i if iy if
10: v, < aggregate(p\”,py",....,p5")
11: insert v; into D"
12: end for
. i 1 P train
13: Classifier A < min Egs [>,_, & (M" (E (Din,)) . f)]-
14: Return f
B 2 ¢ Central N
Y S S I Server —--------= !
H f A | | f N |
e i . Node)i | ! (Global GNN) | |
by i . i || Embeadings |! | [=] 1| Moaa | |
= £ 2 2 | Training | | yoes | _Gradients)i | R | (_Gradients J | —.
O SN | e EEuK : 3 | Yam
g8 o) | () | 2 | 1 (ClobalNode) |
E % ' | Gradients | ! H : Embeddings : I
: : 1 | Gradients), |
[}
N—— I\.____j____,] - — = <A _il
_____________ s [S
““““““““ i Sl vt vt eytioufoafuoufunivufuni: fud el

J

Gradients

Generator

Posterior | V}‘I[() FeedBack
probability Target Node 4 . iQuary
Py Pysees b, &7\ Embeddings) | VO GRN i
I Wik i

Sy prIS)
sBurppaquy
IPoN

-
Il
I
(|
Il
Ll
i |]
B I I
- 7 ! " ! |
= | o vag |
lyg© (m) !
o b=) i i L-layer MLP] I
s & I I
2327 : I ¥
g & 2| Posterior Int I H |
7= probability nterence, i 1]
% Py Provees Py =T, I ‘ GRN |
Shadow Model Training R w— | Tarset Embeddings Stealine Discriminator| I
shadow vode raming A PI'CI[J(’]'I_\' Inference |_ 2 il:(.‘_ ,Ell(‘(_(EI,_‘_H_ E'_J:]: _______ | I
__ J

Figure 2: The framework of PIAFGNN

1) Stealing Target Embeddings Phase: Similar to the methods described in [22,23], the attacker
can steal the target user’s node embeddings information through the Generative Regression Network
(GRN). The GRN optimizes the model by minimizing reconstruction error to achieve the goal of
data generation, offering strong nonlinear mapping capabilities and fast learning speed. As shown in
Fig. 2, the attacker first completes local training using the initial model gradient and their local GNN
model to generate local node embeddings H,,. Through forward propagation, attacker can obtain a

CMC, 2025, vol.82, no.2 1865

d-dimensional local embedding gradient VH"(m) and a local model gradient Vg!”(m) for partici-
pation in federated learning. Next, the malicious attacker uses a GRN generator based on a 3-layer
MLP with a ReLU activation function to generate the target user’s local embedding gradient, where the
generator model is denoted as Gen(-). Specifically, the attacker uses the generator to generatea (K—1) x
d-dimensional random noise vector z;, and the corresponding noise gradient VH") (m), with 6

being the parameters of Gen(-). Then the attacker concatenates VH (m) and d-dimensional local

embedding gradient VH”(m) to form a K x d-dimensional embedding gradient estimate VI:I}f,; =

VH, (m)
|: VH® (m)
information from real data to obtain a gradient closer to the true target user’s embedding gradient.
Therefore, the generator model can be expressed as V]il;fze <~ Gen(z,,,, VH" (m);0). By querying the
central server to obtain the global node embedding gradient VH,,,, and the global model Vg\), .,
the attacker can transform the goal of obtaining the target node embedding gradient VH® (C)

target

into a regression problem. Since V Hy,,,, include contribution from VH" (C), the discriminator first

target

} , which serves as the input to the GRN discriminator, promoting the generator to utilize

compares the embedding estimate generated V A, with the global node embedding gradient VH',),,,
and updates the generator’s parameter 0 and the discriminator’s own parameter ¢ by minimizing the
loss function L. This training process uses Mean-Squared Error (MSE) as the discriminator’s metric,

which can be represented as:

L ([oz :
Loy =~ > (Dis (VH,: 8) - Dis (VA ;) . (1)
i=1
where N represents the dimension of the node embedding gradient, and Dis(-) is the function of
the discriminator. By minimizing L,,, the discriminator guides the generator to gradually generate

embedding gradient estimate V), that is more consistent with VH',), ., thereby obtaining optimized

discriminator parameter ¢’ and generator parameter 6'. Since VI:I;f,) includes noisy gradient VH) (m)
and the attacker’s local embedding gradient VH'” (m), the optimized VH") (m) can be close to the
gradient contribution of all other participants except the attacker. Assuming the attacker knows
that there are K clients participating in the FedGNNs training. Since FedGNNs use the FedSGD

aggregation algorithm, the objective function can be constructed as follows:

2
1
VH{,, g(VH;f;;W(m FVH M+ Y VHi“(i))- @

ieK izattack,target

This objective function indicates that the attacker aims to update the GRN model by optimized
parameters 6’ and ¢'. By uploading the generated gradient estimate VA, i to participate in the training,
the output of the global embedding gradient obtained by the objective function is as consistent
as possible with the true global embedding gradient VH},,,. In addition, to further determine the
contribution and weight of the target user’s node embedding gradient in VHy,,,, the attacker can
narrow the scope through multiple rounds of differential analysis. In each round of FedGNNs, the
server will send the new global embedding gradient, and the local embedding gradient uploaded by
each client may be different in each round. Therefore, the attacker needs to record the changes in
VH,,,, for each round, that is, AVH},,, = VHy,) — VH,),,, and subtract the known embedding
contributions in each round. The remaining part is the contribution from the target user and other
honest clients. Through multiple rounds of differential analysis, the attacker can gradually narrow
the scope and infer which embedding gradient change patterns are similar to the behavior of the

