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ABSTRACT

With the widespread use of blockchain technology for smart contracts and decentralized applications on the
Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However,
its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors.
Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages
of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the
detection accuracy. To address the above issues, this paper proposes LT-SPSD (LSTM-Transformer smart Ponzi
schemes detection), which is a Ponzi scheme detection method that combines Long Short-Term Memory (LSTM)
and Transformer considering the time-series transaction information of smart contracts as well as the global
information. Based on the verified smart contract addresses, account features, and code features are extracted to
construct a feature dataset, and the SMOTE-Tomek algorithm is used to deal with the imbalanced data classification
problem. By comparing our method with the other four typical detection methods in the experiment, the LT-
SPSD method shows significant performance improvement in precision, recall, and F1-score. The results of the
experiment confirm the efficacy of the model, which has some application value in Ethereum Ponzi scheme smart
contract detection.
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1 Introduction

With its unique distributed ledger structure, blockchain technology stores the value transfer pro-
cesses of all cryptocurrency transactions [1]. Blockchain technology has the potential to revolutionize
the modern financial system due to its unique characteristics, including decentralization, tamper
resistance, and traceability [2]. The introduction of smart contracts and decentralized applications
(DApps) on the Ethereum platform has further enhanced blockchain’s role as a transformative force
in the digital age, often referred to as Blockchain 2.0 [3], attracting numerous investors’ attention.
Following Bitcoin, Ethereum represents the second-largest digital currency trading platform and the
most substantial blockchain in terms of facilitating smart contracts [4]. A smart contract is a computer
program stored on the Ethereum blockchain that is designed to be executed in a decentralized manner.
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Once deployed on the blockchain, it can be automatically executed by predefined logic when preset
conditions are met, without being controlled by any single entity.

However, due to the complexity of blockchain and imperfect regulation, many unscrupulous
elements take advantage of the anonymity of blockchain, the consumer psychology of the investor
herd, as well as the auto-execution and high trustworthiness of smart contracts [5], and use it as
a breeding ground for fraudulent behavior. The research, from 2013 to 2014, revealed that Bitcoin-
based Ponzi schemes amassed a total of over $7 million USD [6]. Additionally, many investors lack
the expert knowledge to fully understand the workings and potential risks of smart contracts, making
it harder for them to identify fraudulent behavior within them [7]. Worse still, due to the anonymity of
blockchain, even if a scheme is exposed, it is difficult to trace and hold the criminals accountable [8].

Due to the source code of smart contracts is often difficult to understand and mostly hidden,
existing research has opted for Ponzi scheme detection by compiling the bytecode to obtain the code
features, as well as the account features of the investors’ money flow during the transaction process.
However, the existing methods still have shortcomings in the following aspects. First, a large number
of verified Ponzi scheme samples are often needed for detection in smart contracts in Ethereum.
However, the actual publicly available Ponzi scheme samples employed to train the detection model in
Ethereum’s smart contracts are relatively scarce and imbalanced [9]. Most previous studies have used
a single expanded sample strategy, such as synthetic minority oversampling technique (SMOTE) or
other oversampling techniques, when dealing with imbalanced datasets, and have not considered the
problem of potentially undifferentiated introduction of noisy samples.

Ponzi scheme smart contracts are often not identifiable in their initial deployment, but as time
passes and transaction activity increases, the pattern of their money flows gradually reveals specific
temporal characteristics. Existing research, however, does not fully use this feature. Machine learning
models are the most frequently applied detection models for Ponzi schemes. Chen et al. [10] employed
a range of classification models, including support vector machines (SVM), decision trees and random
forests (RF), to identify instances of Ponzi scheme contracts on the Ethereum platform. The applica-
tion of these models resulted in a notable enhancement in the efficacy of the classification process.
However, traditional machine learning models often do not have the ensemble learning capabilities of
deep learning models, and they often face challenges in computational efficiency and storage capacity
when processing large-scale datasets. In addition, traditional machine learning models often rely on
certain data distributions and features, and making it difficult to capture the implicit relationships
and contextual information in the data, which makes traditional machine learning models ineffective
in dealing with new types of Ponzi schemes. Therefore, in order to ensure the healthy development of
blockchain technology, it is imperative to find a way to detect and prevent Ponzi schemes on Ethereum
in a timely and effective manner.

To cope with the above challenges, this paper proposes a detection method called LT-SPSD
(LSTM-Transformer smart Ponzi schemes detection) based on hybrid sampling. By integrating
the SMOTE-Tomek algorithm and the LT-SPSD model, the constructed feature dataset, based on
the account features and code features of the contract shows a significant advantage in detecting
Ponzi scheme smart contract fraud, which effectively improves the detection accuracy. The main
contributions of this paper are as follows:

• Introducing the SMOTE-Tomek algorithm for hybrid sampling of feature datasets to address
class imbalance detection in Ethereum Ponzi schemes.

