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ABSTRACT

Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program
execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy.
Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show
that inter-class method call type faults account for more than 20%, which means such methods still have certain
limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on
relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence
graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted
by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods.
Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy.
Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2,
Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model
based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work
conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with
the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%,
29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies
the importance of inter-class dependencies through ablation experiments.
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1 Introduction

With the increasing size and complexity of software, unexpected faults may occur due to
programming errors or immature development processes. Developers need to invest a lot of time and
resources to debug the software, find out the specific location of the faults and solve them. According
to statistics, the cost of debugging software faults may account for 80% of the total cost of software
[1]. In the debugging process, fault localization is extremely expensive and time-consuming. Therefore,
high-precision and efficient fault localization techniques are needed to simplify the debugging process.
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In recent decades, researchers have proposed a variety of automated fault localization techniques,
among which spectrum-based fault localization (SBFL) has become one of the most widely studied
techniques due to its effectiveness and lightweight. However, SBFL has a significant issue where all
statements within a basic block have the same suspicion value, making it impossible to locate the
faulty statement more precisely in the program. Previous studies addressed this issue by generating
a large number of mutated programs, also known as mutation-based fault localization (MBFL) [2].
With the rapid development of machine learning and deep learning, many researchers have adopted
neural network-based methods to mine the potential features of code elements [3], aiming to achieve
precise localization.

Graph neural network (GNN) is a kind of deep learning model designed to process graph data.
Different from traditional neural networks that can only handle euclidean space data, GNNs can deal
with graph data in non-euclidean space. In recent years, GNNs-based fault localization techniques
have achieved promising results. These methods employ intermediate data representations such as
abstract syntax trees (ASTs) [4], control flow graphs (CFGs) [5], or program dependence graphs
(PDGs) [6] to abstract source code into graph structures. However, these graph representations do not
include inter-class dependencies, and research has shown that over 20% of faults belong to inter-class
method call type [7]. In addition, in widely used fault localization datasets (e.g., Defects4J), projects
code can span tens of thousands of lines. Directly constructing graph representations of such extensive
source code would result in an overly large graph, leading to a waste of computational resources and
increasing the training burden of GNNs.

This paper proposes a novel two-phase software fault localization based on relational graph
convolutional neural networks (Two-RGCNFL). This method aims to address the issue of parallel
ranking of suspicious elements in traditional SBFL technology. Additionally, this work also compre-
hensively considers the data and control dependencies within and between classes, which can locate
more inter-class method call type faults. Specifically, in Phase 1, this work constructs a method call
dependency graph (MCDG) with methods as nodes and control dependencies and data dependencies
as edges. This graph is cross-class, thereby containing rich intra-class and inter-class dependencies.
Then relational graph convolutional neural network (RGCN) is employed to extract node features
from the MCDG and utilize a classifier to identify faulty methods. Since MCDG is a multi-relational
graph with extremely unbalanced classes, we also improve the GraphSMOTE algorithm to mitigate
the impact of class imbalance on classification accuracy. Finally, in Phase 2, this work constructs a
RankNet model with shared weight siamese multi-layer perceptron (MLP) as the main frame structure.
With the ability of MLP to capture subtle differences in node features, we can effectively distinguish
suspicious values of statements in the same basic block. The main contributions of this paper are as
follows:

1. In view of the fact that previous researchers only considered intra-class dependencies when
abstractive the source code as a graph structure, this paper proposes MCDG. MCDG is
simplified from system dependence graph (SDG), which can not only reduce the training
burden of GNN, but also contain rich intra-class and inter-class method call dependencies,
so that GNN can mine more abundant node feature information.

2. Aiming at the problem that GraphSMOTE algorithm can only deal with a single relational
graph structure, this paper improves it to solve the class imbalance problem of multi-relational
graphs.

3. Two-RGCNFL is proposed, which can achieve more accurate localization by gradually nar-
rowing the localization range in a phased manner. In addition, Two-RGCNFL can effectively
solve the problem of parallel ranking of suspicious elements in traditional SBFL technology.
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4. This paper conducted experiments on 5 projects in the Defects4J benchmark and evaluated
the experimental results using two evaluation metrics: Top-K and mean reciprocal rank. The
results indicate that Two-RGCNFL can achieve better performance compared with all the
baseline methods in this paper.

The remaining organization of this paper is as follows: Section 2 reviews the related research on
fault localization and introduces the tools used in this paper. Section 3 details the methodological
framework of this paper. Section 4 introduces the main research questions, experimental datasets,
evaluation metrics and parameter setting. Section 5 analyzes the experimental results in detail.
Section 6 discusses statistical significance test and potential threats to validity. Section 7 provides a
brief summary of the paper and future perspectives.

2 Related Work
2.1 Spectrum-Based Fault Localization

SBFL is a typical method in dynamic analysis. The input of SBFL is the code coverage information
of all test cases, while its output is a descending list of suspicious values calculated by code elements
according to their specific formulas. The “spectrum”in SBFL refers to the set of runtime code coverage
information, which is a description form of dynamic behavior characteristics of program runtime [8].

SBFL has become one of the most widely studied techniques due to its ease of obtaining program
spectra and its intuitive reflection of program runtime information. Zhang et al. [9] proposed to
use PageRank algorithm to analyze the relationship between test cases and the program under test,
thereby taking into account the contributions of different test cases and recalculating the spectra. The
traditional SBFL technique was then applied to the recalculated spectra. Experiments showed that
the performance of this method was significantly better than the state-of-the-art SBFL techniques. By
introducing the local influence calculation of software entities, Zhao et al. [10] proposed a spectrum-
enhanced fault localization method, which could make full use of the internal interaction information
between software entities. They also proposed a new suspicion measure, namely fault centrality,
which is used to comprehensively evaluate the suspicion level of methods. Widyasari et al. [11]
took into account two facts. The first is that not all failing test cases contribute equally to the
fault under consideration. The second is that program units cooperate in different ways causing test
cases to fail. So, they propose to use interpretable artificial intelligence (AI) techniques to learn the
local relationship between program units and the fail/pass outcome of each test case. The unique
contribution of failed test cases to the suspiciousness of a program unit is automatically learned by
learning the different and collaborative contributions of a program unit to the execution outcome
of each test case. However, the statistical formulas relied upon by SBFL techniques do not always
yield satisfactory results in multi-fault programs, so Callaghan et al. [12] proposed fault localization
by iterative test suite reduction (FLITSR). For programs with multiple faults, the location of fault
elements is influenced by the density of failed tests executing each fault. To accurately locate faults one
by one from a multi-fault program, FLITSR can increase the relative density of failed tests executing
the remaining faulty elements by removing the failed tests executing the most suspicious elements
from the test suite, thus improving the ranking of these faults. Although many SBFL techniques
proposed by researchers demonstrate good performance to some extent, modern software programs
are increasingly complex and large-scale, making it difficult to accurately locate faults solely through
spectra and statistical formulas. On this basis, we also delve into the fault propagation contexts and
potential features of code elements.
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2.2 Deep Learning-Based Fault Localization

