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ABSTRACT

Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending
spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder
(ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion
Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM)
is designed to address the issue of information degradation caused by the propagation of high-level semantic
information, thereby extracting high-quality multi-scale features to provide superior features for subsequent
spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and
regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many,
and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting
results with traditional methods. This loss function enhances the accuracy of model classification predictions and
improves the proximity of regression position predictions to ground truth objects. The proposed method model is
evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed
method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.
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1 Introduction

Spatio-Temporal Action Detection (STAD) is a crucial task in video understanding as it aims to
locate the actor in space and classify the actions performed by the actor over time. This line of research
finds applications in various fields, including the detection of workers’ abnormal safety behaviors in
factories [1], the detection of illegal actions in public places [2,3], the detection of autonomous driving
[4], and the detection of driver actions [5]. The existing methods proposed [6–8] all focus on enhancing
the detection performance of human actions. Therefore, improving the learning and comprehension
capabilities of detection models becomes a current research focus.

Currently, deep learning-based STAD can be categorized into two types based on the prediction
form in the proposal: clip-level detection and frame-level detection.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.057392
https://www.techscience.com/doi/10.32604/cmc.2024.057392
mailto:223332935@st.usst.edu.cn


2390 CMC, 2025, vol.82, no.2

1.1 Clip-Level Detection

The clip-level detection method is designed to extract 3D spatio-temporal tubelets. These tubelets
are temporal and spatial 3D proposals that are obtained from video clips for prediction.

Inspired by Faster Region-based Convolutional Neural Networks (Faster-RCNN), Hou
et al. proposed an end-to-end network called Tube Convolutional Neural Network (T-CNN) [9]
that expanded 2D proposals to 3D proposals by 3D convolution. Kalogeiton et al. developed an
Action Tubelet detector (ACT-Detector) [10] that introduces fixed anchored cuboids based on Single
Shot MultiBox Detector (SSD) [11] to classify and regress the frame sequence. The detection methods
mentioned above assume that the space range of action tubes is fixed. Those methods do not apply
to video clips with large space displacement. Therefore, Yang et al. propose a Spatio-Temporal
Progressive Learning framework called STEP [12], which uses spatial refinement to iteratively update
bounding boxes. It refines 3D cuboid proposals over time and uses time expansion to adaptively add
sequence lengths to obtain more context information. Zhao et al. designed a method called tubelet-
transformer (TubeR) [7], which uses tubelet’s attention to allow tubelets to be unrestricted in their
spatial location and scale over time without anchors. Li et al. proposed the MovingCenter Detector
(MOC-Detector) [13] based on the idea of an anchor-free object detector, and Ma et al. developed the
Self-Attention MovingCenter Detector (SAMOC) [14], which introduces a spatio-temporal non-local
block using a self-attention mechanism. In addition, Duarte et al. proposed a video capsule network
called VideoCapsuleNet [15] to remove anchors and use 3D convolutions and capsules to learn the
semantic information. Apart from actions with significant magnitudes, there are some actions that
are challenging to define and exhibit high false detection rates, such as actions of transitional states.
In response to this scenario, Song and colleagues proposed the Transition-Aware Context Network
(TACNet) [16].

It is evident that clip-level detection methods capitalize on the temporal continuity of the video.
However, clip-level detection requires the extraction of video slices and only provides an action
category for predicted spatio-temporal object tubelets, instead of assigning an action classification
to each frame. This poses challenges in achieving frame-level precision classification.

1.2 Frame-Level Detection

Thus, there is another method. We know that object detection is also an image detection task.
Therefore, it can be applied to STAD. Referring to the methods of object detection, frame-level action
detection generates 2D proposals for action actors for each frame in the video, and subsequently
classifies the action.

The traditional approach for frame-level spatio-temporal action detection is to directly determine
the action object and category of each frame using object detection. The model based on R-CNN
proposed by Gkioxari et al. [17] serves as the foundation for the development of the frame-level
approach. The network obtains the Region of Interest (RoI) and then employs a dual-flow architecture
to extract appearance features and motion features from RGB images and optical flows, respectively.
Finally, a support vector machine is used to classify these features. Saha et al. [18] obtain RoI by
replacing the unsupervised region proposal algorithm with a region recommendation algorithm and
then utilizing a neural network to classify the RoI. In addition, Peng et al. [19] propose a multi-
region dual-flow R-CNN model based on Faster R-CNN. The aforementioned methods offer a
significant advantage in capturing the appearance information of individual frame images. However,
these approaches fail to consider time context information, resulting in inadequate action information
content. To address this problem, Yang et al. propose a Cascade Proposal and Location Anticipation
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(CPLA) model [20] which can infer the motion trend of actions between two consecutive frames. In
addition to the optical flow, related researchers use 3D convolution neural networks to directly extract
action information in multiple adjacent frames based on video content, simply obtaining spatio-
temporal action information and achieving good extraction results. Gu et al. proposed an Interactive
three Dimensions (I3D) model [21]. The SlowFast network [6] designed by Feichtenhofer et al. is
a novel two-stream architecture consisting of a slow path and a fast path. However, while these
methods can obtain better spatio-temporal information, they are affected by the complexity of 3D
convolutional neural networks. Therefore, Feichtenhofer et al. designed the X3D network [22], which
is similar to the high-resolution Fast Pathway. The network is constructed by incrementally expanding
along multiple network axes, including time, space, width, and depth, to a compact 2D architecture. To
simplify and unify the network, Chen et al. proposed an end-to-end video action detection framework
called Watch Only Once (WOO) [23]. The performance decreases in tandem with the reduction in
network complexity. Kopuklu et al. proposed You Only Watch Once (YOWO) [8], a two-branch
single-stage network containing 2D-CNN features of key frame extraction and 3D-CNN space-time
modeling of fragments. It finally outputs regression frames and action classification results of single
frames. YOWOv2 [24] and YOWOv3 [25], building upon the YOWO dual-branch structure, utilize
a pyramid structure to extract multi-scale features for capturing subtle motion behaviors. They also
employ different architectures to optimize the network model structure. The detection accuracy of the
YOWO series network still needs further improvement.

In summary, these STAD methods have demonstrated excellent performance. However, these
algorithms may not fully extract spatio-temporal information features comprehensively, potentially
missing out on detecting the same action information across different scales. Therefore, there is
room for further improvement in detection performance. To address this, we continue to enhance the
model’s understanding of behavioral objects based on current research, aiming to improve the model’s
interpretative effectiveness for spatio-temporal action.

(1) We propose an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) for
STAD tasks. This network consists of the ACSF Spatio-Temporal (ST)-Encoder and Shared-
Head Decoder. It demonstrates robust representation and comprehension abilities for spatio-
temporal action information, thereby enhancing predictive capabilities for actions and their
corresponding positions.

(2) Within the ACSF ST-Encoder, the Asymptotic Cross-scale Feature-fusion Module (ACCFM)
is introduced. This module allows each scale to incorporate information weighting from high-
level semantic spatial features. As a result, the negative impact of accuracy degradation caused
by the deterioration of the highest semantic features is reduced. This information can then
be utilized by subsequent decoders for comprehension and learning, thereby promoting the
enhancement of detection accuracy.

