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ABSTRACT

Addressing the complex issue of emergency resource distribution center site selection in uncertain environments,
this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency
of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were
identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-
objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into
a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-
MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce
high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution
centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model
and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test
functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective
Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-
Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted
Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster
convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between
multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching
and applying emergency site selection problems.
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1 Introduction

Various major urban emergencies have frequently occurred worldwide in recent years, causing
significant casualties and property damage [1]. Emergency resource distribution centers (hereafter
referred to as “Centers”) are facilities specifically designed to store disaster relief supplies and are
responsible for a series of activities, including the storage and distribution of emergency resources [2,3].
Numerous scholars have researched the site selection problem of emergency resources and proposed
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various site selection models [4–6]. Kacprzyk et al. [7] employed fuzzy multi-attribute group decision-
making and Associated Triangular Fuzzy Probability Averaging (As-TFPA) aggregation operators
to solve a two-stage multi-objective site selection model for emergency facilities. Huang et al. [8]
developed a multi-objective planning model for the site selection and allocation of cruise emergency
supplies, and used the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to solve the model.
de Veluz et al. [9] proposed a scenario-based multi-objective site selection and routing model,
and used a multi-objective particle swarm optimization algorithm to solve the model. Although
existing studies have achieved significant results in emergency resource site selection, some limitations
remain [10]. Most studies assume that site selection decision problems (SSDPs) are conducted in
deterministic environments. However, in real-world scenarios, factors influencing emergency center
site selection, such as facility capacity and operational costs, are often uncertain, making it difficult for
existing models to address these uncertainties effectively. As a result, fuzzy theory has gradually been
applied to tackle these uncertainty issues and has proven its effectiveness in various decision-making
environments [11,12]. In previous studies on constructing site selection decision models (SSDMs),
scholars have predominantly focused on economic and time-related factors. However, in real-world
scenarios, the degree of urgency in demand at each Disaster-Affected Site (hereafter referred to as
“Site”) should be incorporated into the SSDM, as the situations at different Sites vary [13]. The
SSDP for Emergency Centers is a Non-deterministic Polynomial (NP)-Hard problem, and intelligent
optimization algorithms can find satisfactory solutions quickly [14]. The Harris Hawks Optimization
(HHO) algorithm is a swarm intelligence optimization algorithm based on the cooperative hunting
strategy of Harris Hawks [15]. The HHO algorithm, known for its simplicity, fast convergence, and
minimal control parameters [16,17], is widely used in path planning and image processing. However,
its application to SSDP still needs to be explored. Therefore, this study proposes an improved Chaotic
Quantum Harris Hawks Optimization algorithm (CQ-MOHHO) to address the Centers’ SSDPs in
uncertain environments [18,19].

This study introduces a multi-objective, multi-constraint optimization modeling framework com-
bined with the CQ-MOHHO algorithm, effectively addressing the uncertainty and complexity of
emergency center site selection. This approach enhances the practical applicability of the model.
First, the study employed triangular fuzzy numbers to describe the uncertain decision information
in the SSDP for Emergency Centers. Subsequently, key parameters such as the degree of urgency in
demand at Sites were incorporated into the mathematical model, leading to the establishment of a
triangular fuzzy multi-objective SSDM for Emergency Centers with three primary objectives: urgency
cost, economic cost, and transportation distance cost. Next, using the defuzzification definition and
the Graded Mean Integration Representation (GMIR) method, the triangular fuzzy multi-objective
mathematical model was converted into a precise multi-objective mathematical model that is easier to
solve. This study proposes an improved Chaotic Quantum Multi-Objective Harris Hawks Optimiza-
tion (CQ-MOHHO) algorithm to solve the model above. In addition, the effectiveness of the proposed
model and the CQ-MOHHO algorithm was validated through case analysis, with comparisons against
Multi-Objective Harris Hawks Optimization (MOHHO), NSGA-II, and Multi-Objective Grey Wolf
Optimizer (MOGWO) demonstrating its feasibility and superiority. Furthermore, the algorithm’s
performance was evaluated using Zitzler-Deb-Thiele (ZDT) test functions and Generational Distance
(GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics confirming its superior
global search capability, faster convergence, and higher solution quality.

The organization of this study is as follows. Section 2 presents the basic concepts of triangular
fuzzy numbers and defuzzification methods. Section 3 describes the problem formulation and model
construction for the SSDP of Emergency Centers. Section 4 introduces the proposed CQ-MOHHO



CMC, 2025, vol.82, no.2 2179

algorithm and the steps for solving the model. Section 5 presents a case study and discusses the
performance comparison between the CQ-MOHHO algorithm and other algorithms. Section 6
presents the conclusions.

2 Basic Concepts
2.1 Basic Concepts of Triangular Fuzzy Numbers

In the site selection decision model (SSDM) for Emergency Centers, some parameters are difficult
to obtain precise values for, and fuzzy number theory can effectively address this issue. This study uses
triangular fuzzy numbers to represent the uncertain parameters in the SSDM for Emergency Centers.

Definition 1: Let S̃ = (s1, s2, s3) be a triangular fuzzy number, and its membership function fÃ (x)

is shown in Eq. (1), where s1 and s3 are the lower and upper limits of the triangular fuzzy number,
respectively, s2 is the most likely value, and s1 < s2 < s3 [20].