Fault localization methods based on deep learning can extract and mine the potential features of
code elements, accomplishing the localization task through feature learning. Li et al. [13] utilized the
image classification and pattern recognition capabilities of convolutional neural networks (CNN) to
achieve localization through code coverage representation learning and data dependence of program
statements. Cao et al. [14] proposed DeepFD, a learning-based fault diagnosis and localization
framework, which maps the fault localization task to a learning problem. Specifically, DeepFD
diagnoses and locates faults in deep learning programs by inferring suspicious fault types using
features extracted during model training, and then locates the faults diagnosed in deep learning
programs. Zhang et al. [15] used test cases to train CNN, leveraging weight-sharing of CNN to
significantly reduce the number of parameters in the model. However, this method requires high-
quality test cases. Yang et al. [16] proposed a fault localization method that does not require running
any test cases. They utilize the representations learned from pre-trained language models, which
already contain abundant knowledge about statement suspicious, to identify faults. Meng et al. [17]
proposed TRANSFER, which exploits deep semantic features and knowledge transferred from open-
source data to improve fault localization and program repair. Firstly, two large-scale error datasets
are constructed to learn the deep semantic features of sentences, respectively. The semantic-based,
mutation-based and mutation-based features are then combined and the MLP-based model is used
for fault localization. In addition, GNNs have demonstrated powerful graph structural learning
capabilities in recent years. Lou et al. [18] proposed a new graph representation of programs that
uses gated graph neural networks to learn useful features from the graph and rank program entities.
Qian et al. [4] used graph convolutional neural network to collect the static and dynamic features
of nodes from the AST and coverage information. They then used GraphSAGE to obtain the node
representations of the source code, and finally applied an MLP to output the suspicious values of
program entities. Gou et al. [19] proposed a fault location method based on network spectrum that
combined test data and software network. This method analyzes and tests software source code
to obtain software network and program spectra, then establishes network spectra and carries out
feature dimension reduction and class imbalance processing on it, and finally utilizes GNN model to
construct a multiple fault location model based on network spectra. Rafi et al. [20] integrate inter-
procedural method calls and historical code evolution into the graph representations, enhancing code
representations with dependency-augmented coverage graphs and providing GNNs with historical
code evolution information, achieving superior performance results. Numerous studies have shown
that deep learning can also obtain excellent performance in the field of software fault localization,
and thus, we also employ deep learning in our research to accomplish fault localization tasks.

2.3 System Dependence Graph

SDG and PDG are intermediate program representations. PDG was first introduced by
Mantovani et al. [21] in 1987, which explicitly defines the data dependency and control dependency of
each operation within the program. In a PDG, nodes represent statements or predicate expressions,
while edges represent dependency relationships. SDG extends the PDG of a single program to
effectively analyze the dependency relationships across different classes. In addition to the nodes
and edges in the PDG, the SDG contains dependency edges that represent the context of procedure
calls. Due to the rich information about source code structure and dependency relationships contained
within SDG, they have been widely used in vulnerability detection and program slicing.

Karuthedath et al. [22] proposed a method to generate test cases for Java programs based on SDG
to test whether there is an array index boundary overflow in the program. During parsing the input
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Java source code, a separate node is created for each class, and the control flow graph in SDG is used
to generate a path for each method in the source code, and the data dependence graph is used to
track the last definition of the array index variable and obtain the expression that causes the change
of the index variable value. Wang et al. [23] proposed a subsentence-level dependency graph (SSLDG)
based on system dependency graph, which is built from fine-grained dependencies of object-oriented
programs. With SSLDG, they also proposed a new slicing algorithm that can exploit fine-grained
dependencies to compute accurate slicing results. To our knowledge, most current research on fault
localization mainly obtains the intra-class dependencies through PDG, but few researchers consider
the dependency relationship between different classes. This relationship contained in SDG can provide
important information for fault localization.

3 Approach

This paper proposes Two-RGCNFL, which comprises two phases: the method classification phase
and the statement ranking phase. The former considers both intra-class and inter-class method call
dependencies, while the latter addresses the limitations of traditional SBFL technology and realizes a
finer-grained fault localization. This section will introduce Two-RGCNFL in detail.

The Two-RGCNFL framework is shown in Fig. 1, which is divided into three main steps. (1)
Data preparation: Firstly, the project source code is extracted from Defects4J. The traditional SBFL
technique is applied to obtain the suspicious values of each method and sort them. The MCDG
is constructed and then pruned according to the ranking of suspicious values to narrow down the
localization range. The improved GraphSMOTE [24] is used to address the issue of node class
imbalance. (2) Method-level classification phase: The RGCN model is trained to predict whether
a method is faulty or not. (3) Statement-level ranking phase: For methods that may contain faults,
Doc2Vec [25] is utilized to convert each statement within the method into a low-dimensional vector
representation. These vectors are concatenated with the statement spectrum information to form
the feature vector of the statements. By training the siamese MLP within the RankNet model, the
suspicious values of the statements are output and sorted.

In addition, to facilitate the understanding of the proposed approach, we provide the main formula
symbols used in this paper and their descriptions, as shown in Table 1.

3.1 Data Preparation

3.1.1 Program Spectrum

Firstly, we check out the source code of the 5 projects from the Defects4J. For each faulty version,
this paper employed SBFL technique to calculate the suspicious value for each method. The corner-
stone of SBFL technology lies in program spectra, which can be classified into statement coverage,
branch coverage and method coverage. To achieve statement-level localization in Phase 2, this paper
adopted the statement coverage spectrum. In this section, statement coverage data is collected by
executing test cases, and the execution results of these test cases are recorded simultaneously. The
mainstream SBFL technique primarily relies on the following factors to calculate the suspicious value
of the statements: Tp (e), Tf (e), Tp (e−) and Tf (e−). According to the above four values, the suspicious
value of each statement is calculated using specific formulas such as Dstar [26], Ochiai [27]. Compared
with the three others, Dstar has been proved to have the best and most effective comprehensive ranking
performance [28], so we choose Dstar, whose formula is shown in Eq. (1):

Susp (e) = T 2
f (e)

Tp (e) + Tf (e−)
(1)
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Susp (f ) = max {Susp (e1) , Susp (e2) , . . . , Susp (en)} (2)

For a method f that contains n statements, each of which has a suspicious value. The suspicious
value of the method can be expressed by Eq. (2), which is the maximum value of suspicious value of
all statements within the method.