(3) Traditional methods often do not process the extracted spatio-temporal feature information
thoroughly, and they may lack sufficient constraints during training, resulting in lower
prediction accuracy. To address this issue, a shared classification and regression detection head
is constructed within the Shared-Head Decoder, upon which a multi-constraint loss function
is proposed. These components provide more comprehensive constraints for the model during
training, enriching the learning process. As a result, the model’s prediction boxes are closer to
the ground truth, improving the hit rate of predicted classification.

(4) Our model was experimented with the popular UCF101-24 dataset and JHMDB-21 dataset,
demonstrating excellent STAD capabilities in mainstream tasks.
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2 Related Work

To achieve excellent prediction results in spatio-temporal action detection tasks, it is not only
related to the process of feature extraction and fusion but also to the level of understanding of the
extracted features during prediction.

Traditional STAD [17,18] extracts and fuses image and video features at a single scale for
subsequent analysis and prediction, which can lead to overlooking the recognition of subtle actions
and result in suboptimal accuracy in spatio-temporal action detection. To address this issue, many
studies have proposed various multi-scale feature extraction methods, such as feature pyramids.
Inception [26] utilizes a parallel multi-branch network structure, where branches employ convolution
and pooling networks at different scales to obtain features at various scales, which are then fused.
Spatial Pyramid Pooling Network (SPP-Net) [27] employs multiple pooling blocks of different sizes to
capture distinct feature blocks, which are merged to obtain the required number of features. Pyramid
Scene Parsing Network (PSP-Net) [28] ensures the weight information of global features by reducing
the dimensionality of extracted features at different dimensions, performing bilinear interpolation on
feature maps, and concatenating them as global features for pyramid pooling. These methods often
employ parallel structures to obtain and fuse features from different receptive fields within the same
level. However, such approaches tend to overlook the relationships between features at different scales.
Feature pyramid networks (FPN) [29] uses a top-down approach to integrate high-level features into
low-level features, guiding the fusion of low-level feature information. FPN enhances the correlation
between features at different scales, yet such associations may still not be comprehensive, potentially
leading to information loss during propagation. Therefore, the ASFF network [30] introduces an
Adaptive Structure Feature Fusion module to merge multiple feature maps at different levels. In this
study, feature extraction only involves self-attention calculations on high-level semantics. Hence, in
the top-down fusion process of ACCFM in this paper, an adaptive structure is employed to ensure the
integrity of feature information during sequential propagation, enabling the transmission of high-level
semantic information to features at other scales. This enhances the encoder network’s feature fusion
capabilities and overall feature representation.

The interpretive ability of extracted features is related to the processing structure of the model.
STAD methods based on frame-level borrow from image object detection methods. Image object
detection typically adopts a two-stage method like the R-CNN [31] series. On the contrary, single-stage
methods such as the You Only Look Once (YOLO) series, SSD [11], and Fully convolutional one-
stage object detection (FCOS) [32] can obtain prediction results for the input image faster, eliminating
the step of Region Proposal Network (RPN). YOLO which is divided into anchor-based [33–35] and
anchor-free [36,37] has rapidly developed. Transformer [38] has also started to be applied in images and
other fields. Carion et al. proposed an end-to-end detector, Detection Transformer (DETR) [39], based
on the transformer. Additionally, networks such as Dynamic Anchor Boxes Detection Transformer
(DAB-DETR) [40] and DeNoising Detection Transformer (DN-DETR) [41] have made improvements
in training strategies and other aspects. Due to the powerful feature understanding capabilities of
DETR’s encoder-decoder, ACSF-ED also utilizes a simplified encoder-decoder structure, replacing
the direct convolutional layer predictions of the original frame-level methods.

3 Our Method

The Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network, as illustrated in Fig. 1,
consists of two main components: the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF
ST-Encoder) and the Sharded-Head Decoder. The ACSF ST-Encoder comprises a two-branch module
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and a fusion module (Section 3.1). The upper branch of the two-branch module consists of a 2D
Backbone and a 2D Adaptive Cross-Scale Fusion Spatial-Encoder (ACSF S-Encoder) composed
of Attention-based Intra-scale Feature Interaction (AIFI) [42] and Asymptotic Cross-scale Feature-
fusion Module (ACCFM), while the lower branch extracts 3D video information features using a
3D backbone. The channel fusion module concatenates the 2D features and 3D features extracted
from the two branches in the channel dimension for fusion, thus obtaining a feature with temporal
and spatial information. The Shared-Head Decoder decodes the feature vector with temporal and
spatial information to progressively generate predictions of the position and category of action
(Section 3.2). During training, a multi-constraint supervised loss calculation method is employed to
impose constraints.

Figure 1: The adaptive cross-scale fusion encoder-decoder (ACSF-ED) network framework

3.1 Adaptive Cross-Scale Fusion Spatio-Temporal Encoder

The Adaptive Cross-Scale Fusion Spatio-Temporal Encoder is a module that integrates features
extracted from behavior videos in images with features extracted from videos. This module can
capture valuable action and positional information from high-quality behavior videos to be utilized
by subsequent modules. The structure of the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder
comprises the 2D backbone ResNet [43], the Adaptive Cross-Scale Feature Fusion Spatial-Encoder,
the 3D backbone spatio-temporal feature extractor ResNext, and the channel fusion, as depicted in
Fig. 2. The 2D backbone analyzes the last frame of the video slice to extract 5-level multi-scale features,
denoted as S1, S2, S3, S4, S5 where the spatial sampling rate between adjacent scale features differs by a
factor of 2. To ensure the model’s efficiency and effectiveness, the information-rich and appropriately
sized last three scale features S3, S4, S5 are selected for input into the ACSF S-Encoder. Due to the fact
that the input to the ACSF S-Encoder consists of multi-scale features, improper handling of these fea-
tures can lead to the spatial encoder becoming overly complex, occupying 49% of the computation load
of the encoder-decoder [44]. S3, S4, and S5 represent concatenated multi-scale features, and conducting
feature interactions on concatenated multi-scale features is somewhat redundant, especially concerning
intra-scale feature interaction computations involving self-attention. Intra-scale interactions of low-
level features easily duplicate operations and confuse content with interactions of high-level features,
making them unnecessary. Therefore, unlike traditional encoders, the ACSF ST-Encoder conducts
intra-scale feature interactions only on the highest semantic information S5, rather than on all S3, S4,
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and S5. Furthermore, the AIFI reduces the number of self-attention layers from 6 to 1, further lowering
computational complexity.

Figure 2: The adaptive cross-scale fusion spatio-temporal encoder (ACSF ST-Encoder) structure

The smallest scale high-level semantic feature S5 is encoded using AIFI to derive F5. F5 is then
propagated to other scales and merged with them through the ACCFM gradually, leading to the
extraction of high-quality image feature vectors. The 3D backbone leverages the ResNext-101-3D
network [45] to capture spatio-temporal features from the 3D video. The channel fusion concatenates
the 2D features and 3D features obtained from the two branches in the channel dimension, followed
by convolution and channel self-attention fusion to enable the interactive fusion of spatio-temporal
and spatial information, resulting in spatio-temporal features reflecting behavior characteristics.