1866 CMC, 2025, vol.82, no.2

target user, thereby determining the node embedding uploaded by the target user. Eq. (3) defines the
overall GRN loss function Ly, which the attacker can minimize to reduce the difference between
the real global embedding and the global embedding gradient obtained by the objective function.
By subtracting the known part of the gradients (such as the attacker’s local embedding gradient and
the local embedding gradient of clients controlled by the attacker) from VH,),,, the attacker aims to
infer the local embedding characteristics of the target user. so that the VH'" (m) in generator’s output
Gen(zsy., Vg (m);0') can then approximate the target user’s embedding gradient. The loss function
Ly 18 calculated as follows:

2

: A3)

LGRN =

1 .
VHy — % (VH&“ (m) + VH{ (m) + Y VHi“(z))

i#attacker,target

By minimizing Ly, the attacker can further adjust the parameters of both the generator and the
discriminator. After iterative adjustment of 6’ and z,,, the generator finally generates a random noise
gradient VH'") (m) that is closest to the true target user’s local embedding gradient VH(C):

noise

VH(C) < Gen(zy,, VH (m);0'). 4)

Once the target node embedding gradient is obtained, the attacker can use the backpropagation
mechanism of GNNs to obtain the target user’s local node embeddings H:

dLery 0Lgry
H, <~ = W“), (5)
" 8HY 9H
where W represents the weight matrix, which can be obtained from the global model gradients and
the local model gradients of the target user. The method for obtaining the target model gradients
Vg?(C) is similar to the method for obtaining embeddings and can be generated together by the
GRN generator during processing.

2) Shadow Model Training Phase: To train the attack model of PIAFGNN, the attacker needs a set
of properties of interest F' and the target graph embeddings H as background knowledge. The attacker
can obtain auxiliary datasets D with the same or similar distribution as the target graph dataset
from public datasets as the attacker’s shadow graph dataset G* by querying the statistical features of
H_ (such as mean, variance, etc.), and labels the properties the attacker wish to infer. Then, attacker
trains x (x > 1) shadow models 7%, 77, ..., T® based on multiple equally sized subsets divided from
G®. Each shadow model 77 is trained on the shadow dataset G¥, which is sampled randomly from the
attacker’s local dataset G or shadow graph dataset G°. The sensitive property values of the shadow
graph dataset and the local graph dataset of the attacker are labeled in advance. By using multiple
shadow models, the attacker can understand the target model’s response to different structural datasets
and features, thereby improving the accuracy of inferring the target user’s graph properties. To ensure
that the shadow models can simulate the behavior of the target user’s local model T, we consider
that malicious attackers can infer the number of layers, embedding dimensions, and other information
about the target model’s architecture and parameters based on the features of the observed embeddings
or gradient updates. This situation is feasible in practice [24]. The attacker will continuously optimize
and update each shadow model based on the stolen node embeddings H of the target user.

3) Attack Model Training Phase: For each shadow model 77 and its training dataset G°, the
attacker transforms the training results of each shadow model 7% on the dataset G° during the shadow
model training phase into posterior probabilities output through a softmax layer. The probabilities are
then aggregated into a feature vector as the feature of the PIA model training, which is inserted into the

CMC, 2025, vol.82, no.2 1867

PIAFGNN training dataset D" . The posterior probabilities reflect the results of the shadow model’s
property inference on the shadow dataset. The aggregation method uses Element-Wise Difference
(EWD). Specifically, for each node’s k-dimensional posterior probabilities output p,, p,, ..., pi, the

EWD p,;; is computed as:

1

P = =D Z (p:i = pils i #). (6)

1<ij<k

After obtaining the p® for each node, each shadow model 7}’ concatenates the p* of all nodes in
its dataset into a feature vector v, = (p,p ..., p™) as the input feature for the property classifier
P, and inserts ¥, into the training dataset D™ of P. Once D™" is generated, the attacker can train

attack attack
the property classifier P on D"*" to perform property inference for PIAFGNN. In this work, random
forest (RF) is considered as the prediction layer model of P, as RF can provide higher prediction
accuracy when dealing with complex and high-dimensional datasets. P consists of a feature extractor
E and multiple parallel prediction layers M?, where each M? is responsible for predicting one property.
The goal of M? is to minimize the cross-entropy loss function to optimize the classifier’s parameter A,
enabling the P to output the property value of interest. The training and optimization problem of the

P can be stated as:

A < min Egs {Zﬁf (M" (E (D)) ,f)} , ™
feF

where F is the set of properties that the attacker is interested in, the number of nodes, the number
of edges, the node density, etc. For each property f € F, there is a corresponding prediction layer
M?, and £ represents the cross-entropy loss. The feature extractor E is responsible for extracting
the embedding features from D”*" . All properties share the same parameters in £, while each M” uses
different parameters to handle the unique characteristics of each property, ensuring that each property
is specifically optimized. Through this supervised learning method, P can learn the relationship
between feature vectors and property labels, allowing it to infer the specific property in the target
user’s local graph during the property inference phase.