Figure 1: The overall framework of Two-RGCNFL

Table 1: Main symbols and descriptions

Symbol Description

Tp (e) The set of pass test cases that execute the statement e
Tf (e) The set of fail test cases that execute the statement e
Tp (e−) The set of fail test cases that do not execute the statement e
Tf (e−) The set of pass test cases that do not execute the statement e
σ (·) Activation function

(Continued)
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Table 1 (continued)

Symbol Description

hi
v Node features of node v after aggregating i time

WL The weight matrix under the L-relation or under the L-layer network
bL The bias vector under the L-relation or under the L-layer network

3.1.2 Method Call Dependency Graph

An SDG includes a program dependence graph of the system’s main program, the process
dependence graph of the system’s auxiliary program and some additional edges. An SDG of a complete
software system can be extremely vast, containing numerous irrelevant information that can interfere
with the training of GNN. In this section, this paper proposes a new graph representation of programs,
namely MCDG. Derived from the simplification of SDG, MCDG utilizes methods as nodes and
the dependencies between methods as edges. This graph structure excludes the internal structure
information of each method, which can effectively reduce the noise in the graph during the method-
level classification phase. Next, we describe the construction of MCDG.

In the original SDG, there are 6 kinds of nodes. In fact, the call node belongs to the control flow
node. The actual-in, actual-out, formal-in, and formal-out nodes are used for information transfer and
thus fall under the data flow nodes. However, MCDG is constructed at the method granularity, and
the internal implementation of method is opaque. So, for most nodes in the graph, the same node may
simultaneously belong to actual-in, actual-out, formal-input, and formal-out categories. For ease of
understanding, this paper simplifies the node types in MCDG into two categories: control flow nodes
and data flow nodes. Regarding edges, the control flow edges between methods in the original SDG
only consist of directed edges from each call vertex to the corresponding called node. But in MCDG,
we refine these into three types: (1) Execution of the next edge is controlled by a True statement within
the method. (2) Execution of the next edge is controlled by a False statement within the method. (3) A
directly executed called method within the method. Data flow edges include the following two types:
(4) If there is parameter transfer in the called method, a parameter input edge is added from the data
flow call node to the data flow callee nide. (5) If the called method has a return value, a parameter
output edge is added from the data flow callee node to the data flow call node. Fig. 2 illustrates the
MCDG of an example program. To facilitate understanding of the nodes and edges in the graph,
we stratify the MCDG into control flow node layer and data flow node layer according to the node
types. By constructing MCDG, the call dependencies between program methods can be more clearly
reflected. The structural information of source code can be fully utilized to analyze and locate faults
in software systems.

By applying SBFL technology, we have discovered that for different fault versions, executing test
cases will only cover the class associated with the fault. Class files in the overall software system
that remain uncovered can be deemed as containing no fault-related information. Consequently, it
becomes necessary to prune the MCDG. According to the statement coverage spectrum obtained in
Section 3.1.1, the coverage spectrum of each method can be derived. For those method nodes that
are not covered, we remove both the nodes and their connecting edges. It ensures that the nodes and
edges in the MCDG are centered around the fault, thereby eliminating interference from redundant
information.
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Figure 2: Sample programs and their MCDG

3.1.3 Class Imbalance

In this paper, if there is a fault in any single statement within a method, the method is defined as
faulty. However, within a program, the number of faulty statements is far fewer than the correct ones,
which means that the number of methods containing faults is significantly lower than those that are
completely correct. If training is conducted directly on this data, the results would tend to favor the
correct category. To avoid such a bias, this paper needs to process the data and address the issue of
class imbalance.

Currently, there are two primary approaches to tackling class imbalance: over-sampling and
under-sampling. Under-sampling is to reduce the number of majority samples to match the number of
minority samples. However, this method may lead to the loss of valuable information. Therefore, this
paper adopts the over-sampling method to handle our data. SMOTE [29] is a classical over-sampling
algorithm, but it’s only suitable to data in euclidean space. GraphSMOTE [24] is an extension of
SMOTE, which can effectively address the issue of class imbalance in graph data structure. In [24],
Zhao et al. adopted GraphSAGE as the backbone model structure. However, the network studied
in this paper is a multi-relational graph network, where GraphSAGE cannot be directly used for
training. Inspired by RGCN [30], we modify GraphSAGE into R-GraphSAGE, which can aggregate
node features of multi-relational graph. Following the design and ideas in GraphSMOTE, only one
R-GraphSAGE block is adopted as the feature extractor in this paper, and the MEAN Aggregator is
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used for feature aggregation. The message passing and fusion process is shown in Eq. (3).

h1
v = σ

(
R∑

r=1

Wr · MEAN
({

h0
v

} ∪ {
h0

u, ∀u ∈ Nr (v)
}))

(3)

where r ∈ [1, R] represents r relationship types in the graph, Nr (v) represents neighbor nodes of the
node v under the relationship r. To ensure that the newly generated nodes have similar representations
to the minority class nodes. The first step is to find the nearest node that belongs to the same class as
the minority class nodes, denoted as nn, as shown in Eq. (4).

nn = argmin
u

||h1
u − h1

v|| (4)

h1
v′ = (1 − ζ ) · h1

v + ζ · h1
nn (5)

The Eq. (5) represents the newly synthesized node, where ζ denotes a random variable uniformly
distributed within [0, 1]. Since both h1

v and h1
nn belong to the minority class samples, h1

v′ should also
belong to the same class.

Edge generators should not merely about simulating the existence of edges between nodes, but
also about simulating the existence of edges under different relationship types, meaning that nodes
may establish connections under various types of relationships. In this section, an MLP is adopted as
the primary framework for the edge generator, because it can well capture the nonlinear relationship
of node features and is sensitive to subtle details [31]. The implementation of this edge generator is
shown in Eq. (6).

Er
v, u = Sigmoid

(
MLPr

(
h1

v||h1
u

))
(6)

where Er
u, v represents whether there exists an edge of the relationship type r between nodes v and u, and

MLPr represents a separate MLP model built for each relationship type, which is used to predict the
existence of a connection between node pairs under different relationships. The MLP with H hidden
layers are constructed as shown in Eqs. (7) to (9).

zr, (1)

v+u = σ
((

h1
v+u

)T · W r, (1)

hidden + br, (1)

hidden

)
(7)

zr, (H)

v+u = σ
(
zr, (H−1)

v+u · W r, (H)

hidden + br, (H)

hidden

)
(8)

h̃v+u = σ
(
zr, (H)

v+u · W r
out + br

out

)
(9)

where h1
v+u represents the concatenated vector of h1

v and h1
u, under relation r, zr, (1) to zr, (H) represent the

output of each fully connected layer in the hidden layer.