In the context of this study, the ACCFM module plays a pivotal role in the network. This
significance arises from the potential degradation of high-level semantic features during the process of
semantic propagation when integrating actions across different scales. Similarly, lower-level semantic
features are susceptible to information loss during the propagation phase. This scenario can lead to
significant semantic information discrepancies between non-adjacent features, thereby substantially
impacting the fusion outcomes. Consequently, the study introduces the ACCFM module. This module
functions as a cross-scale fusion network incorporating fusion blocks composed of convolutional
layer networks and multiple adaptive structural feature fusion blocks (labeled as ASFFi, where i
ranges from 1 to 5). The input to this module comprises multiple scale features, with only the highest
semantic feature being subjected to transformer attention operations for acquisition, while the other
scale features do not require attention computation, thus alleviating the computational burden. The
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ACCFM module utilizes an adaptive structural feature fusion block to integrate attention information
from the highest semantic features into features at other scales. This allows features at other scales
to understand the weight distribution of information across the entire spatial feature, enabling the
extraction of high-quality information at different scales.

(1) Upsampling fusion

The semantic-rich feature S5 extracted from the 2D backbone is enhanced through the AIFI
module to derive the high-level feature F5 incorporating attention information. For fusion with the
lower-level feature S4 (from the 4th stage), the feature F5 needs to be upsampled to match the size of
S4 in subsequent same-size fusion operations. Therefore, F5 undergoes operations including a 1 × 1
convolutional layer, BatchNorm layer, and SiLU activation to obtain S′

5, as depicted in Eq. (1).

S′
5 = σSiLU (BN (Conv1×1 (F5))). (1)

S′
5 is upsampled using an interpolation method to obtain the feature S′

5up at the same scale as S4,
as illustrated in Eq. (2).

S′
5up = UpSample

(
S′

5

)
. (2)

The feature S′
5up obtained from Eq. (2) and the input S4 are fed into the fusion block, resulting in

the fused feature S4,5up, as shown in Eq. (3).

S4,5up = Fusion
(
S′

5up, S4

)
. (3)

The fusion block [42] is a dual-branch structure as illustrated in Fig. 3. Each branch comprises a
1 × 1 convolution. The lower branch undergoes N layers of RepBlock processing (typically utilizing
3 layers of RepVgg [46]) after the 1 × 1 convolution. Finally, the output feature vectors from both
branches are element-wise added together. Assuming the inputs are denoted as a and b, the process
can be represented as shown in Eq. (4):

Fusion (a, b) = conv (Concat (a, b)) ⊕ RepBlock×3 (conv (Concat (a, b))) , (4)

where a is S′
5up and b is S4 for Eq. (4).

Figure 3: Fusion block structure

If the fused feature S4,5up obtained from Eq. (3) is to be fused with S3, it needs to undergo a 1 × 1
convolution and a 2× upsampling process to obtain the feature S′

4up at the same scale as S3, as described
in Eqs. (5) and (6).

S′
4 = σSiLU

(
BN

(
Conv1×1

(
S4,5up

)))
, (5)

S′
4up = UpSample

(
S′

4

)
. (6)

Subsequently, by fusing S′
4up and S3 as inputs a and b into Eq. (4), the feature S3,4up is obtained as

shown in Eq. (7). This feature then undergoes a 1 × 1 convolution, Batch Normalization (BN), and
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SiLU activation operations to derive the feature S′
3 inputted into the subsequent adaptive network for

cross-scale feature propagation and fusion, as depicted in Eq. (8):

S3,4up = Fusion
(
S′

4up, S3

)
, (7)

S′
3 = σSiLU

(
BN

(
Conv1×1

(
S3,4up

)))
. (8)

(2) Cross-scale feature weight propagation fusion

The semantic gap between non-adjacent hierarchical features is greater than that between adjacent
hierarchical features. For instance, the information gap between the bottom feature S′

3 and the top
feature S′

5 with crucial information is much larger than the gap between S′
5 and S′

4. In the bottom-
up fusion approach, the feature S′

5 enriched with semantic information is obtained through self-
attention mechanisms. This feature, when applied to features at other scales, also helps other scale
features to effectively focus on the feature positions corresponding to their scales. However, in the
previous upsampling fusion propagation process, there may have been a certain degree of degradation
in high-level semantic features. To address this, we utilize an asymptotic architecture to gradually
propagate the attention weight information of the S′

5 feature at its scale to all other scale features.
Simultaneously, the model, through adaptive methods, determines the weights allocated to each
scale during fusion, enabling the features at each scale to incorporate both the attentional feature
information from S′

5 and the attentional information from neighboring scales. This also prevents loss
due to information degradation. The implementation process involves the following two steps: feature
information extraction and adaptive cross-scale feature propagation fusion.

1) Feature information extraction

Features S′
3, S′

4 and S′
5 at different scales undergo a 1 × 1 convolution, BatchNorm, and ReLU

activation to obtain features S′′
3 , S′′

4 , and S′′
5 for information extraction, as shown in Eq. (9).

S
′′
i = σReLU

(
BN

(
Conv1×1

(
S′

i

)))
(i = 3, 4, 5). (9)

2) Adaptive cross-scale feature propagation fusion: it primarily corresponds to the process
implemented for ASFFi(i = 1, 2, 3, 4, 5).

1© The processing steps for ASFF1 and ASFF2

According to the hierarchical architecture arrangement, S′′
5 is initially fused with the S′′

4 feature.
The S′′

4 feature undergoes 2× downsampling (convolution) and is merged with the S′′
5 feature in

ASFF1 to obtain the feature S54. Concurrently, the S′′
5 feature undergoes 2× upsampling (convolution

combined with bilinear interpolation upsampling) and is fused with the S′′
4 feature in the ASFF2 module

to yield the feature S45. This process is represented by Eqs. (10) and (11).

S54 = ASFF1

(
DownSample2×

(
S

′′
4

)
, S

′′
5

)
, (10)

S45 = ASFF2

(
UpSample2×

(
S

′′
5

)
, S

′′
4

)
. (11)

The ASFF1 and ASFF2 modules are adaptive structural feature fusion modules. ACCFM consists
of ASFFi(i = 1, 2, . . . , 5) modules. Their task is to learn the weight information corresponding to
different-sized feature maps through the network’s learning and to fuse multiple scale features into a
new feature map using a weighted fusion calculation method. Taking the fusion module ASFF1 shown
in Fig. 2 as an example, the working principle of ASFFi is introduced as depicted in Fig. 4.
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Figure 4: Working principle for ASFF 1

When using ASFF to fuse multiple features, it is necessary to ensure that all the features being
fused are at the same scale. This means that features of different scales must be upsampled or
downsampled to the same scale before being input into the ASFF module.

In the case of ASFF1, the inputs are S′′
5 and the features of S′′

4 downsampled by a factor of two,
denoted as S′′4to5

4 . The scale of S′′
4 needs to be downsampled in order to match the scale of S′′

5 and
generate S′′4to5

4 (i.e., after undergoing 2× downsampling, the scale of S′′
4 matches that of S′′

5 ) for fusion
with S′′

5 . Both S′′
5 and S′′4to5

4 are individually processed through a 1 × 1 convolutional layer, BatchNorm
layer, and ReLU activation, followed by a convolutional layer and Softmax operation to obtain the
corresponding weight information α and β. By multiplying α and β with the respective original
information of S′′

5 and S′′4to5

4 , summing the products, and then passing through a 3×3 convolution, the
new adaptively fused feature S54 is obtained. This process is described by Eq. (12).

S54 = Conv3×3(αS′′
5 + βS′′4to5

4 ). (12)

After completing the ASFF operation, the fused feature S54 needs to undergo further processing,
including a 3 × 3 convolution, BatchNorm, ReLU, another 3 × 3 convolution, and BatchNorm,
to obtain a new feature. The adaptively fused features S54 and S45 outputted by ASFF1 and ASFF2

respectively undergo the aforementioned steps to obtain S′
54 and S′

45, as shown in Eqs. (13) and (14).