4) Property Inference Phase: Just as described in the attack model training phase, the attacker
has already trained the property classifier with the embedding information and property labels. In
the inference phase, the attacker passes the stolen local embedding H. of the target user through
the forward propagation and softmax of the trained shadow model 77 to obtain the corresponding
posterior output, and uses the same aggregation function EWD as in the attack model training phase
to aggregate the obtained feature vector v, which is input into the property classifier P. The parameter
A of P is optimized by Eq. (7) as the initial parameter. Through feature extraction and prediction by
the M” layer, the attacker can obtain the probability distribution vector p, for the predicted properties
of the target graph G¢.

5 Evaluation
5.1 Experimental Setup

All experiments in this paper are executed on an Xeon(R) W-2133 CPU paired with 256 GB
of RAM and NVIDIA GeForce RTX 2080Ti. All algorithms are implemented using the PyTorch
Geometric framework in Python 3.9.0. We set the number of training iterations to 50 and the
learning rate of stochastic gradient descent (SGD) to 0.01, which is used for gradient optimization
and backpropagation in the neural network algorithm. We configure 15 clients to participate in the

1868 CMC, 2025, vol.82, no.2

FedGNNs training, the attacker can control at most 20% of them, which is 3 honest clients. We first
consider the scenario where the attacker can only fully control one honest client or directly disguise as
an honest client to participate in federated training. Therefore, among the 15 clients participating in
the training, fourteen are honest clients, and one is the malicious client controlled by the attacker, while
the other honest clients are unaware of the attacker’s presence. For parameter aggregation training, we
choose FedSGD as the gradient parameter aggregation method in FedGNN:Gs.

Datasets: To conduct a comprehensive study of PIAFGNN, we selected three public datasets with
different complexity in terms of the number of classes, edges, and nodes to verify the performance of
our method, including Cora [25], Citeseer [26], and Pubmed [27]. They are widely used in the literature
for graph learning: (1) Cora is a commonly used academic citation network dataset. It contains an
academic citation network in the field of machine learning, as well as the content features and label
information of each document. (2) Citeseer contains six categories of papers, with each node having
a feature vector and a label. The main task of Citeseer is to classify nodes based on their features and
graph structure. (3) Pubmed is a biomedical literature dataset from the Pubmed database, consisting
of papers related to diabetes, divided into three categories. Each node is associated with 500 unique
keywords as features. Table 3 summarizes the basic information of these three datasets, e.g., the number
of nodes and edges. For all three datasets, the node embedding dimension is set to 64.

Table 3: Information on utilized datasets

Dataset Nodes Edges Features Classes
Cora 2708 5429 1433 7
Citeseer 3327 9228 3703 6
Pubmed 19,717 44,338 500 3

Dataset Splits: We randomly extract 10,000 subgraphs from the graph dataset and evenly
distribute them to 15 clients, ensuring that each client possesses a portion of the entire graph dataset
as its local dataset. The client randomly divides its local dataset into 80% training dataset set and
20% test dataset, participating in FedGNNs training with node classification as the downstream task.
During the training process, each client trains its local dataset using the local GNN model and only
uploads the trained model gradient and node embedding gradient to the central server for federated
aggregation. Throughout the whole process, neither the central server nor the clients could access the
local graph data of any other client. In the same experiment, we consider two different private graph
properties as the attacker’s targets, namely the number of nodes and the number of edges, which are
irrelevant to the model’s node classification task.

Models and Metrics: In experiments, we focus on three standard GNN architectures: GCN
[19], GraphSAGE [20], and GAT [21], which are widely used in the machine learning field. For the
hyperparameter configuration of the corresponding models, we adopt the standard stated by previous
works in the scientific literature. Specifically, the number of neurons in each hidden layer of each model
in the experiment is set to 64, which matches the dimension of the node embeddings. For GCN, we
utilize 2-hidden layers of dimension 64 with a ReLU activation function between them. For the GAT,
we set 3 hidden layers. And for GraphSAGE, we use 2-hidden layers, of dimension 64. Additionally,
this paper uses Attack Accuracy (AC) to evaluate the effectiveness of the attack. AC = %, where N
is the number of graphs correctly predicted by PIAFGNN, and N is the total number of graphs in the
test dataset. The higher the AC value, the more effective the PIAFGNN is.

CMC, 2025, vol.82, no.2 1869

Benchmark Methods: Since this is the first study on property inference attacks against FedGNNSs,
in order to verify the attack performance of PIAFGNN, we select the property inference attacks
method against centralized GNNs in [10], as well as the random guessing method based on binary
classification tasks, for comparison as baseline methods.