Definition 2: Let S̃ = (s1, s2, s3) and S̃∗ =
(

s∗
1, s∗

2
, s∗

3

)
be two triangular fuzzy numbers, whose

mathematical operation rules are shown in Eqs. (2) to (5) [21].

fÃ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − s1

s2 − s1

, s1 ≤ x ≤ s2

x − s3

s2 − s3

, s2 ≤ x ≤ s3

0 , otherwise

(1)

S̃ + S̃∗ = (
s1 + s∗

1, s2 + s∗
2, s3 + s∗

3

)
(2)

S̃ − S̃∗ = (
s1 − s∗

1, s2 − s∗
2, s3 − s∗

3

)
(3)

S̃ × S̃∗ = (
s1 × s∗

1, s2 × s∗
2, s3 × s∗

3

)
(4)

S̃/S̃∗ = (
s1/s∗

1, s2/s∗
2, s3/s∗

3

)
(5)

Definition 3: Let S̃ = (s1, s2, s3) and S̃∗ =
(

s∗
1, s∗

2
, s∗

3

)
be two triangular fuzzy numbers. The ordinal

relationship between S̃ and S̃∗ is defined as: (a) If and only if s1 ≤ s∗
1, s2 ≤ s∗

2, s3 ≤ s∗
3, then S̃ ≤ S̃∗;

(b) If and only if s1 > s∗
1, s2 > s∗

2, s3 > s∗
3, then S̃ > S̃∗; (c) If and only if s1 ≈ s∗

1, s2 ≈ s∗
2, s3 ≈ s∗

3, then
S̃ ≈ S̃∗ [22].

2.2 Defuzzification Method of Triangular Fuzzy Numbers

The majority of current intelligent optimization algorithms are specifically developed to tackle
mathematical models that incorporate exact parameters. Hence, it is imperative to employ a defuzzi-
fication approach to transform the fuzzy parameters in the SSDM for Emergency Centers into
precise parameters for the solution. Following defuzzification, the parameters can accurately represent
their inherent uncertainty and ensure the model’s effective solution. According to the Graded Mean
Integration Representation (GMIR) theory [23], Definition 4 shows how to turn triangular fuzzy
parameters into precise parameters.
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Definition 4: Let S̃ = (s1, s2, s3) be a triangular fuzzy number. The method of converting S̃ into a

precise number Crisp
(

S̃
)

is shown in Eq. (6), where k is any positive integer [24].

Crisp
(

S̃
)

= (ks2 + s1 + s3) / (k + 2) (6)

3 Site Selection Decision Model for Emergency Centers
3.1 Problem Description and Model Assumptions

This study considers a scenario involving m candidate Emergency Centers and n Sites, aiming to
select m′ (m′ ≤ m) of the candidate locations to open as Emergency Centers to meet the emergency
resource needs of all Sites [25]. The SSDM for Emergency Centers requires determining the optimal
number and locations of Emergency Centers to open and planning the Sites to be served by each open
Emergency Center and their emergency resource distribution quantities under the given objectives and
constraints. In this model, the number of Emergency Centers to be opened is an optimization variable,
and the decision is made by minimizing urgency, economic, and transportation distance costs. Model
assumptions are as follows: (a) The final selected centers can only be chosen from known candidate
Emergency Center locations. (b) Each Emergency Center can serve all Sites in its coverage area with
its maximum storage capacity. (c) One Emergency Center serves each Site. (d) Traffic accidents and
extreme weather delays are ignored. (e) The Emergency Center to Site distance is assumed to be the
vehicle travel path length. Table 1 lists SSDM symbols and meanings.

Table 1: The symbols and meanings in the SSDM

Index Symbol Meaning

1 Ai, i ∈ I = {1, 2, . . . , m} Disaster-Affected Site
2 Bj, j ∈ J = {1, 2, . . . , n} Candidate Emergency Resource Distribution Center
3 b̃j/bj Fuzzy/precise emergency resource demand of Bj

4 φ
(
Bj

)
Urgency coefficient of demand for Bj (obtained through expert
assessment)

5 f̃i/fi Fuzzy/precise operating cost of Ai

6 r̃i/ri Fuzzy/precise storage capacity of Ai

7 ξ Unit transportation cost per distance
8 aij Unit cost of material delivery from Ai to Bj (aij = Dij · ξ )
9 Dij The road distance from Ai to Bj

10 σ Time cost coefficient under non-emergency conditions
(obtained through survey)

11 βj Time sensitivity factor of Bj (the more severe the disaster, the
higher the value)

12 Ṽij/Vij Fuzzy/precise vehicle speed from Ai to Bj

13 t̃ij/tij Fuzzy/precise delivery time from Ai to Bj (t̃ij = Dij/Ṽij)
15 P̃ij/Pij Fuzzy/precise unit material time penalty cost from Ai to Bj

(P̃ij = σ βj · t̃ij)
16 xij Decision variable, emergency resource distribution quantity

from Ai to Bj

(
xij ≥ 0

)
.

(Continued)
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Table 1 (continued)

Index Symbol Meaning

17 yi Binary decision variable, if Ai is selected, then yi = 1; otherwise
yi = 0.

18 zij Binary decision variable, if Ai serves Bj, then zij = 1; otherwise
zij = 0.