• We propose LT-SPSD, an LSTM-based Ponzi scheme detection model. LT-SPSD can learn from
features of smart contract transaction behaviors, and effectively comprehend the context of the
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whole sequence, thereby capturing abnormal patterns in the transaction process and promptly
discovering hidden Ponzi scheme contracts.

• A feature fusion strategy with dynamic weighting is used. The contribution of LSTM and
Transformer outputs is adjusted dynamically through learnable weighting parameters.

The remaining sections of this work are organized as follows. Section 2 summarizes related
work. Section 3 describes the LT-SPSD approach in detail. Section 4 introduces the model architec-
ture. Section 5 discusses the experimental results. Section 6 concludes by outlining future research
directions.

2 Related Work
2.1 Research on Ponzi Schemes on Blockchains

A Ponzi scheme can be defined as a type of financial fraud. Its defining characteristic is the
utilization of the funds of subsequent investors to provide returns to those who have invested at an
earlier stage. This creates the impression of a profitable investment opportunity, which in turn attracts
further investors. Typically, the return for investors comes from a portion of the investment amount
of their direct recruits downlines, and these downlines need to recruit even more downlines to receive
returns. Because this model requires an increasing number of new investors to pay the returns of the
upper-level investors, it ultimately encounters a growth bottleneck. When the inflow of new investors
is not enough to pay returns, the pyramid collapses. In this process, most investors, particularly those
who join the Ponzi scheme later, usually suffer heavy losses.

The harm caused by Ponzi schemes has dramatically extended after the blockchain era began, due
to the anonymity of blockchain. In addition, the confluence of smart contracts and Ponzi schemes
has led to novel forms of fraud that have a considerable impact on Ethereum. At present, research
related to Ponzi scheme contract detection can be divided into three categories: The first category
is based on source code inspection, and the earliest method was through human identification.
Bartoletti et al. [11] identified Ponzi contracts by manually reviewing open source codes, and analyzing
descriptive information, source codes, and transaction records in three dimensions to reveal the
common features of these smart contracts. Lu et al. [12] converted the source code into a data flow
graph and proposed the first SourceP method to detect smart Ponzi schemes using only smart contract
source code as a feature. However, the source code of smart contracts is not always easily accessible
and most may be hidden.

The second category relies on feature engineering, extracting features from smart contracts and
utilizing data mining methods and machine learning models to achieve Ponzi scheme detection in
smart contracts. Jung et al. [13] used data mining methods to detect Bitcoin addresses associated
with Ponzi schemes. Chen et al. [14] used account and opcode features with an extreme gradient
boosting (XGBoost) classifier, but this method did not consider the temporal and global contextual
relationships within the data. Zhang et al. [15] applied bytecode similarity combined with the term
frequency-inverse document frequency (TFIDF) approach, but account features were not considered
and the bytecode-based methods may struggle when facing obfuscated or complex contract structures.
Sun et al. [16] constructed behavioral graphs based on interactions between contracts and used the all
path tree edit distance (AP-TED) algorithm to calculate behavioral similarity, but the computational
cost was high when dealing with a large number of contracts. Fan et al. [17] used the method of ordinal
target statistics to process the account and opcode features and constructed an unbiased residual
model detection contract based on the Decision Tree. Zhang et al. [18] innovatively extracted bytecode
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features and combined them with user transaction features and opcode features to identify Ponzi
schemes using an improved light gradient boosting machine (LightGBM). Jin et al. [19] proposed
a generic Heterogeneous Feature Augmentation module combined with a machine learning classifier
for capturing heterogeneous information related to account behavior patterns.

The third category is based on deep learning. Traditional machine learning models have limitations
when dealing with large scale feature datasets. In contrast, deep learning models are ideal for detecting
Ponzi scheme contracts due to their powerful text data processing and feature extraction capabilities.
Wang et al. [20] applied LSTM with SMOTE, but traditional LSTM models can face challenges
when capturing long-term dependencies and global patterns in sequential data. Chen et al. [21] used
a convolution-based edge-enhanced graph neural networks (GNN) and an attention mechanism to
classify contract transaction graphs, and extracted node and edge features that capture the unique
characteristics of Ponzi schemes. Yu et al. [22] extracted 14 transaction features to build a trading
network topology and constructed a model to detect Ponzi scheme detection using graph convolutional
network (GCN). Cui et al. [23] used a model combining convolutional neural network (CNN) and
bidirectional gated recurrent unit (BiGRU) with an attention mechanism to achieve Ponzi scheme
detection in smart contracts.