S′
54 = BN (Conv3×3 (σReLU (BN (Conv3×3 (S54))))) , (13)

S′
45 = BN (Conv3×3 (σReLU (BN (Conv3×3 (S45))))). (14)

2© The processing steps for ASFF3, ASFF4 and ASFF5

Following a similar structure, the feature S′
54, the S′

45 downsampled by a factor of 2 and the S′′
3

downsampled by a factor of 4 are input into the ASFF3 module for fusion to obtain S534, as described
in Eq. (15).

S534 = ASFF3(S′
54, DownSample2×(S′

45), DownSample4×(S
′′
3 )). (15)

The feature S′
45, the S′

54 upsampled by a factor of 2 and the S′′
3 downsampled by a factor of 2 are

input into the ASFF4 module for fusion to obtain S435, as described in Eq. (16).

S435 = ASFF4

(
UpSample2×

(
S′

54

)
, S′

45, DownSample2×
(
S

′′
3

))
. (16)
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The feature S′′
3 , the S′

45 upsampled by a factor of 2 and the S′
54 upsampled by a factor of 4 are input

into the ASFF5 module for fusion to obtain S345, as described in Eq. (17).

S345 = ASFF5

(
UpSample4×

(
S′

54

)
, UpSample2×

(
S′

45

)
, S

′′
3

)
. (17)

S345, S435, and S534 are further processed through steps involving a 3 × 3 convolution, Batch-
Norm, ReLU, another 3 × 3 convolution, and BatchNorm to obtain P5, P4 and P3 as described
in Eqs. (18)–(20).

P5 = BN (Conv3×3 (σReLU (BN (Conv3×3 (S534))))) , (18)

P4 = BN (Conv3×3 (σReLU (BN (Conv3×3 (S435))))) , (19)

P3 = BN (Conv3×3 (σReLU (BN (Conv3×3 (S345))))) . (20)

Detecting an action requires not only identifying the subject of the action but also determining the
category of the action. This necessitates features that possess both spatial information to pinpoint the
specific location of the object in space and temporal information to imbue the features with clear
motion characteristics. The features obtained from the 2D branch, represented as P3, P4 and P5,
are rich in spatial feature information. Conversely, the multi-scale features V3, V4 and V5 obtained
from the 3D backbone contain spatio-temporal information. This study utilizes an attention-based
method [47] to concatenate the acquired 2D spatial features Pi and 3D spatio-temporal features Vi

along their corresponding scale-specific features channels at multiple scales, followed by channel-wise
concatenation, convolution operation, and channel attention calculation. After processing through
the ACSF ST-Encoder, the model obtains spatio-temporal features Fst with characteristics of action.

3.2 Shared-Head Decoder

The purpose of the Shared-Head Decoder proposed in this paper is to interpret the spatio-
temporal encoding feature Fst acquired through the ACSF ST-Encoder. It aims to deduce the behavior
category and regression position based on this interpreted information. We provide its pseudocode in
Algorithm 1 to facilitate a better understanding among readers.

Algorithm 1: Shared-Head Decoder pseudocode
Def: Shared-Head Decoder
Input: Fst, GT
Output: B1−1, B1−M , S1−1, S1−M

Finput_decoder = BatchNorm (Conv (Fst))

B1−1 = [ ] , B1−M = [ ] , S1−1 = [ ] , S1−M = [ ]
Fq, Pq, ĉencoder, b̂encoder = QuerySelection

(
Finput_decoder

)
P = Pq

F = Fq

If training then
Fcq, Pcq, attn_mask = CDN (GT)

P = PConcatPcq

F = FConcatFcq

For i = 1 to 6 do
Fms = MutilheadSelfattention

(
q = k = F

⊕
MLP (P) , v = F , attnmask

)
(Continued)
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Algorithm 1 (continued)
F = LN(F

⊕
Dropout (Fms))

Fmd = DeforableAttention(memory = Finputdecoder
, Zq = F

⊕
MLP (P) , Pq = P)

F = LN(F
⊕

Dropout (Fms))

F = FFN(F)

B1−1.append(BoxHead (F))

B1−M .append (BoxHead (F))

S1−1.append(ScoreHead (F))

S1−M .append (ScoreHead (F))

return B1−1, B1−M , S1−1, S1−M

The data acquisition of decoder data involves two parts: Query Selection and Contrastive Denois-
ing (CDN) [48]. Query Selection involves selecting the top-K features with the highest confidence from
the output of the ACSF ST-Encoder for Object filtering. The Objects obtained through this process
possess enhanced content query (Fq) and position query (Pq) information. The originally ambiguous
“Object Query” has been expanded into two parts: content information and spatial information.
Spatial information can be obtained from feature predictions from the encoder layers, while content
information can be either statically embedded or dynamically acquired. Given that Object Query now
holds practical significance, initializing it improperly can lead to increased training time. Before the
selection process, the model passes the output of the last layer of the preceding encoder to a linear
layer prediction head to predict confidence levels for each action. The model then selects the top-K
(usually defaulting to 300 or 900) feature blocks with the highest classification confidence and records
their top-K sequence numbers. The network utilizes the sequence numbers to convey the position
predictions (derived from the regression results of the last layer of the encoder through the regression
detection head) and the original features of the corresponding feature blocks to the decoder as the
content and spatial information for initializing the query objects. The selection of these top-K query
objects is constrained by subsequent loss functions (Section 3.2.1), focusing more on objects with high
scores and high Intersection over Union (IoU). Before inputting into the decoder, Query Selection
can acquire higher-quality query objects by filtering out insignificant ones. This aids in the decoder’s
understanding and prediction, simplifying the network computational burden.

During the training phase, CDN generates contrastive denoising noise based on Ground Truth
(GT). The task of CDN is to denoise the queries originally input into the decoder, incorporating
noisy embeddings of class labels to support label denoising and noisy embeddings of coordinates to
support coordinate query denoising, resulting in content queries Fcq and position queries Pcq. The
information is subsequently concatenated with the corresponding queries after Query Selection to
generate F and P. The content queries F and position queries P are respectively input into the self-
attention and cross-attention modules within the decoder layer. CDN actively denoises and combines
its corresponding loss function, calculating larger loss for denoised query objects (non-object targets)
during training to iteratively update model parameters. Throughout the training, the model gradually
improves its predictive capabilities for anchor points without nearby objects and “no-action” objects,
enabling active rejective predictions for these objects and enhancing predictive performance. The
structure of the Shared-Head Decoder is illustrated in Fig. 5. The main body of the decoder consists
of six decoder layers, with each decoder layer comprising a multi-head self-attention mechanism
[38] and a cross-attention mechanism [49]. The role of the multi-head self-attention mechanism is to
calculate the content query embedding position information and its relationship with itself. Based on
this attentional relationship information, the most probable candidate objects are selected, thereby
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inferring the object position. On the other hand, the cross-attention mechanism utilizes the position
query and the output of the multi-head self-attention to further obtain or refine candidate objects.
The multi-head self-attention mechanism employs the universal self-attention method used in the
transformer. The cross-attention mechanism utilizes a deformable attention mechanism [49] that
only interacts with a subset of pixels obtained through sampling. After passing through the self-
attention and cross-attention mechanisms, the optimized object candidate objects are input into the
Feed Forward Network (FFN) [38] module located in each layer, producing the corresponding output
features Fnl(l = 1, . . . , 6).