5.2 Performance Evaluation of the PIAFGNN

5.2.1 Performance of PIAFGNN

The attack performance of PIAFGNN is tested under three different local GNN models, targeting
the inference of two basic properties of target graphs: the number of nodes and the number of edges.
The results are shown in Table 4. In order to fairly compare the attack accuracy under different settings,
it is necessary to ensure that the training data of PIAFGNN for all experiments is the same. The
experiments use Random Forest (RF) as the training algorithm for the property classifier and MaxPool
as the embedding aggregation method in the pooling layer for GNNs, as these settings produced the
best attack performance.

Table 4: Attack accuracy of PFTAFGNN and centralized benchmarks on FedGNNs based on different
local GNN models

Local model Datasets Centralized [10] Ours
Number of Number of Number of Number of
nodes edges nodes edges

GCN Cora 0.8342 0.8071 0.8280 0.7897

Citeseer 0.7991 0.7617 0.7746 0.7185
Pubmed 0.7535 0.7232 0.7262 0.6902
GAT Cora 0.7653 0.7266 0.7388 0.7091
Citeseer 0.7547 0.6845 0.7107 0.6735
Pubmed 0.7002 0.6368 0.6782 0.6220
GraphSAGE Cora 0.8064 0.7879 0.7605 0.7361
Citeseer 0.7818 0.7324 0.7471 0.7040
Pubmed 0.7216 0.6768 0.7040 0.6573

As reported in Table 4, PIAFGNN achieved commendable attack accuracy in most settings, with
an average attack accuracy exceeding 70%. Notably, in the inference task targeting the graph node
count property within the FL framework based on the GCN model, the attack accuracy reaches
82.80%, which is close to the property inference attacks accuracy of 83.42% against centralized GNNs
Even on a complex GNN model like GAT, the attack accuracy of PIAFGNN can reach over 67.82% on
a graph dataset with a complex structure like Pubemd, which is significantly higher than the Random
Guessing baseline method.

5.2.2 Impact of Different GNN Complexities on PIAFGNN

We also test the impact of different complexities of target GNN models on the attack accuracy
of PTAFGNN, as shown in Fig. 3. Specifically, we evaluated the attack performance of PIAFGNN
by using different GNN architectures as local models and varying their complexities, that is, changing

1870 CMC, 2025, vol.82, no.2

the number of hidden layers, and using node count as the target property. Experiments are conducted
within the FL framework on three datasets, focusing on three GNN model architectures with 2, 4, 6,
and 8 hidden layers. The attacker aimed to infer the node count of the target graph. We can observe that
although the attack accuracy of PIAFGNN decreases with the increase of model complexity, even for
complex GNN architectures with 8-hiddenlayers, such as GAT, our attack can still achieve an attack
accuracy of 60.67% on Pubmed dataset, which is significantly higher than the accuracy of the random
guessing baseline method, proving that PIAFGNN has achieved desirable attack performance and
can effectively handle various complex model structures.

mm Cora Citeseer #mm® Pubmed
GCN GraphSage GAT
08 F ¥ 0.8 = 0.8
M1 TN T TSN .
/ﬁg 1 ER 1 1 g, . és
02 é E % é / 02 f/ s 7 ¥ (é % 02 2 é ¢ %
7 7 57 7 8 27 g 7 2R R
N 111l i1ilimmill
Number of Layer Number of Layer Number of Layer

Figure 3: Comparing the impact of different local GNN complexity on the attack accuracy of
PIAFGNN

5.2.3 Impact of the Number of Clients Controlled by Attacker on PIAFGNN

In order to investigate the impact of the number of honest clients controlled by the attacker,
that is, the proportion of local graph datasets that the attacker can possess on the attack accuracy
of PIAFGNN, we test the attack accuracy of PIAFGNN when the attacker fully controls 1, 2, or 3 of
the 15 honest clients participating in federated training and we set the attacker to use the RF model
as the property classifier. From Fig. 4, we can observe that as the number of honest clients controlled
by the attacker increases, the attack accuracy of PIAFGNN also gradually improves on FedGNNs
based on different local GNN models. When the malicious attacker controls two honest clients, the
attack accuracy of PIAFGNN increases by an average of 3.6% compared to controlling only one
honest client. Furthermore, when the attacker can control three honest clients, the attack accuracy of
PIAFGNN increases by an average of 6.8% compared to controlling just one client. This is because
the more clients the attacker controls, the larger the proportion of graph datasets they have access
to, allowing the attacker to obtain more global model updates and node embedding information.
This information can be used to more comprehensively guess changes in the global model and more
accurately understand the dynamics of the global model updates. As a result, it becomes easier to steal
the target user’s node embeddings and infer the privacy properties of the target graph data.