From another aspect, the work by Chen et al. [24], which introduced the semantic-aware detection
Ponzi (SADPonzi) method using semantic-aware symbolic execution, focuses on generating semantic
information to identify Ponzi behavior but is limited by the need for precise path generation in
the contract, which can be computationally expensive. Although these studies have made important
progress in the field of Ponzi scheme detection, there are still several limitations. For instance, there
are still problems with data noise when dealing with complex and imbalanced datasets, which affects
the generalization ability of the model. In addition, the existing models are still deficient in data
learning and feature representation, especially in the limited ability to capture the implicit contextual
information and complex relationships between data.

In contrast, our proposed LT-SPSD model overcomes some of these challenges by integrating
LSTM and Transformer architectures. LSTM excels at processing time series data and capturing
long-term dependencies, while the Transformer’s self-attention mechanism effectively captures global
information and relationships between different parts of the sequence. This combination allows for
a more comprehensive analysis of smart contract behaviors, particularly in detecting intricate Ponzi
schemes. Additionally, we incorporate the SMOTE-Tomek algorithm to handle imbalanced datasets
while reducing noise, thus enhancing the generalization ability of the model and improving detection
accuracy.

2.2 Imbalanced Data Classification

Now, the data level and the algorithm level are the two main areas of attention for research on the
imbalanced data classification problem. On the data level, the processing methods entail resampling
the original dataset using three major strategies: undersampling, oversampling, and hybrid sampling,
which mixes undersampling and oversampling. To reduce the influence of data imbalance on the
classifier, the data imbalance ratio is changed. On the algorithm level, it is committed to developing
machine learning algorithms that can inherently deal with imbalanced data, mainly including cost-
sensitive learning, ensemble learning, and others. By selecting the appropriate classification algorithm
and adjusting the evaluation metrics, the performance of the model in dealing with the imbalanced
classification problem can be improved. In this paper, we plan to use a hybrid sampling method to
address the imbalance problem of the original dataset.
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Random undersampling [25] is one of the most basic undersampling approaches, and it can
significantly reduce the model’s training time. However, randomly rejecting samples may eliminate
potentially essential information from the majority class, lowering the model’s learning effectiveness.
Oversampling, unlike undersampling, does not process majority class samples and instead increases
the quantity of minority class samples to improve minority class classification performance. The
simplest oversampling method usually involves directly copying samples from the minority class to
increase its proportion in the dataset. Although the method is relatively simple to implement, it has
the potential to result in model overfitting due to the direct replication of the samples, which may
not enhance the diversity of the data set. Therefore, related researchers have proposed the synthetic
oversampling technique with fewer classes of samples (i.e., SMOTE) [26]. It is evident that SMOTE
can effectively minimize the probability of overfitting as a consequence of random replication of data.
Conversely, it is essential to acknowledge that when the dataset comprises a considerable number of
noisy points or samples with indistinct boundaries that are challenging to categorize, the efficacy
of SMOTE may be diminished. SMOTE may not be able to control these samples efficiently, thus
overgeneralizing the noise samples and increasing the overlap between different decision boundary
classes. To solve the above problems, a series of improved algorithms for SMOTE have emerged,
such as Borderline-SMOTE [27], adaptive synthetic sampling (ADASY) [28], density-based SMOTE
(DBSMOTE) [29], and so on.

Most of the main streams of current research use oversampling algorithms to increase the number
of minority class negative samples in the sample set, thus avoiding discarding sample information.
However, it is often difficult to satisfy the need to increase the number of minority class samples
and reduce the number of majority class noise samples using only oversampling methods. In order to
achieve better data preprocessing results, a hybrid sampling approach can be used, which can combine
the advantages of oversampling and undersampling and aims to optimize the dataset by increasing
the number of minority class samples and decreasing the number of majority class noise samples.
In contrast, the ADASYN algorithm, while addressing the data imbalance problem by adaptively
generating synthetic samples, does not directly deal with noisy data, which may affect the performance
of the classifier to some extent. Borderline-SMOTE focuses on generating borderline samples to
enhance the model’s sensitivity to the class boundaries, but it does not deal with noisy samples directly.
DBSMOTE is a density-based variant of SMOTE that takes into account the density information of
the samples to generate new samples, but it may face similar challenges in dealing with noise and
boundary samples because it focuses on sample density and is not specifically designed to remove
noise.

Therefore, the SMOTE-Tomek [30] algorithm is used in this paper. It combines the advantages
of SMOTE oversampling and Tomek Links undersampling, reduces the noise samples that may be
introduced in the oversampling process, and avoids the expansion of the category space caused by
synthetic samples, thus improving the model’s generalization ability.