Figure 5: Shared-Head Decoder structure

The results for prediction based on output features necessitate feeding into both one-to-one and
one-to-many loss functions. Typically, for these two distinct loss functions, the one-to-one loss function
retrieves results from the one-to-one classification and regression detection heads, whereas the one-to-
many loss function gathers results from different one-to-many classification and regression detection
heads. Moreover, having separate detection heads in all 6 layers of the decoder would increase the
computational load. To address this, the Shared-Head Decoder sets the detection heads to be shared,
where both the one-to-one and one-to-many loss functions retrieve results from shared classification
and regression heads, reducing the original 12 detection heads to 6. At each layer, the output feature
Fnl is passed to the shared regression head Box Headl of that layer to predict the coordinates of the
behavioral objects, and to the shared classification head Score Headl to predict confidence scores for
multiple behavior categories. The output features Fnl and the prediction features of Box Headl are used
as inputs for the next layer Decoder Layerl+1. The results obtained from the two shared detection heads
in each layer are compared with the GT using multiple loss functions such as Lcdn, L1−1 and L1−m, which
are then incorporated into the final loss calculation. During behavior prediction, the final prediction
results are based on the output by the last Box Head6 and Score Head6. The predictive capabilities of
these last two output detection heads are closely linked to various losses mentioned in the next section.

3.2.1 Multi-Constraint Loss Function

The past reliance solely on the one-to-one loss method based on bipartite graph matching has
led to shortcomings in the understanding and adequacy of constraints during the learning process of
spatio-temporal features by the Encoder-Decoder framework. This often leads to problems in pairing
classification and regression, such as assigning high-confidence categories to predictions with low
Intersection over Union (IoU) with the GT or to predictions that deviate from the GT objects. In
response to this, this paper introduces a multi-constraint supervision method that not only utilizes
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the CDN method but also incorporates one-to-one and one-to-many supervision methods to enhance
training speed and effectiveness, further optimizing the quality of candidate object generation.

In the Shared-Head Decoder, the Decoder Layerl employs shared Box Headl and Score Headl

detection heads. After applying different matching algorithms, the one-to-one matching set yl
o ={

yl
o1

, . . . , yl
oσ(i)

}
(σ(·) denotes the optimal permutation of i indices) containing prediction results

without CDN noise is obtained, along with the set of results from one-to-many matching Y l
o ={

Y l
o1

, . . . , Y l
oi

}
and the set of prediction results with only CDN noise yl

cdn =
{

yl
cdn1

, . . . , yl
cdni

}
. In each

Decoder Layerl, the score and box predictions each use a separate prediction head. This approach
allows for obtaining prediction results at a lower cost. The one-to-one constrained loss function

Ll
1−1(y

l
oσ(i)

, GTi) and the one-to-many constrained loss function Ll
1−m

(
Y l

oi
, GTi

)
are constructed accord-

ingly.

During the training process, it is necessary to compute the corresponding loss function
Ll

cdn(y
l
cdni

, GTi) for the predicted results of object query noise by the CDN at each layer, due to the noise
introduced by the CDN module before input to the decoder. During training, ACSF-ED will compute

the three loss functions Ll
1−1(y

l
oσ(i)

, GTi), Ll
1−m

(
Y l

oi
, GTi

)
, and Ll

cdn(y
l
cdni

, GTi) for the predictions at each

layer, and incorporate them into the overall loss value to enhance constraint supervision. Additionally,
the prediction yencoder before input to Query Selection in the encoder is also used as an auxiliary loss
parameter for one-to-one loss calculation L1−1(yencdoer, GT). This leads to the formulation of a multi-
constrained loss function L, as described in Eq. (21).

L =
6∑

l=1

(
Ll

1−1

(
yl

oσ(i)
, GTi

)
+ Ll

1−m

(
Y l

oi
, GTi

)
+ Ll

cdn

(
yl

cdni
, GTi

))
+ L1−1 (yencdoer, GT) , (21)

(1) The one-to-one loss function

The one-to-one constraint loss function completes the loss calculation under a one-to-one
bipartite graph matching, where each candidate prediction corresponds to a fundamental ground
truth object. In the decoding process, a set of candidate results are already predicted and undergoes
a top-K filtering process after the object query passes through Query Selection. This filtering process
selects the top-K queries with the highest classification scores, resulting in the selection of the best
N queries (N = 300). Among these queries, some may have high classification scores, but if the
IoU score between the predicted box and the ground truth box is low, they will be filtered out.
Additionally, instances with high IoU scores but not within the top-K range of scores will also be
discarded. This significantly impacts the detection performance. To address this issue, the one-to-

one constrained loss function L1−1

(
yl

oσ(i)
, GTi

)
is proposed, as shown in Eq. (23). This loss function

consists of two parts: the classification loss Lcls and the bounding box loss Lbox. The Lcls calculates
the classification loss using the varifocal (VFL) loss function LVFL, replacing the Facol loss function,
as shown in Eq. (22). Lcls introduces the IoU Score [42] to the model, which is “q” in the Eq. (22).
For positive samples, “q” represents the IoU between the GT classification object and the candidate
box, while for negative samples, it defaults to 0. The value “p” denotes the IoU-aware Classification
Scores (IACS) value predicted by the model. α and γ are hyperparameters. It employs a loss calculated
using IoU to constrain the model to generate high classification scores for features with high IoU and
low classification scores for features with low IoU during training. This process aims to provide the
decoder with higher quality initial object queries. The Lbox component incorporates both L1 loss and
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Generalized IoU (GIoU) loss LGIoU to calculate regression loss.

LVFL(p, q) =
{ −q · [q log (p) + (1 − q) log (1 − p)], q > 0

−αpγ log(1 − p), q = 0 (22)

L1−1

(
yl

oσ(i)
, GTi

)
= Lcls

(
ĉl

σ(i), b̂l
σ(i), yi, bi

)
+ Lbox

(
b̂l

σ(i), bi

)

= Lcls

(
ĉl

σ(i), ci, IoU
) + Lbox

(
b̂l

σ(i), bi

)

= λVFLLVFL

(
ĉl

σ(i), b̂l
σ(i), yi, bi

)
+ λL1

∥∥∥bi − b̂l
σ(i)

∥∥∥
1
+ λGIoULGIoU

(
b̂l

σ(i), bi

)
(23)

In this setup, GTi = {ci, bi} represents the i-th ground truth object, where c and b denote the

behavior category and bounding box, respectively. On the other hand, yl
oσ(i)

=
{

ĉl
σ(i), b̂l

σ(i)

}
corresponds

to the results after one-to-one matching between the l-th layer and the l-th GT object (excluding
predictions with CDN noise). ĉl

σ(i)represents its predicted category, and b̂l
σ(i) represents its predicted

bounding box. The parameters λL1, λGIoU , and λVFL correspond to the initialization weights associated
with the L1 loss, GIoU loss LGIoU , and VFL loss function LVFL, respectively. Typically, these weights
are set as follows: λL1 = 5, λGIoU = 2, and λVFL = 2.5

(2) The one-to-many loss function

By solely employing one-to-one supervision, the detector initially assigns a unique candidate result
for each GT object. This reduces the extent to which other duplicate candidates match the GT object.
However, this detector lacks explicit direct supervision for the generated multiple action detection
candidate objects. During actual predictions, the detector still generates multiple candidate objects
for each GT. Therefore, while one-to-one matched candidates may closely align with the GT object,
other candidates may deviate slightly compared to the GT object. Sometimes, the correct predictions
may lie among these other candidates, which can affect the detection performance. To address this

issue, the one-to-many loss function L1−m

(
Y l

oi
, GTi

)
is introduced into the loss calculation. This helps

further constrain the object query of the decoder and supervise the generation of candidate objects.
Consequently, this approach guides the overall prediction regression closer to the GT object. It is
beneficial in reducing overall prediction classification and candidate regression losses and optimizing
the quality of candidate objects. Moreover, these constraints can enhance training efficiency.