The training of the edge generator is performed on the existing nodes and edges. Therefore, under
the relationship r, the loss between the edge Er predicted by the edge generator and the adjacency
matrix Ar of the original graph can be expressed by Eq. (10).

Ledge =
R∑

r=1

||Er − Ar||2 (10)

Since there may exist multiple types of relationship connections between nodes, the threshold δ is
set to judge the edge situation between the synthesis node v and v′. When Er

v′ , v > δ, there exists an edge
with relationship type r, otherwise, no such edge exists.
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Algorithm 1 is the detailed process of the improved GraphSMOTE algorithm for handling the
imbalance of multi-relational graph class imbalance.

Algorithm 1: Improved GraphSMOTE algorithm
Input: Node embedding: hv, Number of relationship types: R, adjacent matrix: adj, Weights under
different relation types: W , Number of classes: c_num
Output: The updated node embedding: agg_hv, The updated adjacency matrix: adj′

1: for hvi in hv do
2: sampling_hvi ← getSample

(
hvi , adj, R

)
3: agg_hvi ← σ

(
R∑

r=1

Wr · MEAN
(
hvi ∪ sampling_hvi

))
4: end for
5: Count the number of majority classes: c_largest
6: for c in c_num do
7: Count the number of samples in different classes: num (c)
8: c_agg_hv ← agg_hv (class = c)
9: c_portion ← c_largest/num (c)
10: for j in c_portion do
11: distance ← pdist (c_agg_hv)

12: new_hv′ ← (1 − ζ ) · c_agg_hv + ζ · c_agg_hvdistance·argmin

13: agg_hv ← concat (agg_hv, new_hv′)
14: end for
15: end for
16: for r in R do
17: Er

v,v′ ← Sigmoid
(
MLPr

(agg_hv||new_hv′)
)

18: adj′
r ← addEdge

(
adjr, Er

v, v′
)

19: adj′ ← concat (adj, adjr)

20: end for
21: return agg_hv, adj′

3.2 Phase 1: Classification of Methods

After constructing the MCDG and synthesizing minority class nodes using GraphSMOTE, we
choose to reuse the node features extracted and trained in Section 3.1.3 as the initial node features for
this phase. This is because in Section 3.1.3, only the first-order neighborhood nodes of the target node
were aggregated, while deeper neighbors were not considered. As a result, the aggregated node features
may lose some important graph structural information. Additionally, the RGCN model is constructed
to predict whether faults exist within the methods, thereby achieving node classification.

RGCN is a type of graph neural network that extends the traditional graph convolutional
networks (GCN) to deal with the multiple complex relationships between nodes in graph data [30].
Its core idea is to combine different types of relational information into node representation learning
by learning a relation representation matrix for each type of relationship. In this way, RGCN enables
more precise information propagation and node feature learning within graph data, thus improving
the performance of graph data mining tasks. Specifically, for each node vi under different types of
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relationships, Eq. (11) is used to carry out message passing to its neighbor node vj.

h(l+1)

vi
= σ

⎛
⎝ R∑

r=1

∑
vj∈Nr(vi)

1
cvi , r

W (l)
r h(l)

vj
+ W (l)

0 h(l)
vi

⎞
⎠ (11)

where h(l+1)

vi
represents the node representation of node vi after aggregating l times; when l = 1, h1

vi
and h1

vj
are the feature representation extracted in Section 3.1.3. cvi , r represents the number of neighbor

nodes of node vi under relation r; and W (l)
r represents the trainable weight matrix at the l-th layer under

relation r. The classifier is implemented as shown in Eq. (12).

Pvi = softmax
(

h(l+1)

vi
· W + b

)
(12)

where Pvi represents the probability distribution of node vi over class labels. The optimizer uses binary
cross entropy loss (BCELoss) for loss optimization as shown in Eq. (13).

Lnode = −Y log P + (1 − Y) log (1 − P)

n
(13)

where Y represents the true label set of a node and n represents the total number of samples.

The optimized classifier can be applied to the nodes with unknown categories to output the
predicted probability values for different categories. These probability values are used to determine
whether a node (i.e., a method) is faulty. Finally, the methods are ranked according to the magnitude
of the probability values, where a higher value indicates a higher suspicion of a fault in the method
and thus a higher ranking.

3.3 Phase 2: Statements Ranking

After Phase 1, we obtain the fault localization results at the method level. For most programs,
method-level fault localization technology is already quite effective in completing the localization task.
However, if there are a large number of statements within a method, and it is not possible to quickly
determine which line contains the fault, significant manual effort is still required to inspect each line
individually. This paper provides an approach to further analyze and rank the suspicious values of
each statement based on Phase 1. This phase primarily consists of two parts: feature extraction and
ranking model.

In the feature extraction module, this paper adopts Doc2Vec to convert each statement into a low-
dimensional vector representation. Doc2Vec [25] is a technique for text representation learning, which
is used to learn vector representations for documents (such as sentences, paragraphs, and documents).
The Doc2Vec model enables documents to be represented as vectors of fixed length, which capture
the semantic information and context of the documents. In addition, besides semantic features, this
paper incorporates dynamic features of each statement during runtime. In Section 3.1.1, this paper
has already collected the coverage spectrum of each statement during executing all test cases. Through
the coverage spectrum information of statements, the values of Tp (e), Tf (e), Tp (e−) and Tf (e−) can
be counted. These four values are concatenated to form the dynamic features of the statement.

The two types of features mentioned above are simply concatenated to form a combined feature
for each statement. To avoid the negative impact of the differences between different features
on the subsequent ranking model, this paper normalizes the combined feature of each statement
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as shown in Eq. (14).

he =
(
h(1)

e , h(2)

e

)
||h(1)

e , h(2)
e || (14)

In the ranking module, the most commonly used approach for ranking algorithms is Learning-to-
Rank (LTR), which is a machine Learning approach that aims to train a model to predict the relevance
of items. At the algorithmic level, LTR is generally divided into three categories: PointWise, PairWise
and ListWise. The PointWise only considers the absolute relevance of a single item under a given
query, without considering the relevance of other items to the given query. The PairWise considers
the relative relevance between a pair of items under a given query. The ListWise takes a list of all
search results for each query as a training instance. Since the PairWise not only considers the relevance
between items, but also reduces the computational cost, the PairWise LTR model RankNet is selected
in this paper. The structure of RankNet is based on a traditional artificial neural network, with its
core being a siamese network composed of two neural network streams sharing weights [32]. When
extracting the combined features of statements, we observed that statements within the same basic
block have identical coverage features, while the semantic features of statements are similar to some
extent, especially for statements containing similar functions or logics. When the feature differences
between a pair of input statements are very small, the prediction probabilities of RankNet will be very
close, making it difficult to distinguish the relative ordering of the statements. Therefore, in order to
better exploit the differences between feature vectors, MLP is adopted to form the siamese network in
this section.