3 LT-SPSD Method
3.1 Technical Framework

As shown in Fig. 1, the technological framework for the LT-SPSD approach is presented. In
this paper, based on the sample dataset provided by the public dataset of the XBlock website, which
provides the contract addresses of the verified contracts and their corresponding categories (whether
it is the Ponzi scheme contract address), the bytecode information of the contracts, as well as the
transaction information, is collected. On Etherscan.io, the application programming interface (API)
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provided by Ethereum captures the transaction data and bytecode information of the smart contract,
formats and saves the obtained data in CSV files, and extracts the corresponding account features and
opcodes respectively. The opcode features are constructed by counting the frequency of opcode calls.

Figure 1: Technical framework of LT-SPSD method

Based on the imbalanced characteristics of the dataset, the dataset will use the SMOTE-Tomke
algorithm for sampling preprocessing before use to increase the number of samples in the minority
class, thereby improving the generalization ability of the model, while the feature values are compressed
to the range of [0, 1] by normalization using the MinMaxScaler function. Then, the dataset is
divided into training set and test set according to the ratio of 8:2. The LT-SPSD method uses the
LSTM+Transformer algorithm to construct the smart contract detection model for the Ponzi scheme.
The training data is fed into the model for training, and the test set is used to validate the model’s
effectiveness. The LT-SPSD method’s effectiveness for detecting Ponzi schemes can be measured using
performance metrics such as precision and recall.

3.2 Data Acquisition

In the Ethereum, a transaction is essentially a message passed between accounts, sent from one
address to another. Since most interactions on Ether are triggered by transactional behavior, such as
the transfer of Ether coins and the creation and execution of smart contracts, this paper chooses to
extract features by analyzing transactions. Transactions initiated by user-controlled external accounts
are defined as external transactions, while transactions that are initiated by smart contract accounts
are defined as internal transactions.

This paper first collects the transaction history of smart contract accounts, as shown in Table 1.
“TxHash” is the unique identifier of the transaction, “Block num” refers to the specific block number
in which the transaction was confirmed and included in the blockchain. “Timestamp” is the time of the
transaction. “From” and “To” respectively represent the sending address and receiving address of the
transaction. “Value (ETH)” is the amount of Ether (ETH) sent in the transaction. “ErrCode” means
whether the transaction was successfully executed, “Out of gas” indicates that the transaction failed
due to insufficient gas, and “None” indicates that the transaction was successfully executed. “Method”
refers to the function or method name being called, and “Transfer” is the token transfer function. A
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series of key account features can be extracted from these data to identify the transaction patterns and
behavioral features of the contract account.

Table 1: Smart contract transaction records

TxHash Block
num

Time
stamp

From To Value
(ETH)

ErrCode Method

0x2c320b52
. . . 642e887f

4168801 1.5E +
09

0x00d3c49e
. . . 0e84f636

0x0bb3b818
. . . 8ebd8f12

10 Out of
gas

Transfer

0x123d7c01
. . . 5e81ce7c

4168835 1.5E +
09

0x2e8ad99a
. . . c912bdbb

0x0bb3b818
. . . 8ebd8f12

5 None Transfer

In fact, bytecode exists at the core of Ethereum’s smart contract implementation. The process of
converting bytecode to opcode is done automatically by the virtual machine and does not directly
involve manual conversion by the user. Fig. 2 shows this conversion relationship between the source
code, bytecode and opcode (ID: 0x8b7B6C61238088593BF75eEC8FBF58D0a615d30c).

Figure 2: Smart contract code conversion

3.3 Feature Extraction

3.3.1 Account Features

With the addresses in the dataset as a basis, we retrieve relevant transaction data from Ethereum
to obtain the account features of the smart contract. Details of all internal and external transactions
of the contract can be obtained on Etherscan.io.

Through analysis and observation of the trading behavior of Ponzi scheme contracts, we
have identified and extracted 12 key features that exhibit significant variability in contract
trading records. Balance are used to reflect the lower balance levels of Ponzi scheme con-
tracts. Total_received, Invested_Before_Receiving, Received_at_least_once, Payment_Rate, Pay-
ment_Count, Received_Count, Payment_Received_Ratio are used to reflect the difference in the
number of payments and investments made in Ponzi scheme contracts vs. ordinary contracts.
Max_Payment_Ratio, Most_Payment_Ratio, and Large_to_Small_Ratio are used to reflect the
concentration of payment and investment behavior in the contract, as well as the concentration of time
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periods. Ponzi contracts usually show a short life cycle, the Contract_Lifetime can be used indirectly
to assist in identification.

Table 2 details the statistics of these features, including mean, median and standard deviation.

(1) Balance: the account balance of the smart contract.
(2) Total_Received: the total amount of investment received by the smart contract account.
(3) Invested_Before_Receiving: the proportion of payers who made an investment before obtain-

ing a return.
(4) Received_at_least_once: the proportion of investors who were paid at least once.
(5) Max_Payment_Ratio: the maximum percentage of the contract payment amount.
(6) Most_Payment_Ratio: the largest percentage of contract payments.
(7) Payment_Rate: the rate of contract amount payment.
(8) Payment_Count: the number of transaction expenses for the contract.
(9) Received_Count: the number of investments received by the contract.