3.2 Construction of Multi-Objective SSDM for Emergency Centers

This section constructs a Triangular Fuzzy Multi-Objective SSDM (Model M4-1) and a Precise
Multi-Objective SSDM (Model M4-2) separately for the Emergency Center site selection problem.

(1) The Triangular Fuzzy Multi-Objective SSDM

The Model M4-1 is a triangular fuzzy multi-objective SSDM for Emergency Centers. Urgency,
economic, and transportation distance costs are fully considered in the model. Eqs. (7)–(9) show Model
M4-1’s three objective functions. Eqs. (10)–(15) represent model constraints.

Model M4-1:

min F1 =
m∑

i=1

n∑
j=1

P̃ij

φ
(
Bj

) · xij · zij (7)

min F2 =
m∑

i=1

n∑
j=1

aijxijzij +
m∑
i

f̃iyi (8)

min F3 =
m∑

i=1

n∑
j=1

Dijzij (9)

zij ≤ yi (∀i ∈ I , ∀j ∈ J) (10)
m∑

i=1

xij ≥ b̃j (∀i ∈ I , ∀j ∈ J) (11)

n∑
j=1

xij ≤ r̃iyi (∀i ∈ I , ∀j ∈ J) (12)

xij ≥ 0 (∀i ∈ I , ∀j ∈ J) (13)

yi = {0, 1} (∀i ∈ I) (14)

zij = {0, 1} (∀i ∈ I , ∀j ∈ J) (15)

The first objective function represents the minimization of urgency cost (F1). To better quantify
each Site’s urgency level and time sensitivity, the urgency coefficient of demand φ

(
Bj

)
and the unit

material time penalty cost P̃ij are introduced, as shown in Eq. (7). The second objective function is
the minimization of economic cost (F2), which includes the material delivery cost and the operating
cost of the Emergency Center, as shown in Eq. (8). The third objective function aims to minimize the
total transportation distance cost (F3) from Emergency Center Ai to its corresponding Sites Bj on the
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premise that the needs of all Sites are met, as shown in Eq. (9). The first set of constraints indicates that
if an Emergency Center serves a Site, then the corresponding candidate Emergency Center Ai must be
selected, as shown in Eq. (10). The second set of constraints ensures that the demand of each Site must
be met, as shown in Eq. (11). The third set of constraints requires that the storage capacity of each
Emergency Center must accommodate the distribution quantity to its corresponding Sites, as shown
in Eq. (12). The fourth set of constraints states that the emergency resource distribution quantities, as
decision variables, should take non-negative values, as shown in Eq. (13). The fifth and sixth sets of
constraints are 0–1 binary decision variables, as shown in Eqs. (14) and (15). yi represents the selection
of candidate Emergency Centers. When yi equals 1, it indicates that the i-th candidate Emergency
Center Ai is selected. When zij equals 1, it indicates that the Emergency Center Ai serves the Site Bj.

(2) The Precise Multi-Objective SSDM

The meaning of Model M4-2’s objective functions and constraints are the same as Model M4-
1, including the selection of Emergency Centers and the assignment of Sites. The meaning of Model
M4-2’s objective functions and constraints are the same as Model M4-1. According to Definition 2–
Definition 4, Eq. (6) can convert Model M4-1’s triangular fuzzy parameters into precise parameters
(set k = 2 in this study). Eqs. (16)–(18) show Model M4-2’s three objective functions, and Eqs. (19)–
(24) show its constraints.

Model M4-2:

min F1 =
m∑

i=1

n∑
j=1

(
2Pij2 + Pij1 + Pij3

)
4φ

(
Bj

) · xij · zij (16)

min F2 =
m∑

i=1

n∑
j=1

aij · xij · zij +
m∑
i

(2fi2 + fi1 + fi3)

4
· yi (17)

min F3 =
m∑

i=1

n∑
j=1

Dijzij (18)

zij ≤ yi (∀i ∈ I , ∀j ∈ J) (19)
m∑

i=1

(
xij1, xij2, xij3

) ≥ (
bj1, bj2, bj3

)
(∀i ∈ I , ∀j ∈ J) (20)

n∑
j=1

m∑
i=1

(
xij1, xij2, xij3

) ≤ (ri1yi, ri2yi, ri3yi) (∀i ∈ I , ∀j ∈ J) (21)

(
xij1, xij2, xij3

) ≥ 0 (∀i ∈ I , ∀j ∈ J) (22)

yi = {0, 1} (∀i ∈ I) (23)

zij = {0, 1} (∀i ∈ I , ∀j ∈ J) (24)

According to Definition 3, the constraints in Model M4-2 that are in the form of fuzzy triplets
can be converted into precise constraints, meaning that Eqs. (20)–(22) can be transformed into
Eqs. (25)–(27).

m∑
i=1

xij1 ≥ bj1,
m∑

i=1

xij2 ≥ bj2,
m∑

i=1

xij3 ≥ bj3 (∀i ∈ I , ∀j ∈ J) (25)
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n∑
j=1

m∑
i=1

xij1 ≤ ri1yi,
∑n

j=1

m∑
i=1

xij2 ≤ ri2yi,
n∑

j=1

m∑
i=1

xij3 ≤ ri3yi (∀i ∈ I , ∀j ∈ J) (26)

xij1 ≥ 0, xij2 ≥ 0, xij3 ≥ 0 (∀i ∈ I , ∀j ∈ J) (27)

4 Solving the Emergency Centers SSDM Using the CQ-MOHHO Algorithm
4.1 The Harris Hawks Optimization Algorithm

The Harris Hawks Optimization (HHO) algorithm, introduced by Heidari and Mirjalili in 2019, is
a bio-inspired method based on the predatory behavior of Harris Hawks [26]. As a global optimization
approach, it solves constrained problems [27]. The HHO algorithm operates through three phases:
exploration, transition, and exploitation.

