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ABSTRACT

Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both
storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers
is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and
achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and
triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the
contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images.
Next, a designed multi-attention mechanism focuses on important local features during the feature extraction
stage. Moreover, a triplet loss function is utilized to learn discriminative hash codes to construct a compact and
efficient triplet deep hashing. Finally, upsampling is used to restore the original resolution of the images during
retrieval, thereby enabling more accurate matching. To ensure the security of medical image data, a lightweight
image encryption method based on frequency domain encryption is designed to encrypt the chest X-ray images.
The findings of the experiment indicate that, in comparison to various advanced image retrieval techniques,
the suggested approach improves the precision of feature extraction and retrieval using the COVIDx dataset.
Additionally, it offers enhanced protection for the confidentiality of medical images stored in cloud settings and
demonstrates strong practicality.
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1 Introduction

As medical imaging methods become increasingly widespread, the volume of medical imaging
information has surged dramatically, creating critical challenges in storage, retrieval, information secu-
rity, and optimal utilization for all healthcare institutions [1]. To explore more potential information
from medical imaging data, similar medical image retrieval technologies have attracted widespread
attention from relevant research experts and scholars [2]. For instance, content-based medical image
retrieval (CBMIR) technology is capable of automatically extracting visual features from images
[3–5]. Furthermore, deep hashing-based medical image retrieval technology provides a new approach
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to image feature extraction, maintaining the original semantic information of images by constructing
high-quality compact binary hash codes [6]. Furthermore, to ensure the safety of medical imaging
information stored in the cloud storage and prevent the leakage of personal, institutional, and national
healthcare-related information, information security in medical imaging is also a critical issue that
cannot be ignored.

Currently, deep hashing technology has become an essential approach for medical image retrieval.
This method offers rapid retrieval capabilities and reduced storage expenses [7,8], enhancing the
precision and effectiveness of similar medical image searches. For instance, TSDSH [9], MCRLDH
[10], DUDH [11], SWTH [12], and DGSSH [13], etc.

In recent years, the advent of cloud storage solutions has significantly improved the ability of
healthcare institutions to store medical images. Although the vast storage capacity and extensive
computing power of cloud servers (CS) reduce the strain on local image storage and management,
healthcare institutions consequently forfeit direct control over medical image data [14]. In the process
of cloud storage for medical data, an increasingly serious issue is the illegal replication, modification,
and forgery of medical data [15]. Therefore, it is essential to protect data integrity and prevent unautho-
rized access. Chang et al. [16] addressed cloud platform insecurities and adopted symmetric encryption
to prevent unauthorized access or modification of patient data, ensuring medical data security during
storage. Thus, safeguarding the privacy of medical images in the cloud necessitates encryption tech-
niques, which are vital for secure medical image retrieval. Existing traditional encryption algorithms
such as Data Encryption Standard (DES), Advanced Encryption Standard (AES), and Rivest-Shamir-
Adleman (RSA) are not suitable for encrypting multimedia data. Homomorphic encryption (HE) is
key to achieving data privacy computation, but currently, no feasible HE technology can encrypt large
volumes of images, and HE is overly complex and time-consuming. Chaotic systems, known for their
sensitivity to initial conditions, randomness, and ergodicity, are extensively used in multimedia data
encryption.

To ensure the privacy and security of medical imaging data, this paper proposes a secure
retrieval method for chest X-ray (CXR) images using deep hashing, a multi-attention mechanism,
and lightweight encryption. The method, termed MATDH (Multi-Attention Triplet Deep Hashing),
offers secure and efficient medical image retrieval. Key contributions are as follows:

1) CXR images are enhanced using contrast-limited adaptive histogram equalization, dynamically
adjusting based on local contrast to better preserve details and improve image discriminability and
expressiveness.

2) A triplet deep hashing model is designed, combining channel and enhanced spatial attention
mechanisms to focus on local features, significantly improving the accuracy of important region
extraction in CXR images.

3) Grounded in the principle of frequency domain encryption, a lightweight CXR image encryp-
tion method based on chaos theory is proposed. While securing medical images, the complexity of
encryption is reduced, and the speed of both encryption and decryption processes is enhanced.