(10) Payment_Received_Ratio: the payout rate for the number of contracts.
(11) Large_to_Small_Ratio: the ratio of large to small transactions in a contract (assuming that

large transactions are defined as those greater than three times the average transaction
amount).

(12) Contract_Lifetime: the life cycle of a contract transaction.

Table 2: Statistical description of account features

Ponzi Non-Ponzi

Mean Median Std Mean Median Std

Balance 1.20 0.00 5.21 126.12 0.00 3579.86
Total_Received 412.33 1.08 2100.65 15,458.28 0.00 305,981.12
Invested_Before_Receiving 0.81 0.87 0.20 0.79 0.88 0.22
Received_at_least_once 0.31 0.14 0.35 0.13 0.00 0.25
Max_Payment_Ratio 0.26 0.08 0.36 0.20 0.00 0.35
Most_Payment_Ratio 0.26 0.13 0.30 0.19 0.00 0.34
Payment_Rate 0.61 0.78 0.84 12.92 0.00 727.12
Payment_Count 73.28 2.00 323.95 169.07 0.00 1098.14
Received_Count 128.26 10.00 495.75 883.36 6.00 2538.14
Payment_Received_Ratio 0.72 0.20 1.90 0.23 0.00 2.57
Large_to_Small_Ratio 1624.92 0.00 21996.25 1.32E + 12 0.00 5.42E + 13
Contract_Lifetime 0.034470 0.000254 0.064391 0.026769 0.000502 0.0551092

A comparison and analysis of the statistical values of the Ponzi scheme contract with those of
the normal contract, as presented in Table 2, reveal that there are statistically significant differences
between the two contracts for the 12 account characteristics previously mentioned. For example, the
mean and median balance values are higher for normal contracts than for Ponzi scheme contracts.
This reflects the fact that account balances in Ponzi scheme smart contracts are generally maintained
low, while the smaller standard deviation (Std) further confirms that low account balances are more
common in such contracts.
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Exception for Received_at_least_once, Max_Payment_Ratio and Contract_Lifetime, the other
9 features in the Ponzi scheme contract show very low standard deviation compared to the normal
contract, which indicates that there is a high degree of consistency or similarity in the transaction
behavior of users in the Ponzi scheme contract. It can thus be concluded that these transaction features
serve as reliable indicators for the identification of Ponzi schemes. We employed summary scatter plots
for visualization for the three account attributes with non-intuitive distinctions to provide a clearer
understanding of the data distribution and trends, as shown in Fig. 3.

Figure 3: Scatter plot of different account features: (a) Scatter plot of Received_at_least_once;
(b) Scatter plot of Max_Payment_Ratio. (c) Scatter plot of Contract_Lifetime

As shown in Fig. 3a–c, the Received_at_least_once of the Ponzi scheme contracts mainly lies
between 0.4–0.8, Max_Payment_Ratio mainly lies between 0.1–0.3, and Contract Lifetime is con-
centrated around 0.06. The Received_at_least_once values, Max_Payment_Ratio values, and Con-
tract_Lifetime values of ordinary contracts are concentrated at 0 or 1 position. As a result, it is possible
to use these three account data points as transaction features.

3.3.2 Code Features

For Ponzi scheme smart contracts, although the source code may be carefully designed to conceal
the true intent, the opcodes are difficult to completely disguise the underlying mechanism, and
its frequency and mode of use are relatively difficult to be completely disguised. Especially when
performing operations involving typical Ponzi schemes such as fund transfer and revolving payment,
the frequent occurrence of specific opcodes (such as CALL, DELEGATECALL, etc.) becomes a
significant identifier, which leads to the differences in the code composition between Ponzi scheme
and non-Ponzi scheme contracts.

This paper extracts key features of smart contract code by examining the kinds and frequencies
of contract opcodes, exploring the essential distinctions between Ponzi scheme smart contracts and
ordinary smart contracts in a timely and effective way. Potentially abnormal behavior patterns can be
recognized in part by comparing the frequency and distribution of different sorts of opcodes in Ponzi
scheme contracts with regular contracts. After screening, this paper removes some common opcodes
that have little impact on distinguishing between Ponzi and non-Ponzi smart contracts and counts the
number of occurrences of the remaining opcodes in each smart contract. Based on this statistic, we
construct a dataset of 76 code features.