(1) Exploration Phase. Different strategies are selected using a random number q, as shown in
Eq. (28). Where Xi (t) represents the position of the i-th Harris Hawk at the t-th iteration, Xr (t)
represents the current prey’s position, Xm (t) represents the center position of the Harris Hawk group,
r1, r2, r3, r4 and q are random numbers generated within the interval (0, 1). ub and lb are the upper and
lower bounds of the variable range, respectively [28].⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xi (t + 1) =
{

Xrand (t) − r1 |Xrand (t) − 2r2Xi (t)| , q ≥ 0.5
(Xr (t) − Xm (t)) − r3 (lb + r4 (ub − lb)) , q < 0.5

Xm (t) = 1
N

(
N∑

i=1

Xi (t)
) (28)

(2) Transition Phase. Harris Hawks switch between different predatory behaviors based on the
prey’s escape energy, which is calculated as shown in Eq. (29). Where E represents the prey’s escape
energy, E0 is the initial energy of the prey, t is the current iteration, and T is the maximum iteration [29].

E = 2E0

(
1 − t

T

)
(29)

(3) Exploitation Phase. When the prey’s escape energy |E| is less than 1, the Harris Hawk group
compares the |E| value and a random number r within the range (0, 1) against the value 0.5, adopting
an appropriate siege strategy [30]. These strategies are categorized into the following four types, see
Fig. 1.

(a) Soft Siege. When r ≥ 0.5 and |E| ≥ 0.5, the prey’s escape energy is relatively high, and the
position update formula for the Harris Hawks is shown in Eq. (30). Where �Xi (t) represents the
difference between the prey’s position and the Harris Hawk’s position at the t-th iteration; Ji indicates
the prey’s jumping ability, which is a random number within the range (0, 2).{

Xi (t + 1) = �Xi (t) − E · |Ji · Xr (t) − Xi (t)|
�Xi (t) = Xr (t) − Xi (t)

(30)

(b) Hard Siege. When r ≥ 0.5 and |E| < 0.5, the prey’s escape energy is relatively low, and the
position update formula for the Harris Hawks is shown in Eq. (31).

Xi (t + 1) = Xr (t) − E · |�Xi (t)| (31)

(c) Progressive Rapid Dive Soft Siege. When r < 0.5 and |E| ≥ 0.5, the Harris Hawks initially
adopt a soft siege strategy. If the ambush is successful, they update the fitness value and execute strategy
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Y ; otherwise, they switch to a random walk strategy Z. If the random walk strategy fails, they return
to their original position, with the position update formula shown in Eq. (32). Si represents a random
vector of dimension D, and LF stands for the Levy function.⎧⎪⎪⎨
⎪⎪⎩

Xi (t + 1) =
{

Yi (t) , if F (Yi (t)) < F (Xi (t))
Zi (t) , if F (Zi (t)) < F (Xi (t))

Yi (t) = Xr (t) − E · |Ji · Xr (t) − Xi (t)|
Zi (t) = Yi (t) + Si · LF (D)

(32)

(d) Progressive Rapid Dive Hard Siege. When r < 0.5 and |E| < 0.5, the Harris Hawks initially
adopt a hard siege strategy. If the ambush is successful, their position is updated based on the mean
value Xm (t), and they execute strategy Y ; otherwise, they switch to a random walk strategy Z. If the
random walk strategy fails, they return to their original position, with the position update formula
shown in Eq. (33).⎧⎪⎪⎨
⎪⎪⎩

Xi (t + 1) =
{

Yi (t) , if F (Yi (t)) < F (Xi (t))
Zi (t) , if F (Zi (t)) < F (Xi (t))

Yi (t) = Xr (t) − E · |Ji · Xr (t) − Xm (t)|
Zi (t) = Yi (t) + Si · LF (D)

(33)

Figure 1: Spatial diagrams of the four strategies in the HHO algorithm

4.2 Improvement Strategies of the CQ-MOHHO Algorithm

The traditional HHO algorithm performs well in single-objective optimization but struggles in
complex multi-objective problems, frequently lacking the ability to balance competing objectives.
The Multi-Objective Harris Hawks Optimization (MOHHO) algorithm addresses this, but it may
still exhibit local optima due to limited population diversity. In order to enhance performance, this
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study proposes the CQ-MOHHO algorithm, which incorporates chaotic mapping and quantum
optimization strategies.

(1) Chaotic Mapping Improvement Strategy

As a nonlinear dynamic system, chaos mapping offers good randomness and broad coverage of the
solution space, helping prevent premature convergence. Effective population initialization is crucial,
ensuring a uniform distribution of position vectors and avoiding duplication common in random
methods. This study integrates logistic chaotic mapping into the MOHHO algorithm to enhance
population initialization, improving the quality of the initial population. Eq. (34) presents the logistic
chaotic mapping [31].