As shown in Fig. 3, firstly, all the statements in a method are paired pairwise, and they are fed
in pairs into the siamese MLP, which shares weights. The two MLPs output two prediction scores
for each pair of inputs separately, and these two scores are then concatenated together via hinge loss
function to train the model.

Figure 3: Training process of RankNet ranking model

Before introducing the loss function, let’s first demonstrate how to obtain the target ranking
of suspicious values for statements. In fact, we have already labeled the faulty statements in each
method, but if we simply label the faulty statements as 1 and the other correct statements as 0, the
model would struggle to learn and discern their relative ranking when two correct statements or two
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faulty statements are paired as a sample. In previous studies, SBFL technologies have been widely
acknowledged by researchers for their lightweight and efficient characteristics [8,14]. Therefore, in
this section, the suspicious value of each statement is calculated by SBFL technique (i.e., Eq. (1)) to
rank all samples. Instead of focusing on the specific values, we utilize their relative magnitudes. Due
to the issue of parallel ranking of suspicious values in SBFL technology, for statements with equal
suspicious values and not containing faults, we will randomly sort them. Because it does not affect the
ranking of faulty codes. To enable the model to identify faulty statements during training, here, the
faulty statements will be listed at the front.

In the choice of loss function, there may be cases where the differences between input sample pairs
are minimal, the cross-entropy loss function may not effectively distinguish between statements with
equal suspicious values. So, hinge loss is selected as the loss function in Phase 2. Assuming a method
contains N statements, then a total of

(
N2 − N

)
/2 inputs need to be processed. The hinge loss is shown

in Eq. (15).

Lhinge = 2
N2 − N

N∑
i=1

N∑
j = 1
ei � ej

max
{
0, margin + MLP

(
xej

) − MLP
(
xei

)}
(15)

where ei � ej represents that the suspicious value of statement ei is ranked in front of ej, margin
represents the safety factor of hinge loss, MLP

(
xei

)
and MLP

(
xej

)
represent the suspicious scores

obtained by inputting the sample pairs respectively into the siamese MLP. The loss function means
that the loss is 0 when the value of MLP

(
xei

) − MLP
(
xej

)
exceeds margin. With this design, when the

model is trained, the score of the statement with faulty will be the highest.

After sufficient training, the input for the test dataset is no longer in the form of pairs, but is
instead input individually into either of the siamese MLP, because they share the same parameters.
Finally, all the statements within the method are ranked according to the scores output by the MLP.

4 Experimental Design

This paper chooses the most widely used Defects4J (v2.0.1) benchmark in the field of software
fault localization to conduct our experiments. To evaluate the effectiveness of Two-RGCNFL, this
paper proposes four research questions. And Two evaluation metrics, Top-N and Mean Reciprocal
Rank, are used to evaluate the performance of Two-RGCNFL. Finally, the parameter setting of the
experiment is introduced.

4.1 Research Questions

RQ1: What is the performance of Two-RGCNFL?

To address this issue, this paper will evaluate the two phases of Two-RGCNFL separately. Firstly,
Phase 1 will be compared with the state-of-the-art method-level localization techniques. Then phase
2 will be compared with two classical SBFL techniques and two state-of-the-art statement-level
localization methods.

RQ2: Does the construction of MCDG contribute to the localization of the Phase 1, and what
extent can it bring benefits?

This paper will design ablation experiment to explore the effectiveness of inter-class dependencies
on Phase 1 of Two-RGCNFL, and calculated the percentage of improvement through comparison.
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RQ3: How does the number of hidden layers of the MLP affect the statement level localization of
Two-RGCNFL in the modified GraphSMOTE?

In this paper, the number of hidden layers H of MLP is set to {1, 2, 3, 4} to observe the fault
localization performance of Two-RGCNFL on Phase 1.

RQ4: How do different loss functions affect the localization performance in the second phase?

This paper will use the cross-entropy loss function and hinge loss function respectively to compare
the results of fault localization.

4.2 Datasets

This paper chooses Defects4J (v2.0.1) benchmark to evaluate the effectiveness of Two-RGCNFL.
Defects4J is a widely used dataset in software fault research, which contains a series of real-world
software fault projects to evaluate and compare the performance of different fault localization and
repair techniques. This paper has utilized 5 open-source Java projects from the Defects4J (v2.0.1)
benchmark, including Chart, Closure, Lang, Math and Mockito, which contain 408 real bugs in total.
Among these, this paper has considered 354 bugs because the remaining 51 bugs do not reside within
any method. Table 2 provides a brief statistical overview of this dataset, where the last two columns
are the average number of methods and the average number of lines of code per project, respectively.

Table 2: Defects4J datasets (v2.0.1)

Identifier Project name #Bugs #Method #LOC

Chart JFreeChart 22 8811 96 K
Closure Closure-Compiler 151 5328 90 K
Lang Commons-Lang 57 4690 59 K
Math Commons-Math 98 11504 170 K
Mockito Mockito 26 1427 10 K

The reason we choose this dataset is that it contains data from real-world open-source projects.
Not only that, it has been widely used in the field of software fault localization in previous studies.
This indicates that the dataset can verify the effectiveness of Two-RGCNFL for real fault localization
and facilitate evaluation and comparison with other methods.

4.3 Evaluation Metrics

This paper utilizes widely adopted evaluation metrics in the field of software fault localization:
Top-K and mean reciprocal rank (MRR).

Top-K represents that at least one faulty method or statement has been localized among the top k
ranked positions. In practice, it is extremely time-consuming to examine all the methods or statements
in a faulty program. Considering the limited time and resources, this paper uses Top-K to evaluate
Two-RGCNFL. In the experimental design, this paper follows majority of previous studies [3,16,18]
by setting K to 1, 3 and 5.

MRR represents the reciprocal rank of each fault among all faulty elements. The MRR of each
project is the average of the sum of the reciprocal ranks of all its faults. A higher MRR value indicates
better model performance. The MRR is calculated as shown in Eq. (16), where N denotes the number
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of faulty versions of each project and ranki denotes the ranking of fault in the faulty version i.