5.2.4 Impact of Different Property Classifier Algorithms on PIAFGNN

To further verify the superiority of the PIAFGNN algorithm, consider the PIA attack methods
of two other regression algorithm classifiers as baselines compared with our PIAFGNN based on RF
property classifier: 1) Support Vector Machine (SVM), and 2) AdaBoost, as shown in Fig. 5. Using
the Cora dataset as an example, these results can be generalized to other datasets. After 50 rounds of

CMC, 2025, vol.82, no.2 1871

iterations, the RF-based property classifier demonstrates superior performance compared to the two
baseline methods across three different FedGNNs frameworks, achieving the highest attack accuracy.
On average, the accuracy is 4.9% higher than SVM-PIA and 8.6% higher than AdaBoost-PIA. This is
attributed to the highly parallelized training process of the RF-based property classifier, where RF can
randomly select decision tree node splitting features, offering a significant advantage when handling
high-dimensional data like graph data, without the need for feature selection.

m=m Cora e Citeseer s Pubmed
GCN GAT GraphSage
0.9 0.9 0.9
0.8 0.8 0.8

Attack Accuracy
o
it
Attack Accuracy
=
-4
Attack Accuracy
=
=

e
@

A

g
A

4 05 ’ X pd
3 1 2 3

Number of Malicious Clients Number of Malicious Clients Number of Malicious Clients

o
wn

0.5

Figure 4: Comparing the impact of the number of clients controlled by attacker on the attack accuracy
of PIAFGNN

GCN GAT GraphSage
10 1.0 1.0
o8 - .%.-M'.-"-""“-f W.:'-:::: 0.8 0.8 .
- I sar.. A > e ST -'_:_.w,-...-a:::":::».m. sassies
® /! 7 e gt g et r"
5 o8 # L 5 06 jﬂ' 5 06 v
g 2 Q ry 3
< 7o < & <
S o4 Y S 04 S 04
£ v £ £
< Jid < <
*
0z W —+— RF-PIA (Ours) 0.2 —«— RF-PIA (Ours) 0.2 —«— RF-PIA (Ours)
--+- SVM-PIA --+- SVM-PIA --+- SVM-PIA
AdaBoost-PIA AdaBoost-PIA AdaBoost-PIA
00 0.0 0.0
o 10 -l ke 40 50 1] 10 20 30 40 50 1] 10 20 30 40 50
Round Round Round

Figure 5: Attacks accuracy under different property classifier algorithms

5.3 Potential Defenses against PIAFGNN

In this section, we evaluate the effectiveness of potential defense methods against PIAFGNN
and their impact on the main task classification accuracy of the target model. Here we consider two
possible defense strategies: (1) Adding differential privacy noise to perturb embeddings [28]; (2) Gradient
Compression (GC) [29]. The following briefly introduces these two defense strategies:

(1) Adding differential privacy noise to perturb embeddings. We first consider adding differential
privacy noise perturbations, which follow a Laplace distribution, to the embeddings to defend against
PIAFGNN. Formally, during the training of local graph data, each client perturbs the local node
embeddings by adding a certain scale of differential privacy noise, that is, H. = H. + Lap(B),
where Lap(B) represents a random variable sampled from the Laplace noise distribution, and S

1872 CMC, 2025, vol.82, no.2

is the scale parameter. The computation formula is given by: Pr[Lap(8) = x] = ﬁe"x'“", where
B = {0.1,0.5,2,4, 6}. Afterwards, clients train on the perturbed node embeddings through forward
propagation to obtain perturbed embedding gradient and model gradient, which are then uploaded
to the central server to participate in federated training. Through experiments, we have validated the
impact of different differential privacy noise scale parameters added by clients to local embeddings on
the effectiveness of PIAFGNN and on the accuracy of the primary task classification. Generally, the
higher the noise scale and thus the privacy budget, the stronger the defense effect; however, this also
leads to a greater impact on the classification accuracy of the main model.

Fig. 6 shows the changes in attack accuracy of PIAFGNN on three datasets for different GNN
models under varying noise scales, as well as the changes in accuracy for the normal classification
task. As the noise level gradually increases from 0 to 6, the performance of property inference attacks
on different models progressively decreases, with the attack accuracy on Pubmed dataset reducing to
36.5%. This is expected, as higher noise levels obscure more structural information contained in the
embeddings. On the other hand, as the noise level increases, the accuracy of the main classification
task also significantly declines, with an accuracy loss of up to 40.3% on Cora dataset. This is because
adding noise causes the model to learn from incorrect labels and reduces the model’s generalization
ability, which does not meet the defense expectation of reducing attack performance without affecting
the accuracy of the main classification task. However, we also found that if an appropriate noise
scale 8 is selected, such as when g = 0.6 to 1.0, a relative balance between privacy protection and
the classification accuracy of the main task can be achieved. Additionally, on the Cora and Citeseer
datasets, the attack accuracy of PIAFGNN for all three GNN models still remains above 50% even
when the noise scale is 6, which is higher than the random guessing baseline. This indicates that
Embedding Perturbation is not highly effective in defending against PIAFGNN.

(2) Gradient Compression (GC). Another defense mechanism we consider is gradient compression,
where clients only upload local model gradients that exceed a given threshold to the server for aggre-
gation. It aims to protect privacy by providing the server with the minimum amount of information
necessary for model aggregation, reducing the privacy information carried in the shared gradient, and
increasing communication efficiency. The experiment tested the impact of gradient compression ratios
on the performance of FedGNNs on the main task and the accuracy of PIAFGNN, and the results
are shown in Fig. 7. As the gradient compression ratio increases, the attack accuracy of PIAFGNN
generally decreases, albeit slowly in most cases, with a reduction of about 25%, while the main task
classification accuracy has decreased by about 30%. Specifically, on the Pubmed dataset, when the
gradient compression ratio increases to 0.8, the attack accuracy only decreases by 15%, while the
classification accuracy of the main task decreases by 34%. This indicates that the defense effectiveness
of gradient compression against PIAFGNN is limited and may lead to a decrease in the classification
accuracy of the main task. This is because even if the gradient is compressed, the malicious attacker
may still be able to recover the compressed information by collecting enough gradient updates and
using statistical methods or optimization techniques.