Un+1 = aUn (1 − Un) , a = 4 (34)

The population generated using Logistic chaotic mapping can have its position initialized accord-
ing to Eq. (35). Here, Xi,j represents the initial population position matrix of the j-th decision variable
for the i-th individual. chaosi,j (N, dim) denotes the N × dim chaotic sequence matrix, where N is the
population size and dim is the dimension of the decision variables.

Xi,j = lbj + chaosi,j (N, dim) × (
ubj − lbj

)
(35)

(2) Quantum Optimization Improvement Strategy

This study introduces a quantum optimization strategy based on the uncertainty principle in
quantum mechanics [32]. Quantum optimization is applied during the MOHHO algorithm’s local
search when |E| < 0.5 to track each Harris Hawk’s position. Individuals follow quantum mechanics’
motion rules, potentially moving to any location in the search space. The quantum mechanical motion
rules are obtained by applying the probabilistic distribution characteristics of quantum states and the
position and momentum uncertainty principle, which allows individuals to be randomly distributed
across the search space according to the quantum state function, thereby enhancing global exploration
capability [33]. Using the Monte Carlo method, each individual’s positions are observed L times per
iteration, with fitter individuals replacing others to improve escape from local optima. L is set to 6 to
reduce computational costs [34]. Fig. 2 illustrates this strategy.

Ha

Ha4

...

HaL

Ha1

Ha2

Ha3

Monte Carlo 
Method

Observation

Quantum 
Optimization

Ha
*

Collaborative 
Comparison

Figure 2: Schematic diagram of the quantum optimization strategy for Harris Hawk individuals

In the MOHHO algorithm, when the prey’s escape energy |E| < 0.5, a quantum improvement is
applied to the Harris Hawk individuals in the population. The specific approach involves observing
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the Harris Hawk individual Ha in population a to obtain six positions: HaL (L = 1, 2, . . . , 6). After
quantum processing, a new individual H∗

a is obtained (the same operation is applied to population b
as to population a). After completing one iteration, populations a and b generate the optimal prey
positions Ra and Rb. These positions are then collaboratively processed to yield the prey position
Rbest, superior to both Ra and Rb across all objectives, representing the quantum-improved prey
position. This quantum improvement strategy, which integrates the uncertainty principle of quantum
mechanics, significantly enhances the optimization accuracy and convergence speed of the MOHHO
algorithm. It strengthens the global search capability and increases the likelihood of escaping local
optima while finding the optimal balance among multiple objectives, thereby improving overall
optimization performance.

4.3 Algorithm Steps of the CQ-MOHHO Algorithm

The steps of the improved CQ-MOHHO algorithm are as follows:

Step 1: Generate the initial population using logistic chaotic mapping, where the population
dimension is D, the number of Harris Hawk individuals is N, and the maximum number of iterations
is T .

Step 2: Initialize the external set P to store the dominant solutions. Divide the initial population
evenly into population a and b, and assign them the prey escape energies Ea and Eb, respectively.

Step 3: Start the algorithm iteration, evaluate the objective function values of each individual
in the population, and update the non-dominated solutions in the external set P to ensure the non-
dominance and diversity of P.

Step 4: For each population, if the energy |Ea| (or |Eb|) ≥ 1, the Harris Hawks update their
positions according to Eq. (28). When |Ea| (or |Eb|) < 0.5, quantum local optimization is performed,
observing each individual L times using the Monte Carlo method to find precise positions, with the
best value replacing the original position. Based on the random number r, individuals select a strategy
from the four exploitation phase strategies, as defined by Eqs. (30) to (33) t to update their positions.

Step 5: Collaboratively process prey positions from different populations, using the Pareto front
to update global positions. The non-dominated solution set is selected based on multi-objective
optimization values to update the global optimal solution. The specific steps are as follows:

Step 5-1: Calculate the objective function values for each individual in different populations.

Step 5-2: Construct the Pareto front based on the objective function values and select the non-
dominated solution set.

Step 5-3: Update the non-dominated solution set of the current Pareto front into the external
set P.

Step 6: Update the Harris Hawk population, prey escape energy E, and the fitness values of the
external set P.

Step 7: Check whether the termination conditions of the algorithm are met. In this study, two
termination conditions are set: (1) the number of iterations reaches the maximum set value (e.g., 100
iterations); (2) the change in the non-dominated solution set in the external archive is less than a preset
threshold over multiple consecutive iterations, indicating that the solution set has stabilized. If either
condition is satisfied, the algorithm stops and proceeds to Step 8; otherwise, it continues to repeat
Steps 4–7.

Step 8: Output the global prey positions and their corresponding non-dominated solution set. Use
the non-dominated solution set in the external set P as the global optimal solution set.
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The improved CQ-MOHHO algorithm enhances population diversity during initialization and
improves local search. It balances global and local search more effectively, accelerates convergence,
and increases the likelihood of finding the global optimal solutions.