Fig. 4 shows that Ponzi scheme contract opcodes differ significantly from ordinary contract
opcodes. For example, Ponzi scheme contracts frequently use fund management type opcodes (e.g.,
CALL, CALLVALUE, etc.) to implement opaque fund flows, whereas such operations may not be
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dominant for ordinary smart contracts. According to the analysis above, it may be able to identify
Ponzi scheme smart contracts using opcode features.

Figure 4: Word cloud of smart contract opcode: (a) Opcode word cloud for non-Ponzi scheme
contracts; (b) opcode word cloud for Ponzi scheme contracts

3.4 Processing of Imbalanced Feature Data

The feature dataset, which includes 3378 examples of ordinary smart contract characteristics and
186 examples of Ponzi scheme contract characteristics, was created from the code and account features
mentioned above. As Fig. 5 shows, the dataset that was acquired has a serious sample data imbalance
issue. The ratio of positive and negative samples is about 18:1. To solve the data imbalance problem,
this chapter uses the SMOTE-Tomek hybrid sampling algorithm in the preprocessing phase of data
preparation. The process of SMOTE-Tomek is as follows:

(1) The imbalanced dataset is divided into two parts: the majority class sample dataset Dmax and
the minority class sample dataset Dmin.

(2) The SMOTE algorithm is used on the Dmin to generate synthetic samples.
a) Randomly select a sample from the minority class Dmin and determine its k nearest

neighbors.
b) Randomly select N samples from the k nearest neighbors of each minority class sample,

and for each of the selected nearest neighbors, perform random linear interpolation with
the original minority class sample. The interpolation formula is:

xnew = xi + rand (0, 1) × (
xj − xi

)
(1)

where xi is the original minority sample, and xj is the selected nearest neighbor and
rand (0, 1) is a random number in the range [0, 1].

c) Adding these synthetic samples to the Dmin in, thus increasing the number of samples in the
minority class.

(3) For each majority class sample in the majority class sample dataset Dmax, finds its nearest
minority class sample, and for each minority class sample in the minority class sample dataset
Dmin, finds its nearest majority class sample.

(4) If the distance between the majority class sample and the minority class sample is less than
some predetermined threshold, the two samples form a Tomek Links pair.

(5) Delete most of the class samples in the Tomek Links pairs to get a new dataset.
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Figure 5: Distribution of data sample categories: (a) Original sample distribution; (b) hybrid sampling
sample distribution

4 Model Architecture

In the context of the accelerated evolution of blockchain technology, Ponzi scheme smart contracts
bring new challenges to financial security with their hidden and destructive nature, and their inherent
features often emerge gradually over time. LSTM has the advantage of dealing with long-term
dependencies and data with temporal features, while Transformer captures long-distance dependencies
as well as global information through the self-attention mechanism. In this paper, we combine these
two techniques to construct a detection model to capture the behavioral features of smart contracts
in the time dimension, and then effectively identify Ponzi scheme smart contracts. The architecture of
the LT-SPSD is shown in Fig. 6.

Figure 6: LT-SPSD model architecture
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The account features and code features of smart contracts are first processed through the pre-
processing phase, including normalization and encoding to ensure the input requirements of these
data adaptation models. The data pertaining to the processing of feature information is transmitted
to the LSTM layer, which is used for the purpose of acquiring an understanding of the distinctive
characteristics exhibited by training concentrated smart contracts. In LSTM, the unit status Ct is used
to store and update long-term dependency information in the sequence. The forget gate decides what
information to discard from the cell state, the input gate decides what new information needs to be
added to the cell state, and the output gate decides the output of the current LSTM cell based on the
cell state. Then, the output of the LSTM layer is passed to the Transformer encoder layer, which utilizes
a multi-head attention mechanism to process the data. This mechanism maps the input sequence into
multiple subspaces, each of which independently performs the self-attention computation to fully
capture the multidimensional features of the sequence.

To integrate the advantages of LSTM and Transformer encoder, we adopt a feature fusion strategy,
weighted summation. In this process, the output of each layer has a learnable weight parameter, which
is weight_lstm and weight_transformer, which can be dynamically adjusted based on the feedback
during the model training process, ensuring that the model can flexibly adjust the contribution of
the output of each layer according to the specific needs of the task. Typically, a dense layer is added
to the output of the LT-SPSD model to enable additional processing and feature transformation. To
determine if a smart contract is a Ponzi scheme contract or not, the predicted value of the model is
calculated using a Sigmoid activation function in the classification context. Then, the predicted value
is compared with the actual labels of the smart contract to evaluate the model’s performance on the
training set. This is achieved by calculating a binary cross-entropy loss function.

To mitigate the adverse effects of noise in the data on model training and to enhance the model’s
generalization capacity, this paper proposes the introduction of a dropout ratio of 0.5 in the LT-SPSD
model. This approach serves to diminish the model’s susceptibility to the influence of noise and outliers
present in the training data. As the model learns on the training set, after each iteration, the model’s
loss values are provided to the optimizer Adam, which adjusts and optimizes the weights of each
hidden layer in the model to increase the model’s prediction accuracy for the next round of training.
Finally, the smart contracts are used in a test set to determine the detection accuracy of the model.