MRR = 1
N

N∑
i=1

1
ranki

(16)

4.4 Parameters Setting

The experiments are carried out in the hardware environment of Intel Core i5-12490F, NVIDIA
GeForce RTX4060 8 G and 32 G∗2 dual-channel memory, and implemented in the software environ-
ment of Python3.8 and PyTorch2.0. For all models, the learning rate is initialized to 0.001, the dropout
is set to 0.1, the default epoch is 100, and the Adam optimizer is used for training. In unbalanced
processing, since the number of majority samples and minority samples changes according to the
actual situation of the project, the imbalance ratio is not set in the experiment, the over-sampling
ratio is set to n/ (2 · num (ci)), and the number of MLP hidden layers in the edge generator is set to 2.
In the Phase 1 classification model, the data set is randomly divided, the ratio of training set and test
set is set to 8:2, and the experiment is repeated three times using cross validation to take the average
result. In the ranking model in Phase 2, words with embedding vector size of 100 are used to train the
Doc2Vec model.

5 Analysis of Results
5.1 RQ1: What Is the Performance of Two-RGCNFL?

The first phase of Two-RGCNFL implements classification at the method level and the second
phase implements ranking at the statement level. This paper will evaluate the performance of the
model in these two phases separately. For different fault versions of each project, after processing
into the pruned MCDG, the nodes will coincide. As such, in Phase 1, this paper performs cross-
validation on the faults of each project. To ensure the accuracy of the statement-level ranking in Phase
2, this paper employs leave-one-out cross validation to evaluate the effectiveness of Two-RGCNFL
in statement-level localization. In addition, for RQ1, we compare the Top-K (K = 1, 3, 5) and MRR
two measures, using (PTwo−RGCNFL − Pbaselines) /Pbaselines × 100% to calculate the percentage improvement
of Two-RGCNFL.

5.1.1 RQ1.1: How Accurate Is Two-RGCNFL Localization at the Method Level?

In order to measure the effectiveness of Two-RGCNFL in method-level localization, the following
three method-level fault localization methods are used for comparison:

(1) GRACE [18] is a coverage-based localization technique that leverages coverage information
thoroughly by constructing a graph representation of the program, and employ graph neural networks
to rank faults.

(2) CNN-FL [15] is a fault localization method based on convolutional neural network, which
evaluates the suspicion of each program entity by testing the trained model with a virtual test set.

(3) DEEPRL4FL [13] is a deep learning method that classifies faults by treating fault localization
as an image pattern recognition problem.

Fig. 4 shows the performance between the proposed Two-RGCNFL and the three baseline
methods in terms of method-level fault localization in the overall case. As can be seen from the figure,
Two-RGCNFL consistently outperforms all baseline methods on Top-K (K = 1, 3, 5). Specifically,
Two-RGCNFL improves by 30∼94, 36∼102 and 39∼92 faults over the baseline methods on Top-K
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(K = 1, 3, 5), respectively. On the whole, our approach can locate 290 faults on Top-5, accounting for
81.92% of the total number of faults in the experiment. It is effectively verified that Two-RGCNFL
can locate more faults at the top of the list in Phase 1.

Figure 4: Comparison of different techniques for method-level fault localization on Top-K
(K = 1, 3, 5)

Next, this paper will explore the impact of different projects on the performance of Two-
RGCNFL. From Table 3, it can be observed that Two-RGCNFL exhibits the best performance across
all projects. In particular, Two-RGCNFL demonstrates significant improvement over CNN-FL. This
is because CNN-FL is a deep learning method that relies on test cases to train convolutional neural
networks, which makes full use of code coverage information, but ignores the role of code context.
Furthermore, we notice that Two-RGCNFL improves the best in the most complex Closure project.
Compared with the baseline methods, Two-RGCNFL improves the Top-K (K = 1, 3, 5) accuracy by
45.61%∼144.12%, 32.53%∼111.54%, and 18.35%∼72%, respectively. Notably, the most pronounced
improvement is seen at Top-1, indicating that for the Closure project, Two-RGCNFL can localize
54.97% of faults by examining just one method. At the same time, the MRR score increases by 38.09%
compared to DEEPRL4FL, the best performing in the baseline method, whereas the improvement in
the Math project is only 3.23%. This indicates that Two-RGCNFL has greater confidence in handling
complex projects.

Table 3: Experimental results of method-level positioning of different technologies in each project

Subjects Technique Top-1 Top-3 Top-5 MRR

Chart Grace 10 12 16 0.5439
CNN-FL 8 9 12 0.4202
DEEPRL4FL 12 13 15 0.5970
Two-RGCNFL 12 16 18 0.6333

Closure Grace 49 77 92 0.4115
CNN-FL 34 52 75 0.3034
DEEPRL4FL 57 83 109 0.4733
Two-RGCNFL 83 110 129 0.6536

(Continued)
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Table 3 (continued)

Subjects Technique Top-1 Top-3 Top-5 MRR

Lang Grace 29 34 37 0.5538
CNN-FL 17 33 35 0.4046
DEEPRL4FL 30 35 38 0.5706
Two-RGCNFL 31 35 42 0.5939

Math Grace 45 63 68 0.5409
CNN-FL 26 39 61 0.3821
DEEPRL4FL 49 64 70 0.5729
Two-RGCNFL 51 69 75 0.5914

Mockito Grace 9 16 17 0.4478
CNN-FL 8 13 15 0.3922
DEEPRL4FL 9 17 19 0.4679
Two-RGCNFL 10 18 21 0.5087

5.1.2 RQ1.2: How Accurate Is Two-RGCNFL Localization at the Statement Level?

In order to measure the effectiveness of Two-RGCNFL in statement-level localization, the
following two classical SBFL techniques and two statement-level fault localization methods are used
for comparison:

(1) SupConFL [3] combines AST with statement sequence, and extracts the features of buggy code
through contrastive learning. It employs an attention-based LSTM to locate faulty elements.

(2) LLMAO [16] is a localization technique based on a language model, which is capable of
localizing faulty elements without any test coverage information.

(3) Ochiai [27] and Dstar [26] are two classical spectrum-based fault localization techniques, which
have been widely used in previous research works.