4.4 Solving the Emergency Centers SSDM Based on the CQ-MOHHO Algorithm

This study proposes solving the Emergency Centers SSDM based on the improved CQ-MOHHO
algorithm, and the framework diagram is shown in Fig. 3. The overall steps for solving the model are
as follows:

Step 1: Construct the triangular fuzzy site selection decision model

Uncertainty 
parameters

Urgency cost
(F1)

Economic cost
(F2)

Transportation 
distance (F3)

Triangular fuzzy multi-objective emergency resource reserve site selection decision model 
(M4-1)

Triangular fuzzy numbers Core objectives

Step 2: Model conversion

Graded Mean Integration Representation (GMIR)

Precise multi-objective emergency resource reserve site selection decision model 
(M4-2)

Defuzzification theory (Definition 4)

Constraint condition refinement (Definition 3)Objective function refinement

Step 3: Solve the precise multi-objective model (M4-2)

Multi-objective Harris Hawks 
Optimization (MOHHO)

Solve the Pareto front of model M4-2 to obtain the optimal solution set

Quantum optimization strategy

Chaotic mapping strategy
Improvement

Improved Chaotic Mapping Multi-objective Harris Hawks Optimization (CQ-MOHHO)

Conversion

Step 4: Determine the site selection decision plan

Figure 3: Framework diagram of the solution method for the SSDM

Step 1: Construct the triangular fuzzy multi-objective SSDM M4-1 for Emergency Centers.

Step 2: Convert the model M4-1 into the precise multi-objective SSDM M4-2.
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Step 3: Propose the improved CQ-MOHHO algorithm to solve the Pareto front of the precise
multi-objective SSDM M4-2.

Step 4: Balance the three core objectives to select the ideal solution set, in order to determine the
final site selection decision plan.

5 Case Study

This section takes the site selection of Emergency Centers after an earthquake in City W as a
background. The Emergency Centers SSDM is solved, and the performance of the solving algorithm
is tested and evaluated.

5.1 Case Background and Experimental Data

After the sudden earthquake in City W, 20 Sites Bj (j = 1, 2, 3, . . . , 20) required emergency
resources. It is known that there are 9 candidate Emergency Centers Ai (i = 1, 2, . . . , 9) available locally.
The City W plans to select several Emergency Centers from these nine candidate locations to ensure
that the material needs of the 20 Sites are met under the objectives of minimizing urgency cost,
economic cost, and transportation distance cost.

This study obtained the latitude and longitude information of each candidate Emergency Center
and Site using GIS and Google Maps, as shown in Table 2. It is assumed that the distance calculated
from the latitudes and longitudes of Ai and Bj is equivalent to the transportation distance Dij, the
transport vehicle speed is Ṽij = (60, 70, 80) km/h, and the fuzzy delivery time can be calculated
using the formula ξ = 0.001. Based on case and expert evaluation data, this study sets the unit
transportation cost per distance at σ = 3 ten thousand yuan and the time cost coefficient at d = 3. In
this case, to better account for uncertainty factors such as resource demand following the earthquake,
operating costs, storage capacity, and unit material time penalty costs, these variables are represented
as triangular fuzzy numbers. The experimental data are presented in Tables 3 to 6. Due to space
constraints, only a portion of the experimental data is presented. The full dataset will be uploaded
as an attachment.

Table 2: Coordinates of emergency centers and sites

No. Latitude Longitude No. Latitude Longitude No. Latitude Longitude

A1 30.9902 103.9579 B2 31.1268 104.3980 B12 32.5842 105.2382
A2 31.3381 104.2208 B3 31.0338 104.6787 B13 31.4371 103.1657
A3 31.4676 104.6792 B4 31.3172 104.5103 B14 30.8778 103.5909
A4 31.7849 104.7315 B5 31.1389 104.1699 B15 30.9679 103.8107
A5 32.5411 105.8411 B6 31.5442 104.5692 B16 31.3233 104.1143
A6 32.3154 105.5163 B7 31.2235 105.3912 B17 31.7324 103.8505
A7 31.4776 103.5906 B8 31.6507 105.1612 B18 31.2503 103.8016
A8 31.0378 103.6605 B9 32.0646 104.6765 B19 32.3561 105.6926
A9 31.6813 103.8534 B10 32.6435 105.8918 B20 31.8301 105.6686
B1 30.6222 103.6686 B11 32.2290 106.2900 / / /
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Table 3: Experimental data of Sites

Site
no.

Fuzzy demand
(Unit: tons)

Time
sensitivity
factor

Urgency
coefficient
of demand

Site
no.

Fuzzy demand
(Unit: tons)

Time
sensitivity
factor

Urgency
coefficient
of demand

B1 (76.50,83.73,96.05) 1.59 0.70 B6 (55.80,61.07,70.06) 1.12 0.50
B2 (54.00,59.10,67.80) 1.15 0.51 B7 (74.70,81.76,93.79) 1.47 0.65
B3 (81.00,88.65,101.70) 1.57 0.69 B8 (69.30,75.85,87.01) 1.39 0.61
B4 (52.20,57.13,65.54) 1.09 0.48 . . . . . . . . . . . .

B5 (58.50,64.03,73.45) 1.25 0.55 B20 (56.70,62.06,71.19) 1.20 0.53

Table 4: Experimental data of candidate Emergency Centers

No. Fuzzy operating cost (ten thousand yuan) Fuzzy storage capacity (tons)

A1 (0.55,0.60,0.70) (293.70,326.70,372.90)
A2 (0.50,0.55,0.64) (356.00,396.00,452.00)
A3 (0.38,0.43,0.49) (311.50,346.50,395.50)
. . . . . . . . .