5 Experiments
5.1 Data Sets

The dataset used in this research is from the open source XBlock dataset. The original dataset
comprises 3793 smart contracts, with each contract labeled as either a Ponzi scheme or not. To
ensure the accuracy and availability of the dataset, invalid contract addresses were removed by
manual inspection in this paper, and contract addresses that cannot obtain transaction data and
bytecode data were excluded. The Etherscan.io website was used to crawl the pertinent bytecode and
transaction data. Then, by the conversion relationship according to the Ethereum Yellow Paper, the
bytecode was transformed into opcodes, with the ratio of each opcode to the total number of opcodes
then calculated. In addition, from each contract’s transaction data, transaction account features
representing smart Ponzi schemes were gained. The final feature dataset comprised account features
and code features corresponding to 186 Ponzi scheme contracts and 3378 normal smart contracts.
The contract feature dataset included 88 features, of which 76 were opcode context features and 12
were account features. To construct the model, the contract feature dataset was randomly split into a
training set (80%) and a testing set (20%).
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5.2 Impact of Parameter Epochs

In machine learning, an epoch represents the number of complete training cycles that a model
undergoes on an entire training dataset. In other words, one epoch signifies that the model is trained
once using the entire training set. However, just using one or a few epochs often doesn’t optimize the
model, the model may not have fully learned the intrinsic rules of the data. As the number of epochs
increases, the frequency of weight updates in the neural network also rises, accompanied by a reduction
in the training and test losses of the model. However, when the number of epochs is excessive, the model
may be overfitting.

In the LT-SPSD method, we set the epoch to 50. Figs. 7 and 8 show the training and test accuracy
of the model displays an upward tendency as the number of epochs increases, accompanied by a
reduction in training loss. Once the number of epochs reaches 50, the accuracy and loss values tend to
stabilize. The experimental results show that LT-SPSD is highly accurate in its detection capabilities
and the phenomenon of overfitting does not happen.

Figure 7: Loss values obtained during 50 epoch

Figure 8: Accuracy values obtained during 50 epoch
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5.3 Imapct of Parameter Batch_Size

Batch_size determines the number of samples put into the neural network for processing at one
time during model training. Choosing the right batch_size will affect how well the model is optimized
and how quickly it converges. A smaller batch_size means fewer samples per iteration, resulting in a
longer learning time for the model to converge. As batch_size increases, the training loss decreases, but
it also makes the model require more epochs to reach the minimum validation loss, and the model’s
ability to generalize on the training data decreases. To discuss the effect of the parameter batch_size
on the model, we assume that it is chosen in the range (16, 32, 64, 128, 256).

Figs. 9 and 10 show the time consumed during model training and the training accuracy achieved.

Figure 9: Training time for different number of batch_size

Figure 10: Training accuracy for different number of batch_size

Results show that the time required for training shows a decreasing trend as the batch_size
increases. When the number of batch_size is over 128, the change of accuracy is not obvious.
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Considering the efficiency of the training time and the accuracy of the model, we finally decided
to set the parameter of batch_size to 128 to achieve the best balance between time cost and model
performance.

5.4 Impact of Dataset Division

The effectiveness and performance of the model depend on the division ratio of the dataset. A
suitable division ratio facilitates more effective training of the model, enables more accurate evaluation
of its performance, and allows for understanding of its performance on different data distributions. In
this experiment, we adopt a step-by-step incremental method to adjust the size of the test set, and for a
fixed sample dataset, we set the ratio of the test set to (0.2, 0.25, 0.3, 0.35, 0.4, 0.45), to investigate the
impact of varying test set ratios on model evaluation. Meanwhile, the parameters epoch and batch_size
were set to 50 and 128, respectively.

The experimental results show the effect of test set ratio on the accuracy of the model. It can be
observed from Fig. 11 that the accuracy of the model varies at different test set ratios. In particular, the
accuracy of the model is the highest when the test set ratio is set to 0.2 and 0.35. Keeping a small test
set ratio helps to ensure that the training set has sufficient samples to support adequate learning and
feature extraction of the model during the training phase. Therefore, we divided the dataset according
to the ratio of 8:2.