The model initially employs a one-to-many matching principle for matching. Based on the
matching score between the prediction results (s, b) from the shared prediction head and the GT (c , b)
in Eq. (24), a set of matching queries is formed by filtering out queries with matching scores below the
threshold τ from the top-k query results selected through query selection, enabling the correspondence
of one ground truth object with multiple predicted objects. Subsequently, the loss is calculated between
the ground truth GTi and the collection of multiple predicted matching results denoted as Yoi which
includes the Box Head predicted regression boxes and the Score Head predicted categories. The model
calculates losses between multiple predictions and ground truth, encouraging the model to predict
more filtered query objects closer to the ground truth objects during training. A one-to-many loss
function is formulated in Eq. (25), comprising the classification loss Lcls and the box regression loss
Lbox, to handle the loss calculation between multiple predicted results and GT. The computation of
these components aligns with the calculation method of Lcls and Lbox in the one-to-one loss.

MatchScore
(

s, b, c, b
)

= α (s, c) + (1 − α)IoU(b, b) (24)
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)
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)
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In the above, Y l
oi

=
{(

C l
i1

,Bl
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)
,
(
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)
, . . . , (C l
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)
}

represents the set of prediction results on

the l-th layer corresponding to the one-to-many matching with the i-th GT object. Here, Ki denotes
the number of predictions in the matched prediction set for the i-th GT object. C and B represent the
predicted category obtained from the classification head and the predicted bounding box obtained
from the regression head, respectively. C l

ij
signifies the predicted category result for the j-th prediction

corresponding to the i-th GT object. Bl
ij

signifies the predicted regression result for the j-th prediction
corresponding to the i-th GT object.

(3) The CDN loss function

The primary role of the CDN is to stabilize bipartite matching through denoising methods. This
enables the model to recognize and predict “non-object behaviors”, filtering out predictions that do
not correspond to actual objects and avoiding duplicate outputs for the same target. Due to the noisy
query objects generated by CDN based on the existing ground truths, they correspond one-to-one
with GT objects. These artificially introduced noises are significant non-objects. By incorporating
these prominent non-objects into the loss function, the model effectively learns to recognize these non-
behavioral objects. This enables the model to develop the capability to detect “non-behavioral objects”
during supervised learning. Its loss function, denoted as Ll

cdn(y
l
cdni

, GTi), also employs consistent
classification loss Lcls and bounding box loss Lbox in one-to-one loss.

4 Experiments
4.1 Implementation Details

The model proposed in this paper was trained and tested on a Linux system Ubuntu 18.04. The
system is equipped with an Intel(R) Xeon(R) W-2245 CPU running at a speed of 3.90 GHz, with 8
cores and 16 threads. The GPU used is an NVIDIA GeForce RTX 3060 with 12 GB of VRAM. The
RAM is 64 GB, and the external storage hard drive is 2 TB.

The model employs a linear warm-up mechanism for the first 500 iterations to adapt to the
differences in data distribution at the beginning of training, with a warm-up factor of 0.000667. The
batch size for model training is set to 8, and the length of video clips inputted into the model is
set to 16. The input size was uniformly reshaped to dimensions of 224 × 224. Additionally, Model
Exponential Moving Average (ModelEMA) is applied during model training to average the model’s
weight parameters, enhancing the model’s robustness. For the UCF101-24 dataset, during the training
process, an AdamW optimizer was utilized with a learning rate of 0.0001 and a weight decay term
of 0.0001. A learning decay rate of 2 was set. The training procedure included 6 epochs, with the
learning rate decay happening at the 3rd and 4th epochs. For the JHMDB-21 dataset, during the
training process, an AdamW optimizer was utilized with a learning rate of 0.00001 and a weight decay
term of 0.01. A learning decay rate of 2 was set. The training procedure included 8 epochs, with the
learning rate decay happening at the 5th epoch.
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4.2 Dataset

To further validate the efficacy of the STAD algorithm proposed in this paper, the UCF101-24
[50] dataset and JHMDB-21 [51] dataset were employed for both training and testing. UCF101 is a
dataset specifically designed for action recognition, encompassing authentic action videos retrieved
from YouTube. UCF101-24, on the other hand, is a subset of UCF101, comprising a total of
3207 untrimmed videos that represent 24 distinct motion action classes. The dataset underwent
preprocessing, with 2290 videos used for training and the remaining 910 videos reserved for testing
purposes. Each video in this dataset contains, at most, a single type of target action. While it is possible
for multiple action instance objects to appear within certain frames of some videos, these instances are
characterized by dissimilar spatial and temporal boundaries. J-HMDB consists of 21 classes of videos
selected from the HMDB dataset. These curated videos include actions performed by individual actors,
such as brushing hair, jumping, running, and more. Each action class comprises 36 to 55 clips, with
each clip containing approximately 15–40 frames. In total, the dataset consists of 928 clips. Each clip
is trimmed so that the first and last frames correspond to the start and end of the action. The frame
resolution is 320 × 240, and the frame rate is 30 fps in this dataset.

4.3 Evaluation Metrics

For the STAD task, the evaluation follows the rules of the PASCAL VOC 2012 metric standard
[52]. Typically, two evaluation metrics, Frame-mAP and Video-mAP, are used to assess the perfor-
mance of models on datasets for this type of task. Frame-mAP and Video-mAP respectively represent
the mean Average Precision (mAP) for frames and videos.

Frame-mAP is a metric used to measure the area under the precision-recall curve for predictions
on a frame. A detection is considered correct if the bounding box of the detection has an IoU with
the GT bounding box greater than a given threshold and the detection correctly predicts the action
label. The threshold is typically set to 0.5. Video-mAP is a metric for evaluating action tube prediction,
specifically the area under the precision-recall curve for action tube prediction. For a video action tube,
if its IoU with the ground truth tube exceeds a threshold and the action label prediction is correct, the
tube is considered a correct instance. The IoU between two action tubes is calculated based on their
temporal overlap and the average IoU of bounding boxes across all intersecting frames. Frame-mAP
evaluates the detection capability for classification and regression on individual frames, while Video-
mAP primarily assesses detection performance in the temporal domain.