A9 (0.57,0.63,0.73) (307.05,341.55,389.85)

Table 5: Fuzzy unit material time penalty cost from Emergency Centers to Sites (ten thousand yuan)

No. A1 A2 A3 A4 A5 . . . . . . . . . A9

B1 (3.53,4.35,
4.71)

(6.83,8.40,
9.10)

(9.63,11.85,
12.84)

(11.74,14.45,
15.66)

(21.21,26.10,
28.28)

. . . . . . . . . (8.52,10.49,
11.36)

B2 (1.97,2.42,
2.62)

(1.28,1.57,
1.70)

(2.05,2.52,
2.73)

(3.52,4.33,
4.69)

(9.19,11.31,
12.25)

. . . . . . . . . (3.55,4.37,
4.74)

B3 (4.82,5.93,
6.43)

(3.86,4.75,
5.15)

(3.38,4.16,
4.50)

(5.86,7.21,
7.81)

(14.03,17.26,
18.70)

. . . . . . . . . (7.45,9.17,
9.93)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B20 (8.76,10.78,
11.68)

(6.90,8.50,
9.20)

(4.77,5.87,
6.36)

(4.15,5.10,
5.53)

(3.77,4.64,
5.03)

. . . . . . . . . (8.06,9.92,
10.75)

Table 6: Unit material delivery cost from Emergency Centers to Sites (ten thousand yuan)

No. A1 A2 A3 A4 A5 A6 A7 A8 A9

B1 0.05 0.10 0.13 0.16 0.30 0.26 0.10 0.05 0.12
B2 0.04 0.03 0.05 0.08 0.21 0.17 0.09 0.07 0.08
B3 0.07 0.06 0.05 0.08 0.20 0.16 0.11 0.10 0.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B20 0.19 0.15 0.10 0.09 0.08 0.06 0.20 0.21 0.17
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5.2 Experimental Environment and Case Study Results

All algorithms were tested using Matlab 2021a on a 64-bit Windows 10 system. Experiments show
that the algorithm achieved excellent average results and runtime performance with 100 Pareto front
size, 200 population size, and 100 iterations.

This study addresses the multi-objective SSDM using the improved CQ-MOHHO algorithm,
generating Pareto front solutions from the case data. Tables 7 and 8 present key results. In Table 7, Best
1, Best 2, and Best 3 represent the optimal solutions for urgency, economic, and transportation distance
costs, respectively. The ideal solution has the highest crowding degree on the Pareto front, while the
worst solution has the highest crowding degree in the lowest-ranked non-dominated set. Table 8 details
the site selection plan for the ideal solution, including selected Emergency Centers, served Sites, and
emergency resource distribution. Fig. 4 provides a schematic of the selected Emergency Centers and
Sites.

Table 7: Representative efficient solutions

Solutions Selected centers no. Objective functions

F1 F2 F3

Best 1 A2, A3, A4, A5, A6, A7, A8, A9 2918.2799 42.8178 678.5830
Best 2 A2, A3, A4, A5, A6, A7, A8, A9 2918.2799 42.8178 678.5830
Best 3 A1, A2, A3, A4, A5, A6, A7, A8, A9 3438.9453 50.1018 626.9028
Ideal solution A2, A3, A4, A5, A6, A7, A8, A9 2918.2799 42.8178 678.5830
Worst solution A1, A2, A3, A4, A5, A7, A8, A9 4547.6744 64.2557 926.2378
Average value / 3348.2919 48.5622 717.7779

Table 8: Results of the site selection decision optimization plan

Center no. Served site no. Corresponding emergency resource distribution quantity (tons)

A2 B2, B4, B5, B16, B18 60, 58, 65, 85, 116
A3 B3, B6, B7, B8 90, 62, 85, 77
A4 B9 84
A5 B10, B11, B12, B19 110, 95, 100, 70
A6 B20 63
A7 B13 88
A8 B1, B14, B15 90, 93, 105
A9 B17 80
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Figure 4: Schematic diagram of the selected centers and corresponding served sites

5.3 Algorithm Comparison and Discussion

To validate the superiority of the CQ-MOHHO algorithm for solving SSDM, experiments were
conducted in the same environment as those with the Nondominated Sorting Genetic Algorithm
II (NSGA-II) [35], MOHHO [36], and the Multi-Objective Grey Wolf Optimization (MOGWO)
[37]. The CQ-MOHHO algorithm enhances the MOHHO by integrating chaotic mapping and
quantum behavior strategies, significantly enhancing the balance between global search capability and
local refinement. It offers faster convergence and higher accuracy, effectively avoiding local optima,
and performs exceptionally well in complex, large-scale multi-objective optimization problems. The
algorithm efficiently explores complex search spaces, precisely balances conflicting objectives, and
generates diverse, high-quality solutions, providing decision-makers with a broad range of options.
In contrast, NSGA-II, a classic genetic algorithm-based approach, is simple and stable, maintaining
solution diversity, but it struggles with high-dimensional problems and has longer computation times.
The MOHHO algorithm, inspired by Harris hawks’ hunting behavior, exhibits strong global search
ability but is prone to local optima and is sensitive to parameters. MOGWO, based on grey wolf
hunting, is simple and easy to implement but underperforms in complex multi-objective problems,
often getting trapped in local optima and poorly balancing conflicting objectives.