CMC, 2025, vol.82, no.2 1873

-e— GCN --¥-- GraphSage GAT
Cora Citeseer Pubmed
1.0 1.0 1.0
09 09 09
08 . o 0.8 0.8
B ey ol 3 0
] --] - o
g) 5 e ..
8 07 & 8 07 3 07 X e
8 a8 v] a8 L
< S < . < D
£ 06 - g 5 05 - % 08 '
£ B 2 s S
< 05 < 05 bt < 05 f = el ¢
®- GCN @ GON oo - GCN
04 -¥- GraphSage 04 -¥- GraphSage T S ¥ 04 -¥- GraphSage
GAT GAT GAT
03 0.3 0.3
0 0.1 0.5 2 4 6 0 0.1 0.5 2 4 6] 0.1 05 2 4 6
Noise scale B Noise scale g Noise scale
Cora Citeseer Pubmed
1.0 1.0 1.0
09 0.9 e 0.9
§ fe—— : E e— e
5 08 5 o8 % . 5 08 :
8 S 8 ~._ % 2 S
< o7 N < o7 L < o7 "
= i e e c 2
2] s =] B
= <] 2 <] \
g 06 AN 5 06 5 06 o 1
= s = \ 3 = .
¢ os o ® 05 Lo S ® 05 o .
o - = —§= B @ — ®
o ®- GCN =9 O ®- GCN ~—% O ®- GCN ——
0.4 -¥- GraphSage 0.4 -w- GraphSage 0.4 -w¥- GraphSage
GAT GAT GAT
0.3 0.3 0.3
0 0.1 0.5 2 4 6 o 0.1 0.5 2 4 6] 0.1 [2 4 &
Noise scale g Noise scale B Noise scale B

Figure 6: Evaluation of Laplace noise perturbation defense methods against PIAFGNN on three
datasets

Although neither of the two defense mechanisms can effectively counter PIAFGNN, upon
analyzing the relationship between the embedding perturbation method and attack performance, we
discover that by choosing an appropriate noise scale and minimizing the noise budget, PIAFGNN can
potentially be prevented from successfully inferring private properties while also improving commu-
nication efficiency and minimizing the impact on the accuracy of the primary task classification. For
example, during the training of the Cora dataset, we found that controlling the noise scale 8 between
0.6 and 1.0 can face the attack accuracy of PIAFGNN by more than 30%, while the primary task
classification accuracy only drops by about 20%. Similar results have been observed with other datasets
as well. Additionally, in future work, it may be possible to effectively defend against PIAFGNN by
adding different noise scales to the local data and model parameters of clients based on their privacy
needs, using an adaptive differential privacy (APM) mechanism.

1874 CMC, 2025, vol.82, no.2

—e— GCN --¥-- GraphSage GAT
Cora Citeseer Pubmed
1.0 1.0 1.0
09 0.9 0.9
&
> 0.8 3 Y > 0.8 > > 0.8
@ ¥ g Y- e : 3 ™ £
3 o7 SR g o7 3 07T
o e B o g O =
L4 St L= ~--y = L
£ 06 8 % 06 e X 06 -
g g g 3
< 05 < 05 < 05
@ GCN @ GCN & GCN
04 -%- GraphSage 04 -%- GraphSage 04 -%- GraphSage
GAT GAT GAT
03 0 02 0.4 0.6 0.8 93 0 0.2 0.4 0.6 0.8 93 0 02 0.4 0.6 0.8
1 - Compression Fraction 1 - Compression Fraction 1 - Compression Fraction
Cora Citeseer Pubmed
1.0 1.0 1.0
0.9 0.9 0.9
- ' > -
o , o . o
a = g . g ®
5 o8 = 5 08 g 5 08 @
o b L o ‘ o .
< 07 T, < o7 < o7 =
c i c e, c Y c
o B, =] ~, 2 L
= = = i = S
3 0.6 8 0.6 L 3 06 .
£ . ° 5 E = S
2 os —=e 2 05 g 5 05 S
;. k: 4 = e
o & GCN o —8- GCN o 8- GCN -
04 -w- GraphSage 04 -¥- GmaphSage 04 -¥- GraphSage
GAT GAT GAT
03 0.3 0.3
0 02 0.4 0.6 0.8 1] 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
1 - Compression Fraction 1 - Compression Fraction 1 - Compression Fraction

Figure 7: Evaluation of gradient compression defense methods against PIAFGNNs on three datasets

6 Conclusion

This paper investigates the property inference attacks against federated graph neural networks,
namely PIAFGNN, for the first time. The attacker can use the GRN to steal the local node embedding
gradient and model gradient uploaded by the client participating in the FedGNNs training by
obtaining the global embedding gradient and other information. Subsequently, by using the stolen
gradient information and auxiliary datasets, the attacker can train shadow models and property
classifier to infer basic property information of target graphs that is irrelevant to downstream tasks.
Extensive experiments demonstrate the effectiveness of PIAFGNN in a variety of public graph
datasets, with results that can be generalized to multiple GNN models under FL. Finally, we verify
the robustness of PIAFGNN under two defense mechanisms, both of which are unable to effectively
defend against PIAFGNN.