Fig. 5 shows the performance between the proposed Two-RGCNFL and the four baseline
methods in terms of statement-level fault localization in the overall case. As can be seen from the figure,
Two-RGCNFL consistently outperforms all baseline methods on Top-K (K = 1, 3, 5). Compared with
the traditional SBFL techniques (Ochiai and Dstar), Two-RGCNFL improves the Top-1 accuracy by
262.86%. This is because the traditional SBFL techniques only rely on the program execution spectra
to calculate the suspicious values of the statement, neglecting the role of the program’s internal code
context. Additionally, the issue of numerous identical suspiciousness values significantly affects the
accuracy of ranking. Compared with the two baseline methods (i.e., SupConFL and LLMAO), Two-
RGCNFL locates 29 and 44 more faults at Top-1. And at Top-5, it can locate 221 faults, accounting for
64.2% of the total number of faults in the experiment. This result indicates that with a fixed number of
inspections, Two-RGCNFL can locate more faulty statements than other methods, effectively saving
developers time and effort.
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Figure 5: Comparison of different techniques for statement-level fault localization on Top-K
(K = 1, 3, 5)

Table 4 shows the performance of different technologies in statement-level localization across
various projects. We observe that the traditional SBFL technology exhibits the poorest performance
in all projects. One of the key reasons is that they only consider the coverage information of test cases
to the code, and assign identical suspiciousness scores to statements within the same basic block. This
limitation is particularly evident in more complex projects like Closure, where the MRR decreases by
51.79% and 46.17% respectively compared to the better-performing Chart project. Secondly, LLMAO
performs better than the traditional SBFL technique in all projects. For example, in the Math project,
LLMAO achieves average improvements of 92.31%, 62.78%, and 77.78% in Top-K (K = 1, 3, 5)
accuracy, respectively. This is attributed to the fact that the representations learned by the pre-trained
language model already encapsulate extensive knowledge about suspiciousness of the statement,
which allows it to locate the fault without executing any test cases. However, this also prevents
it from achieving optimal performance. Finally, compared with SupConFL, the best performing
method among all baseline methods, Two-RGCNFL improves the Top-K (K = 1, 3, 5) accuracy by
12.5%∼53.85%, 8.33%∼40.35% and 9.09%∼35.82% respectively in all projects. It improves the MRR
score by 8.58%∼37.47%. The reason why SupConFL works best among the baseline methods is that
it can learn richer features of faulty elements. However, only the static information of the code is
contained in this feature. In contrast, Two-RGCNFL uses both static and dynamic information of
code, and Phase 2 of Two-RGCNFL is based on Phase 1. The completion of Phase 1 greatly reduces the
location range of faulty statements for Phase 2, so Two-RGCNFL achieves even better performance.

Table 4: Experimental results of statement-level positioning of different technologies in each project

Subjects Technique Top-1 Top-3 Top-5 MRR

Chart Ochiai 4 7 10 0.2732
Dstar 3 7 11 0.2586
SupConFL 8 12 13 0.4462
LLMAO 6 10 12 0.3651
Two-RGCNFL 9 13 17 0.5143

(Continued)
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Table 4 (continued)

Subjects Technique Top-1 Top-3 Top-5 MRR

Closure Ochiai 8 21 36 0.1317
Dstar 9 23 37 0.1392
SupConFL 43 57 67 0.3429
LLMAO 36 49 64 0.3046
Two-RGCNFL 55 80 91 0.4387

Lang Ochiai 7 11 18 0.1986
Dstar 8 12 18 0.2093
SupConFL 13 27 32 0.3307
LLMAO 12 23 29 0.3082
Two-RGCNFL 20 32 36 0.4546

Math Ochiai 13 25 27 0.2075
Dstar 12 23 27 0.1930
SupConFL 27 42 51 0.3592
LLMAO 24 39 48 0.3341
Two-RGCNFL 35 52 60 0.4427

Mockito Ochiai 3 8 10 0.2196
Dstar 3 9 11 0.2213
SupConFL 7 11 16 0.3798
LLMAO 5 9 14 0.2975
Two-RGCNFL 8 12 17 0.4124

5.2 RQ2: Does the Construction of MCDG Contribute to the Localization of Two-RGCNFL at the
Method Level, and What Extent Can It Bring Benefits?
Although the ultimate goal of this paper is to achieve statement-level localization, the accuracy

of method-level localization serves as a prerequisite for the accuracy of statement-level localization.
Therefore, this paper has compared the effectiveness of MCDG at the method level. In this paper, a
comparison is made by constructing a PDG without inter-class dependencies. In the following, we use
MCDG and PDG to denote the construction of MCDG and PDG in Phase 1, respectively.

For RQ2, this paper still adopts Top-K (K = 1, 3, 5) and MRR as the evaluation metric. As can
be seen from Fig. 6, MCDG outperforms PDG in both two evaluation metrics. Specifically, MCDG
improves Top-K (K = 1, 3, 5) accuracy by 15.91%∼40.68%, 20.67%∼30.19% and 11.76%∼31.25%,
respectively, and improves MRR score by 12.56%∼32.79%. It is worth noting that from Fig. 3d, we
find that MCDG has the most obvious improvement compared with PDG in the Closure project, while
it is relatively gentle in the Math project. It indicates that the performance improvement of MCDG
varies according to the number of inter-class faults contained in the project. Thus, by additionally
considering inter-class dependency relations, fault localization performance can be enhanced to a
certain extent, which also demonstrates that the construction of MCDG is effective.
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Figure 6: PDG and MCDG are constructed in Two-RGCNFL for comparative experiments. (a)
Their performance comparison on Top-1; (b) Their performance comparison on Top-3; (c) Their
performance comparison on Top-5; (d) Their performance comparison on MRR

5.3 RQ3 How Does the Number of Hidden Layers of the MLP Affect the Statement Level
Localization of Two-RGCNFL in the Modified GraphSMOTE?
In the improved GraphSMOTE algorithm, the feature extractor and edge generator are the main

components, and their performance will directly affect the performance of the classification model in
Phase 1, and indirectly affect the performance of the ranking model in Phase 2. In the experiment, they
are trained by Ledge. In Section 3.1.3, Ledge is obtained by calculating the error of the actual adjacency
matrix and the adjacency matrix predicted by the edge generator, MLP is the main framework structure
of the edge predictor, so this paper needs to discuss the number of hidden layers of MLP. In the
experiment, H is set to {1, 2, 3, 4} to observe the statement-level fault localization performance.