4.4 Performance Comparison and Analysis

4.4.1 Result Visualization

To visually demonstrate the excellent performance of our proposed ACSF-ED algorithm in
spatio-temporal action detection, this paper conducted experiments comparing the visualization
of continuous frame spatio-temporal action detection and target bounding box prediction among
the YOWO [8], YOWOv2 [24] and ACSF-ED algorithms based on the UCF101-24 dataset. Fig. 6
compares the results of the YOWO, YOWOv2, and ACSF-ED algorithms on videos of actions such
as Basketball, BasketballDunk, and Fencing from the UCF101-24 dataset (with a confidence score
greater than 0.5 and IoU = 0.5). In the visual comparisons of consecutive frames for each class of
action videos, the first row in each category displays the spatio-temporal action detection results by
YOWO for that specific action, while the following rows display the results by YOWOv2 and ACSF-
ED for the same action. Through the comparison in Fig. 6, it is evident that ACSF-ED outperforms
YOWO in predicting confidence scores. Taking basketball as an example, the predictive results by
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ACSF-ED for the 3 frames could all be identified. The detection confidence is consistently higher,
hovering around 0.9, whereas YOWO achieves a maximum confidence of only around 0.8 at best.
Furthermore, due to instances where YOWO exhibits lower confidence in detecting certain action
sequences, there are occurrences where specific frames are missed or filtered out in the detection
results. YOWOv2 demonstrates excellent performance in confidence prediction. However, compared
to ACSF-ED, it still encounters instances of false positives, such as in the case of the basketball
shooting action in the second row, first column, where YOWOv2 is recognized as a golf swing action.
Our proposed ACCFM, utilizing an adaptive cross-scale fusion module, enables features at each scale
to capture attention information in feature extraction. This approach aids in comprehending actions
of varying sizes and dimensions, effectively mitigating occurrences like missed or filtered frames during
detection, which are commonly encountered in YOWO.

Figure 6: (Continued)
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Figure 6: Comparison of continuous frame visualization results for STAD

Fig. 7 is a visualization comparison of predicted object locations in STAD for the Basketball,
Biking, LongJump, SalasSpin, and IceDancing actions from the UCF101-24 dataset using the
YOWO, YOWOv2 and ACSF-ED algorithms (without applying maximum threshold). The black
boxes represent GT objects, while the green boxes represent predicted objects. The first row displays
the position prediction results of behavior objects by YOWO, while the following rows show the
position prediction results by YOWOv2 and ACSF-ED. It can be observed that when ACSF-ED
performs bounding box predictions for the mentioned five behavior objects, more predicted boxes
tend to aggregate near the GT objects, and these predicted boxes are closer to the GT annotations
themselves. For example, in the LongJump scenario in Fig. 7, our method enables multiple predicted
boxes (green) to concentrate more on the long-jumper object. On the other hand, the YOWO, due
to its anchor-based approach, produces predicted boxes of more scattered and varied sizes. The
YOWOv2 employs an anchor-free approach, leading to a noticeable improvement in the prediction box
clustering compared to YOWO. However, in comparison to ACSF-ED, its clustering is still relatively
loose. This phenomenon can be attributed to the fact that our proposed ACSF-ED does not rely
on setting fixed anchor boxes of different sizes at the same position for prediction. Furthermore,
ACSF-ED is trained using a multi-constraint loss function. Among these constraints, the one-to-
many loss function is particularly effective in constraining unmatched candidates, resulting in a more
concentrated distribution of predicted bounding boxes that closely approximate the GT.

4.4.2 Quantitative Performance Comparison

To objectively and fairly evaluate the performance superiority of our proposed algorithm, the
ACSF-ED algorithm was compared with other excellent algorithms such as T-CNN [9], Action
Tubelet Detector (ACT) [10], Multiple Path Search (MPS) [53], SAMOC [14], STEP [12], TubeR [7],
YOWO [8], YOWOv2 [24], YOWOv3 [25] on the UCF101-24 dataset and JHMDB-21 dataset. This
comparison was based on quantitative metrics including computational complexity (FLOPS), model
parameters (Param), Frame-mAP (at an IoU threshold of 0.5), and Video-mAP (at an IoU threshold
of 0.1), as shown in Table 1.
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Figure 7: Comparison of visualizations for predicted bounding boxes in object regression (black box
represents GT, green box represents predicted box)

Table 1: Quantitative performance comparison of different methods

Methods Backbone UCF101-24 JHMDB Param↓ FLOPS↓
Frame-mAP↑ Video-mAP↑ Frame-mAP↑

T-CNN [9] C3D 41.4% 51.3% 61.3% – –
ACT [10] VGG16 69.5% – 65.7% – –
MPS [52] VGG16 – 82.4% – –
SAMOC [14] DLA34 79.3% 80.5% 73.1% – –
STEP [12] VGG 75.0% 83.1% – – –
TubeR [7] I3D-ResNet50 80.1% – – 120 M 132 G
YOWO [8] DarkNet+3D-

ResNext
80.4% 82.5% 74.4% 121.4 M 54.7 G

YOWOv2
[24]

FreeYOLO+
3D-
ShuffleNetv2-
1x

80.5% – – 10.9 M 2.9 G

YOWOv3
[25]

YOLOv8+
3D-
ShuffleNetv2-
1x

81.4% – – 7.21 M 2.53 G

ACSF-ED
(our method)

ACSF
S-Encoder+
3D-ResNext-
101

81.5% 76.9% 74.1% 120.5 M 57.5 G
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In terms of precision metrics comparison, our method ACSF-ED achieves a Frame-mAP detec-
tion result of 81.52% in the UCF101-24 dataset at an IoU threshold of 0.5. Among the algorithms
listed above, most of those with performance below 80% are Clip-Level methods. These methods, as
they predict action categories for the given tubelets, exhibit relatively lower performance on Frame-
mAP evaluations. ACSF-ED outperforms these Clip-Level methods. YOWO and TubeR performed
well, with scores of 80.4% and 80.1%, respectively on this metric. Our method surpassed YOWO by
1.1% and showed a 1.4% improvement compared to TubeR. Recently, variants of the YOWO series,
YOWOv2, and YOWOv3, have achieved results of 80.5% and 81.4% on this metric. Our ACSF-ED still
outperforms lightweight YOWOv2 by 1% and is 0.1% higher than the YOWOv3. Clearly, ACSF-ED
demonstrates excellent performance on the UCF101-24 dataset in terms of Frame-mAP. In addition,
ACSF-ED also achieved the Video-mAP metric on this dataset. It attained performance of 76.9% at
an IoU threshold of 0.1, surpassing T-CNN by 15.6% and showing a 6% difference compared to Clip-
Level methods like SAMOC. Overall, ACSF-ED demonstrates good performance relative to these
comparisons. On another dataset JHMDB, the ACSF-ED algorithm also achieved a suboptimal result
in terms of Frame-mAP among the compared algorithms. It obtained a detection result of 74.1% at
an IoU threshold of 0.5, surpassing SAMOC by 1%. Its detection result is comparable to YOWO,
differing by only 0.3%. This indicates that the ACSF-ED algorithm demonstrates excellent results
on both the UCF101-24 and JHMDB datasets (particularly in terms of Frame-mAP), showcasing its
consistently superior performance across different datasets. The reason why the algorithms mentioned
perform well is closely related to our proposed ACCFM and its decoder. Through the ACCFM
module, ACSF-ED can extract richer multi-scale feature information compared to YOWO, which
uses a single-scale feature extraction method. The adaptive structure can also progressively propagate
attention information from higher-level features to other scale features. This approach reduces
losses in cross-scale propagation and fusion compared to the traditional pyramid structure used in
the YOWOv2 method. Processing and detecting multi-scale information can significantly enhance
detection capabilities across various scales. Additionally, compared to YOWO’s direct prediction after
feature extraction, the decoder structure of ACSF-ED can provide a better understanding of the
extracted features.