However, PIAFGNN also faces certain limitations. Firstly, PIAFGNN only considers node-level
property inference attacks, without exploring inference attacks targeting graph-level GNNs. Generally,
inferring sensitive property information of a target graph using entire graph embeddings is more
challenging than using node embeddings. In addition, in PIAFGNN, the attacker needs to obtain
shadow datasets with distributions similar to that of the target user’s data. Although this has been
proven feasible in practice, for example, by obtaining various datasets from multiple domains, it also
consumes more computational resources and increases computational complexity. In the future, we
will explore how to relax these limitations by investigating methods to acquire high-quality auxiliary

CMC, 2025, vol.82, no.2 1875

datasets and enhancing the quality of the embedding extraction process to improve the attack accuracy
of PIAFGNN.

Acknowledgement: The authors would like to express appreciation to the National Natural Science
Foundation of China. The authors would like to thank the editor-in-chief, editor, and reviewers for
their valuable comments and suggestions.

Funding Statement: This work is supported by the National Natural Science Foundation of China
(Nos. 62176122 and 62061146002).

Author Contributions: Jiewen Liu: Writing original draft, Software, Methodology, Formal analysis;
Bing Chen: Writing review, Editing, Supervision, Funding acquisition; Baolu Xue and Mengya Guo:
Data collection, Data curation; Yuntao Xu: Technical support, Draft manuscript preparation. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: This work uses the three public datasets for model training and
evaluation in FedGNNs. The datasets can be downloaded from the Internet.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

[11 Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM
Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 1-19, Jan. 2019. doi: 10.1145/3339474,

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas, “Communication-efficient learning
of deep networks from decentralized data,” in Proc. 20th Int. Conf. Artif. Intell. Stat., PMLR, Apr. 20-22,
2017, vol. 54, pp. 1273-1282.

[3] B.Jia, X. Zhang, J. Liu, Y. Zhang, K. Huang and Y. Liang, “Blockchain-enabled federated learning data
protection aggregation scheme with differential privacy and homomorphic encryption in iiot,” IEEE Trans.
Ind. Inform., vol. 18, no. 6, pp. 4049—4058, 2022. doi: 10.1109/T11.2021.3085960.

[4] R. Liu, P Xing, Z. Deng, A. Li, C. Guan and H. Yu, “Federated graph neural networks:
Overview, techniques, and challenges,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1-17, 2024. doi:
10.1109/TNNLS.2024.3360429.

[S] Z. Wang et al, “Federatedscope-GNN: Towards a unified, comprehensive and efficient package for
federated graph learning,” in Proc. 28th ACM SIGKDD Conf. Knowl. Discov. Data Min., New York, NY,
USA, 2022, pp. 4110-4120. doi: 10.1145/3534678.3539112.

[6] J. Xu, R. Wang, S. Koffas, K. Liang, and S. Picek, “More is better (mostly): On the backdoor attacks in
federated graph neural networks,” in Proc. 38th Annual Comput. Secur. Appl. Conf., 2022, pp. 684—698. doi:
10.1145/3564625.3567999.

[71 C.Heetal, “FedGraphNN: A federated learning system and benchmark for graph neural networks,” 2021.
doi: 10.48550/arXiv.2104.07145.

[8] C. Wu, F. Wu, L. Lyu, T. Qi, Y. Huang and X. Xie, “A federated graph neural network frame-
work for privacy-preserving personalization,” Nat. Commun., vol. 13, no. 1, pp. 3091-3100, 2022. doi:
10.1038/s41467-022-30714-9.

[9] C.Chenetal., “Vertically federated graph neural network for privacy-preserving node classification,” 2020.
doi: 10.48550/arXiv.2005.11903.

https://doi.org/10.1145/3339474
https://doi.org/10.1109/TII.2021.3085960
https://doi.org/10.1109/TNNLS.2024.3360429
https://doi.org/10.1145/3534678.3539112
https://doi.org/10.1145/3564625.3567999
https://doi.org/10.48550/arXiv.2104.07145
https://doi.org/10.1038/s41467-022-30714-9
https://doi.org/10.48550/arXiv.2005.11903

1876 CMC, 2025, vol.82, no.2

2

[10] Z.Zhang, M. Chen, M. Backes, Y. Shen, and Y. Zhang, “Inference attacks against graph neural networks,
in 31st USENIX Secur. Symp. (USENIX Secur. 22), Boston, MA, USENIX Association, 2022, pp. 4543—
4560.