The urgency cost (F1), economic cost (F2), and transportation distance cost (F3) were calculated for
all non-dominated solutions, and the Pareto front solutions are shown in Fig. 5. Fig. 6a–c compares
the convergence of four different algorithms across the three objectives.
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Figure 5: Pareto front surfaces obtained by four algorithms

Fig. 5 shows that the CQ-MOHHO algorithm outperforms NSGA-II, MOHHO, and MOGWO
in the non-dominated solution set. CQ-MOHHO solutions are closer to the optimal Pareto front,
with broader distribution in the objective optimization region and concentration in lower-value
regions, indicating stronger global search and higher solution quality. In contrast, other algorithms
are confined to higher-value regions. Combined with additional results, CQ-MOHHO generates more
and higher-quality Pareto optimal solutions. Fig. 6 further demonstrates CQ-MOHHO’s superior
initialization, faster convergence, and better final solution quality, confirming its effectiveness in
solving complex multi-objective optimization problems. The experimental results show that CQ-
MOHHO outperforms the other three algorithms in optimizing the key objectives F1–F3.

To better evaluate the solution performance of the improved CQ-MOHHO algorithm, this
section selects the ZDT series of test functions widely used in multi-objective optimization, including
ZDT1, ZDT2, and ZDT3 [38]. These test functions cover various complex types, such as convex,
concave, continuous, and discontinuous functions. Generational Distance (GD), Hypervolume (HV),
and Inverted Generational Distance (IGD) were chosen as evaluation metrics [39]. A performance
comparison was conducted between the improved CQ-MOHHO algorithm and the MOHHO, NSGA-
II, and MOGWO algorithms. The test results are shown in Tables 9–11. The Pareto fronts obtained
by the four algorithms on the ZDT1, ZDT2, and ZDT3 test functions are illustrated in Fig. 7.
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Figure 6: Convergence comparison of the four algorithms

Table 9: Comparison results of GD metric

Test functions CQ-MOHHO MOHHO NSGA-II MOGWO

ZDT1 0.3789 1.6431 0.6120 0.4329
ZDT2 0.001 1.1927 0.2301 0.3145
ZDT3 0.0028 0.0048 0.0039 0.0046

Table 10: Comparison results of HV metric

Test functions CQ-MOHHO MOHHO NSGA-II MOGWO

ZDT1 0.7205 0.7154 0.3776 0.7172
ZDT2 0.4450 0.4438 0 0.0928
ZDT3 0.5999 0.5936 0.5856 0.4485
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Table 11: Comparison results of IGD metric

Test functions CQ-MOHHO MOHHO NSGA-II MOGWO

ZDT1 0.0039 0.0068 0.3294 0.0052
ZDT2 0.0040 0.0051 0.8578 0.5615
ZDT3 0.0045 0.0584 0.2874 0.0213

(a) Comparison of Pareto front for ZDT1 function   (b) Comparison of Pareto front for ZDT2 function 

(c) Comparison of Pareto front for ZDT3 function 

Figure 7: Comparison of Pareto fronts for ZDT1, ZDT2, and ZDT3 functions

As shown in Tables 9–11 and Fig. 7, the CQ-MOHHO algorithm demonstrates superior global
search capability, stronger convergence, and higher solution set quality across the GD, HV, and
IGD metrics. This fully validates the advantages of CQ-MOHHO in the field of multi-objective
optimization. The CQ-MOHHO algorithm exhibits clear superiority across different test functions,
particularly in solving multi-objective optimization problems, where it generates solution sets that are
closer to the true Pareto front. Additionally, it excels in terms of solution diversity and distribution.
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6 Conclusion

This study proposed an improved Chaotic Quantum Harris Hawks Optimization (CQ-MOHHO)
algorithm to address the site selection problem of Emergency Centers under multi-objective and multi-
constraint conditions, particularly in uncertain environments. Initially, a fuzzy multi-objective SSDM
was developed using triangular fuzzy numbers, which was then transformed into a deterministic
model via defuzzification and GMIR theory. Subsequently, the CQ-MOHHO algorithm enhanced
global search and convergence performance by incorporating chaotic mapping and quantum opti-
mization strategies. Comparative experiments with NSGA-II, MOHHO, and MOGWO validated
CQ-MOHHO’s superiority in generating Pareto optimal solution sets. Moreover, further performance
evaluation using ZDT1, ZDT2, and ZDT3 test functions, along with comparisons through GD, HV,
and IGD metrics, confirmed CQ-MOHHO’s superior global search capability, faster convergence, and
higher solution quality. The results demonstrated that CQ-MOHHO effectively solved complex multi-
objective SSDMs, offering strong global exploration and high solution accuracy. Thus, the SSDM
and CQ-MOHHO algorithms developed in this study demonstrated significant practical potential,
providing an efficient and reliable solution for the site selection of Emergency Centers during major
urban emergencies.

Although the CQ-MOHHO algorithm performs excellently in multi-objective site selection prob-
lems, it may face challenges related to computational complexity and parameter tuning in real-world
applications. To ensure the effective implementation of the algorithm in emergency management, it
is recommended that practitioners conduct parameter sensitivity analysis prior to application and
adjust the model settings based on actual needs. Future research could incorporate more complex fuzzy
numbers, such as interval Pythagorean fuzzy numbers or probabilistic dual hesitant fuzzy numbers, to
enhance the model’s ability to handle uncertainty. Additionally, the robustness and scalability of the
model should be further explored in more application scenarios, such as logistics and supply chain
optimization. Conducting large-scale experiments with real-world data and developing intelligent
decision support tools will help enhance the practical value of the algorithm.
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