In terms of model complexity (specifically computational complexity FLOPS and model param-
eters Param), our ACSF-ED algorithm demonstrates a considerable reduction in computational
complexity when compared to the pure 3D transformer method TubeR. Specifically, we observe
a reduction of approximately 75 GFLOPS, while the number of model parameters is reduced by
0.9 M compared to YOWO. This reduction can be primarily attributed to the simplified Encoder-
Decoder structure employed in ACSF-ED. In ACSF-ED, the encoder focuses solely on attention
mechanism calculation for deep semantics, and the detection heads in the decoder are designed to be
shared. However, compared to the latest lightweight versions of YOWOv2 and YOWOv3, our method
still has a higher computational and parameter complexity. This is attributed to the lightweight 3D
backbones employed in those two algorithms. This is an area where we can draw inspiration for future
improvements and enhancements.

4.4.3 Comparison of the Frame AP in Each Action Class

To visually demonstrate the detection performance of ACSF-ED for each action class, this method
was compared with the YOWO model on the UCF101-24 dataset in terms of average precision (AP)
accuracy for each action class at the frame level. This comparison can be seen in Fig. 8. The UCF101-
24 dataset comprises 24 action classes, hence the x-axis in Fig. 8 represents the class numbers, while
the y-axis denotes the AP accuracy scores. As illustrated in Fig. 8, our model exhibits significantly
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improved AP for 13 action classes compared to YOWO, such as LongJump, Surfing, and Basketball-
Dunk. For these particular classes, ACSF-ED achieved AP values of 62.89%, 91.32%, and 76.42%,
respectively. Relative to the values obtained by YOWO, ACSF-ED shows enhancements of 5%, 5%,
and 10% in AP for these classes. Furthermore, the detection performance for 7 additional action classes
is comparable between ACSF-ED and YOWO. It is evident that our method demonstrates strong
recognition and understanding capabilities across various action categories.

Figure 8: Comparison of the frame AP for each action class

4.5 Ablation Experiments

4.5.1 ACCFM Module Ablation Experiment

ACCFM plays a vital role in our methodology. To demonstrate its effectiveness, ablation experi-
ments were conducted on the UCF101-24 dataset, using the main framework described in the paper,
to validate both CCFM [42] and ACCFM. Analysis of Table 2 reveals that integration of the ACCFM
module for cross-scale fusion in the main framework enables the entire model to achieve a detection
performance metric of 81.52% in Frame-mAP with an IoU of 0.5. Compared to models that utilize
the traditional feature pyramid fusion network CCFM as the fusion module, this approach effectively
enhances detection accuracy by 0.5%. Moreover, the model employing the ACCFM module achieves
Video-mAP metrics of 76.97% and 71.6% at IoU thresholds of 0.1 and 0.2, respectively, surpassing the
model utilizing CCFM by 0.6% and 0.8%. These findings indicate that the adaptive cross-scale fusion
module can significantly enhance the overall detection performance.

Table 2: Ablation experiment on multi-scale fusion module

Methods Frame-mAP Video-mAP

0.1 0.2 0.5

Our method (CCFM) 81.02% 79.3% 70.83% 47.01%
Our method (ACCFM) 81.52% 76.97% 71.6% 16.91%
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4.5.2 Multi-Constraint Loss Function Experiment

The multi-constraint function proposed for the Shared-Header Decoder plays an effective role in
constraining the overall learning and understanding of the ACSF-ED model. In this context, a series
of ablation experiments on the loss function of the main framework on the UCF101-24 dataset were
conducted to showcase the predictive outcomes of the model under different constraint conditions,
thereby demonstrating the advantages of our multi-constraint function. The experimental results in
Table 3 illustrate that under the conditions of multiple constraint function, our model achieves the best
classification and regression results: with a classification accuracy of 91.5%, a location recall rate of
96.6%, and a Frame-mAP (IoU = 0.5) of 81.52%. When the classification loss in the model’s one-to-
one loss function is changed from VFL to Binary CrossEntropy (BCE), as indicated in the second row,
the model’s Frame-map decreases by 1.99%, and the classification accuracy also drops by 2.6%. This
indicates that without using the VFL loss function with IoU scores, some detections with high IoU
but low scores will be filtered out, leading to a noticeable decrease in classification recall. When the
model’s loss function lacks the one-to-many function, as indicated in the third row, the constraints of
multiple candidate boxes being discarded result in the candidate boxes being solely subject to one-to-
one constraints. Consequently, some regression boxes do not accurately localize to the ground truth,
leading to the model’s location recall rate decreasing by 0.3%, classification accuracy decreasing by
0.7%, and the overall Frame-mAP decreasing by 0.53%. When the model’s loss function lacks the CDN
constraint (i.e., removing the CDN module step), as shown in the fourth row, it means that the model
does not learn the features of non-behavioral objects through additional denoising knowledge during
training. This results in a decrease of 0.4% in location recall rate, 1.6% in classification accuracy, and
1.75% in Frame-mAP, leading to an overall performance decrease in Frame-mAP of 1.75%. When both
the one-to-many constraint and the CDN constraint are not considered, the model’s location recall
rate, classification accuracy, and Frame-mAP values are only 96.2%, 90.00%, and 79.75%, respectively,
representing decreases of 0.4%, 1.5%, and 1.77%. This indicates that the model can enhance detection
performance by learning and understanding on the training set through the multi-constraint loss
function.

Table 3: Ablation experiment on different constraint functions

Methods Frame-mAP Classification accuracy Location recall rate

Lcls(1−1) = Lfacol 79.53% 88.9% 96.5%
Without L1−m 80.99% 90.8% 96.3%
Without Lcdn 79.11% 89.9% 96.0%
Without both 79.75% 90.0% 96.2%
Our method 81.52% 91.5% 96.6%

5 Conclusion

In this paper, we propose the end-to-end ACSF-ED network for the classification and localization
of objects’ actions in videos. The ACCFM aids in extracting high-quality spatial information at
each scale through adaptive cross-scale fusion, facilitating the fusion of spatial and spatio-temporal
information for subsequent modules to learn and understand. Additionally, owing to the end-to-end
network design, we introduce a multi-constraint loss function to jointly constrain the training of the
entire model. This optimization not only enhances the selection results of the encoder but also improves
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the understanding and learning of the selection results by the decoder. Compared to some advanced
spatio-temporal action detection algorithms, ACSF-ED achieves superior performance in the Frame-
mAP metric. As a result, the ACSF-ED network can be applied to scenarios such as behavior detection
in CCTV videos in public places, including detecting theft, fights, assaults, and armed robberies. It can
also be used in production environments for detecting violations, or in identifying dangerous driving
behaviors of motor vehicle drivers. Improved detection capabilities can enable people to confidently
rely on automated technical surveillance rather than manual video monitoring in these scenarios. The
practical applications of STAD can assist individuals, enhance work efficiency, and simplify daily life.

ACSF-ED demonstrates good performance on the UCF101-24 and JHMDB datasets, par-
ticularly in distinguishing individual action movements. However, the model’s detection capability
for segments containing multiple different actions, such as in AVA, requires further investigation.
Additionally, there is room for improvement in ACSF-ED. The 3D backbone in ACSF-ED bears the
heaviest computational burden within the entire network architecture, consuming significant memory
and computation resources, making the spatio-temporal feature extractor network somewhat bulky.
To deploy detection on edge devices or achieve more efficient real-time performance, a more compact
network design is necessary for the spatio-temporal feature extractor. Future works will focus on
researching lighter spatio-temporal detection networks, as lightweight network holds greater practical
value for real-world applications.
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