[11] X. Wang and W. H. Wang, “Group property inference attacks against graph neural networks,” in Proc.
2022 ACM SIGSAC Conf. Comput. Commun. Secur., 2022, pp. 2871-2884. doi: 10.1145/3548606.3560662.

[12] Z. Ye, Y. J. Kumar, G. O. Sing, F. Song, and J. Wang, “A comprehensive survey of graph neural
networks for knowledge graphs,” IEEE Access, vol. 10, no. 2, pp. 75729-75741, 2022. doi: 10.1109/AC-
CESS.2022.3191784.

[13] X. Li, L. Sun, M. Ling, and Y. Peng, “A survey of graph neural network based recommendation in social
networks,” Neurocomputing, vol. 549, 2023, Art. no. 126441. doi: 10.1016/j.neucom.2023.126441.

[14] H. Cai, H. Zhang, D. Zhao, J. Wu, and L. Wang, “FP-GNN: A versatile deep learning architecture for
enhanced molecular property prediction,” Brief. Bioinform., vol. 23, no. 6, pp. 1477-4054, Sep. 2022. doi:
10.1093/bib/bbac408.

[15] J. Zhang, J. Zhang, J. Chen, and S. Yu, “Gan enhanced membership inference: A passive local attack
in federated learning,” in ICC, 2020-2020 IEEE Int. Conf. Commun. (ICC), 2020, pp. 1-6. doi:
10.1109/1CC40277.2020.9148790.

[16] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature leakage in collab-
orative learning,” in 2019 IEEE Symp. Secur. Priv. (SP), 2019, pp. 691-706. doi: 10.1109/SP.2019.00029.

[17] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against machine
learning models,” in 2017 IEEE Symp. Secur. Priv. (SP), 2017, pp. 3-18. doi: 10.1109/SP.2017.41.

[18] M. Conti, J. Li, S. Picek, and J. Xu, “Label-only membership inference attack against node-level graph
neural networks,” in Proc. 15th ACM Workshop Artif. Intell. Secur., AISec’22, 2022, pp. 1-12. doi:
10.1145/3560830.

[19] T. N. Kipfand M. Welling, “Semi-supervised classification with graph convolutional networks,” 2016. doi:
10.48550/arXiv.1609.02907.

[20] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Proc.
31st Int. Conf. Neural Inf. Process. Syst.,, NIPS'17, Red Hook, NY, USA, 2017, pp. 1025-1035. doi:
10.5555/3294771.3294869.

[21] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, “Graph attention networks,
vol. 1050, no. 20, pp. 1048, 550, 2017. doi: 10.48550/arXiv.1710.10903.

[22] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on model predictions in verti-
cal federated learning,” in 2021 IEEE 37th Int. Conf. Data Eng. (ICDE), 2021, pp. 181-192. doi:
10.1109/ICDES51399.2021.00023.

[23] J. Chen, G. Huang, H. Zheng, S. Yu, W. Jiang and C. Cui, “Graph-Fraudster: Adversarial attacks on graph
neural network-based vertical federated learning,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 2, pp. 492—
506, 2023. doi: 10.1109/TCSS.2022.3161016.

[24] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property inference attacks on fully connected
neural networks using permutation invariant representations,” in Proc. 2018 ACM SIGSAC Conf. Comput.
Commun. Secur., CCS '18, New York, NY, USA, Association for Computing Machinery, 2018, pp. 619—
633. doi: 10.1145/3243734.3243834,

[25] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating the construction of internet portals
with machine learning,” Inf. Retr., vol. 3, no. 2, pp. 127-163, 2000. doi: 10.1023/A:1009953814988.

[26] C.L.Giles, K. D. Bollacker, and S. Lawrence, “CiteSeer: An automatic citation indexing system,” in Proc.
Third ACM Conf. Digital Libraries, 1998, pp. 89-98. doi: 10.1145/276675.276685.

[27] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher and T. Eliassi-Rad, “Collective classification in
network data,” A1 Mag., vol. 29, no. 3, Sep. 2008, Art. no. 93. doi: 10.1609/aimag.v29i3.2157.

2

https://doi.org/10.1145/3548606.3560662
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.1016/j.neucom.2023.126441
https://doi.org/10.1093/bib/bbac408
https://doi.org/10.1109/ICC40277.2020.9148790
https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1145/3560830
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.5555/3294771.3294869
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.1109/ICDE51399.2021.00023
https://doi.org/10.1109/TCSS.2022.3161016
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1145/276675.276685
https://doi.org/10.1609/aimag.v29i3.2157

CMC, 2025, vol.82, no.2 1877

[28] Z.Zhang et al., “PrivSyn: Differentially private data synthesis,” in 30th USENIX Secur. Symp. (USENIX
Secur. 21), USENIX Association, Aug. 2021, pp. 929-946.

[29] P. Kairouz et al., “Advances and open problems in federated learning,” Found. Trends Mach. Learn., vol.
14, no. 1-2, pp. 1-210, 2021. doi: 10.1561/2200000083.

https://doi.org/10.1561/2200000083

	PIAFGNN: Property Inference Attacks against Federated Graph Neural Networks
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Methodology
	5 Evaluation
	6 Conclusion
	References