For RQ3, Fig. 7 presents the experimental results for the local Top-1 accuracy and the overall
MRR ranking. From the figure, we can see that for five projects, Two-RGCNFL shows the worst
localization performance when H is 1. This is because when using a shallow network, MLP cannot
effectively learn the mutual contributions between nodes and the complex relationships between them,
which leads to large errors in the predicted edges, resulting in poor localization results. When H
is increased to 2, we can find that the localization performance of Two-RGCNFL is improved on
different projects. Specifically, the improvement is most obvious on the Closure project, which shows
that for complex projects, the increase in the number of hidden layers enables MLP to show its
advantages. However, as H increases from 2 to 4, the localization performance of Two-RGCNFL
begins to decline, and the model will overfit at this time, and the complex relationship between nodes
learned may contain a lot of noise, while ignoring more general features or rules. Therefore, in the
subsequent task of this work, we fix the number of MLP hidden layers of the edge generator to 2.
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Figure 7: Influence of the number of hidden layers of MLP on Two-RGCNFL (a) comparison of
different numbers of hidden layers in Top-1 (b) comparison of different numbers of hidden layers in
MRR

5.4 RQ4: What Is the Impact of Different Loss Functions on the Localization of Two-RGCNFL at the
Statement Level?
The commonly used loss function in RankNet is the cross-entropy loss function. However, as

mentioned in Section 3.3, the features of statements in the same basic block may be very similar, which
means that a pair of similar statement features will get very close scores when input into RankNet. This
results in the cross-entropy loss function having difficulty distinguishing between them. Therefore, this
paper uses hinge loss function in our ranking model. To validate this idea, we conduct a comparison
between these two loss functions.

Table 5 presents the experimental results using different loss functions. As can be observed from
the table, the hinge loss function outperforms the cross-entropy loss function when used in the
ranking model. Specifically, employing the hinges loss function achieved 35.88%, 53.39%, and 62.43%
accuracy in Top-K (K = 1, 3, 5), while using the cross-entropy loss function achieved 34.18%, 51.98%,
and 61.02% accuracy in Top-K (K = 1, 3, 5). In terms of the MRR score, the hinge loss function
improves by 0.0156 compared to the cross-entropy loss function. These data suggest that, although the
improvement from using the hinge loss function over the cross-entropy loss function in our approach
is modest, it can still aid in localization to a certain extent. It also indicates that the hinge loss function
has a stronger discrimination ability for statements with high pairwise similarity in our task.

Table 5: Comparison results of different loss functions

Loss function Top-1 Top-3 Top-5 MRR

Cross entropy 121 184 216 0.4371
Hinge 127 189 221 0.4527

6 Discussion
6.1 Statistical Significance Test

This section discusses whether there is a significant difference between the fault localization
performance of Two-RGCNFL and the baseline methods by performing statistical significance tests.
We used Wilcoxon signed ranks test for this task because the sample data of this work did not
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satisfy normal distribution and nonparametric techniques should be chosen to test the data. Wilcoxon
signed ranks test is a nonparametric test used to compare the median differences of two related
samples. In this paper, the localization results of Two-RGCNFL are set as the front data, and the
localization results of other baseline methods are set as the back data. The null hypothesis is that there
is no significant difference between the localization performance of Two-RGCNFL and the baseline
methods. The alternative hypothesis is a significant difference between the localization performance
of Two-RGCNFL and the baseline methods. In addition, two-tailed test is used in the experiment.

The significance experiment considers 354 faults of Defects4J dataset, applying different tech-
niques to rank each fault. Wilcoxon signed ranks test is used to confirm the difference between the
two groups of ranking results. As shown in Table 6, FA

B represents the significance test of localization
results of techniques A and B at the method level, and SA

B represents the significance test of localization
results of techniques A and B at the statement level. The table shows that the p-values for all pairs
are extremely small, so the null hypothesis is rejected and the alternative hypothesis is accepted at a
significance level greater than 99%. That is, there is a statistically significant difference between the
localization performance of Two-RGCNFL and the baseline methods.

Table 6: Results of the two-tailed Wilcoxon signed rank test

Technology pairing Z p-value

FTwo−RGCNFL
GRACE −11.848∗ 5.047 × 10−30

FTwo−RGCNFL
CNN_FL −13.854∗ 1.203 × 10−43

FTwo−RGCNFL
DEEPRL4FL −8.847∗ 8.963 × 10−19

STwo−RGCNFL
LLMAO −11.272∗ 1.807 × 10−29

STwo−RGCNFL
SupConFL −9.868∗ 5.739 × 10−23

STwo−RGCNFL
Dstar −15.334∗ 4.535 × 10−53

STwo−RGCNFL
Ochiai −15.029∗ 4.755 × 10−51

Note: ∗Based on negative rank.

6.2 Threats to Validity

Threats to internal validity are mainly feature collection. Feature collection involves the integrity
of the datasets and the correctness of the tools. This paper uses Doc2Vec and Gzoltar to extract the
semantic information and spectral information of the programs, respectively. Both of these tools have
been verified by the majority of researchers and are widely used in various applications.

Threats to external validity are mainly from the dataset. The dataset used in our experiments is
5 projects from the Defects4J (v2.0.1) benchmark. In the future, we will conduct experiments using
different datasets to verify the generality of our approach. In addition, Defects4J is a dataset based
on Java language, which limits the universality and applicability of the experimental results to a
certain extent. Firstly, the Java language has its unique syntax and runtime features, which may make
the proposed approach challenging when applied to other programming languages. Secondly, in the
proposed method, the construction of MCDG is a key step, and in this work, the Soot tool is used
to build MCDG. Soot is a bytecode analysis framework designed specifically for Java. Its functions
and optimization strategies are closely centered on the features of Java language. Therefore, it may be
necessary to find or develop similar code analysis tools when applying the methods of this study to
other programming languages. In the future, we will choose a variety of representative programming
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languages, such as C++ or Python, etc. For these programming languages, explore and develop code
analysis tools or alternatives suitable for these languages. Thus, the generality and applicability of the
proposed method can be more comprehensively evaluated.

7 Conclusion and Future Work

This paper introduces Two-RGCNFL, a deep learning approach that integrates inter-class and
intra-class dependencies into MCDG, and then uses RGCN to extract node features of MCDG,
which enables it to locate inter-class method call type faults. In addition, this paper uses the RankNet
model to address the issue of equal suspicious values of statements within the same basic block. The
experimental results demonstrate that Two-RGCNFL significantly outperforms traditional SBFL
techniques in statement-level fault localization, and it maintains its superiority compared to other
baseline methods presented in this paper. Furthermore, this paper experimentally demonstrates that
additionally considering inter-class method dependencies gives better results than only considering
intra-class method dependencies. In the future, for Phase 1, we will investigate the construction of
MCDG on different programming languages to enhance the applicability of Two-RGCNFL. For
Phase 2, in the feature extraction module, we will study the impact of other different feature dimensions
on localization performance, aiming to maximize localization performance.
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