Figure 11: Accuracy for different test set division ratios

5.5 Performance Comparison

To evaluate the effectiveness of our proposed LT-SPSD model, we conducted a comparative
analysis with a range of methods. In the experiment, the LT-SPSD model was configured with
parameters of epoch = 50, batch_size = 128, and dropout = 0.5. The models of the different methods
were trained through the training set. A number of evaluation metrics were introduced to ensure the
accurate measurement of the model’s efficacy and to facilitate a comparison of its performance with
existing methodologies used for the detection of Ponzi schemes with smart contracts. These evaluation
metrics included precision, recall and the F1-score. The effectiveness of different detection methods is
measured by using these three metrics on the test set.
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The definitions of each of these metrics are as follows:

Precision = truepositive
truepositive + falsepositive

(2)

Recall = truepositive
truepositive + falsenegative

(3)

F1 − score = 2 × Precision × Recall
Precision + Recall

(4)

The results of the experiment are shown in Table 3.

Table 3: Comparative analysis of the performance of different methods

Precision Recall F1-score

XGBoost [31] 0.91 0.67 0.79
RF [32] 0.94 0.64 0.77
RNN [33] 0.94 0.94 0.95
GRU [34] 0.91 0.92 0.92
LT-SPSD 0.97 0.97 0.96

From the experimental results, most neural network methods have superior performance com-
pared to traditional machine learning classification algorithms. For time series data, both XGBoost
and RF lack long-term dependency modeling capabilities. Although traditional recurrent neural
network (RNN) models are able to capture temporal dependencies, they are prone to the problem
of gradient vanishing or gradient explosion, making it difficult to maintain long-term dependencies.
However, LSTM-based detection methods, such as LT-SPSD and gated recurrent unit (GRU), show
higher accuracy in identifying Ponzi scheme smart contracts. The advantage of these methods is that
they can effectively deal with delay effects and long-term dependencies in temporal data. Transformer
can effectively capture contextual information in long-range sequential data through the mechanism
of multi-head attention, while its parallelized processing capability makes it more efficient in analyzing
long sequence data. Among all the compared classification models, our proposed LT-SPSD method
shows significant improvement in all performance metrics. In particular, the F1-score of the LT-SPSD
method reaches 0.96, which highlights its high efficiency and accuracy in Ponzi scheme smart contracts
detection.

This paper uses the SMOTE-Tomek algorithm to achieve data balance. To emphasize the
significance of the hybrid sampling technique, we have also presented the confusion matrices with
and without the technique in Fig. 12. The SMOTE-Tomek algorithm was used to achieve a balanced
distribution within the dataset, which resulted in the model identifying 655 samples as smart Ponzi
schemes and only 4 samples as non-Ponzi schemes, with the remaining samples correctly classified.
In the event of a highly imbalanced data distribution, the model identified all smart contracts as
non-Ponzi scheme smart contracts, leading to an invalid identification. The experimental results show
that the using a hybrid sampling technique can effectively address this issue, facilitating the model’s
enhanced ability to discern the data laws of Ponzi scheme smart contracts and enhance the efficiency
of detection.



CMC, 2025, vol.82, no.2 3127

Figure 12: Comparison of confusion matrices: (a) The confusion matrix of model after hybrid
sampling; (b) the confusion matrix of model without hybrid sampling

5.6 Computational Complexity

In this section, we conducted a series of experiments to record the execution time of each model on
the same dataset. All the experiments are implemented in Python on a PC equipped an NVIDIA A10
GPU, 8.0 GB RAM, running windows 10 × 64 Professional OS. Due to the more complex design of
the LT-SPSD method, which integrates more parameter layers, its execution time is longer compared
to the other methods. However, it has higher accuracy in detecting Ponzi schemes, which may be at
the expense of a certain time efficiency. The average detection time of different methods is shown in
Fig. 13.

Figure 13: Model execution time
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6 Conclusion

Given the Ponzi scheme problem on the blockchain, this paper proposes a model named LT-
SPSD that combines account information and code features of smart contracts. The adaptability and
performance of the model are improved by fusing LSTM and Transformer encoder by dynamically
weighted summation. Furthermore, the SMOTE-Tomek algorithm is used to enhance the learning
of minority classes through the integration of oversampling and undersampling techniques. The
experimental results showed that the LT-SPSD model performed significantly better in identifying
smart contracts associated with Ponzi schemes. This was evident in a number of critical evaluation
metrics, such as precision, recall, and F1-score, where there was a noticeable improvement. As a result,
it is determined that the LT-SPSD model has some value in detecting Ethereum Ponzi scheme smart
contracts.

In future work, we will investigate more advanced techniques, such as the characteristics of
generative adversarial networks (GAN) in generating approximations to real data, which can be
considered for balancing smart contract feature data. Learning to differentiate between normal
contract behavior and Ponzi scheme behavior through the reward and punishment mechanisms of
reinforcement learning (RL) and dynamic adjustment of detection strategies to adapt to changing
Ponzi scheme strategies. Given the growing number of smart contracts on the Ethereum platform, we
will work on researching and developing detection models that can adapt to large-scale datasets.
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