The paper is organized as follows: Section 2 reviews related research, Section 3 details the medical
image secure retrieval method, Section 4 validates the scheme through experiments and compares its
performance with existing methods, and Section 5 concludes the work.
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2 Related Work
2.1 Medical Image Retrieval Using Deep Hashing Techniques

With the excellent performance of artificial intelligence and deep hashing technology in various
fields, deep hashing technology has also been extensively applied within the domain of medical image
retrieval [17–20]. The medical image retrieval methods using deep hashing are generally divided
into supervised deep hashing methods [8,21–23] and unsupervised deep hashing methods [18,24,25].
However, for high-precision medical image retrieval, unsupervised hashing methods face semantic
gaps due to the lack of label information during network training, affecting the retrieval accuracy of
medical images [26]. Therefore, for medical image datasets with complete label information, supervised
deep hashing methods have become the optimal solution for constructing binary hash codes. For
example, Wang et al. [8] proposed that the triplet constraint be directly integrated into medical image
feature learning to capture the intricate relationships among medical images, while encoding-decoding
networks are used to enhance the discriminative strength of the generated hash codes. However,
this method cannot focus on the detail areas and important features of medical images because it
does not enhance the images before retrieval. Fang et al. [22] proposed an attention-based triplet
hashing network that effectively retains classification and limited sample information while learning
binary hash codes. This method combines cross-entropy loss with triplet loss, simultaneously training
similarity loss and classification loss to maintain classification information in hash codes, achieving
maximum class discrimination and hash code distinguishability. However, the attention mechanism
designed in this method still cannot effectively focus on the important areas of medical images.

2.2 Secure Medical Image Retrieval

Given that medical images contain patient information, which is considered highly sensitive data,
hospitals or other healthcare institutions, as data owners, do not wish for every user to have access to
and view these images. Instead, users are granted access only after authorization [27]. To ensure privacy
and confidentiality during the medical image retrieval process, various security services are used,
among which image encryption technology has become a crucial means of protecting medical image
information from attacks [28–32]. Haddad et al. [28] utilized the cipher block chaining mode in AES
and combined it with image watermarking technology to encrypt medical images, allowing tracking
and controlling the reliability of medical images from encrypted or compressed domains. However,
this method not only incurs high encryption costs and complexity but also introduces image quality
loss. Guo et al. [29] developed a convolutional neural network (CNN) framework that protects privacy
by allowing the use of homomorphic encryption technology for classifying and retrieving encrypted
medical images, enhancing the security of the retrieval scheme. Nevertheless, the communication
and computational costs significantly increase, making it unsuitable for use in resource-constrained
scenarios. Kumar et al. [30] employed the idea of dual encryption to ensure the privacy of medical
image retrieval processes. The first-level image encryption employs chaotic Arnold mapping to encrypt
the images while preserving their statistical characteristics. The second level of encryption further
boosts security and reduces the chances of cryptographic attacks. The use of a simple chaotic Arnold
mapping in the first-level encryption cannot achieve perfect secrecy for query images, and encrypted
visual content still provides relevant information about the true content of query images, posing a risk
of attack. However, the methods used for classification and relevance scores may lead to privacy leaks
and other issues.

A lightweight medical image encryption algorithm combining chaos-based frequency domain
encryption and the PRESENT algorithm is proposed to ensure security and reduce costs in image
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retrieval. A triplet deep hashing method with multi-attention (MATDH), integrating channel and
enhanced spatial attention mechanisms, improves the discriminability of CXR images. This secure
medical image retrieval method enhances efficiency and accuracy while safeguarding data privacy.

3 The Proposed Method
3.1 System Model

Fig. 1 shows the system model for secure medical image retrieval, avoiding issues such as the
leakage of medical images containing patient privacy by cloud servers.

Figure 1: System model

In Fig. 1, this model consists primarily of three entities: Cloud Server (CS), Data Owner (DO),
and Data User (DU). The main responsibilities of the three entities in the system model are as follows:

1) Data Owner (DO): DO encrypts medical images using lightweight encryption and uploads
them to the cloud. The images are enhanced via contrast-limited adaptive histogram equalization and
processed to generate triplet deep hashing codes. DO then creates an image feature index set by linking
image numbers with hashing codes, and uploading it to the cloud as a hash index table.

2) Cloud Server (CS): CS stores the encrypted images and the hash index table. Upon receiving a
query, CS returns r semantically similar encrypted images to DU.

3) Data User (DU): DU generates a triplet deep hashing code for the query image, and submits
it to CS, which performs similarity matching and returns r encrypted images. DU decrypts them and
identifies the top-k similar images.
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3.2 Medical Image Enhancement

CXR images are crucial in medical diagnosis, and the image quality significantly affects accurate
diagnosis. However, CXR images often suffer from insufficient contrast or uneven illumination, which
affects the accuracy of feature extraction [33]. Therefore, to better display the details in CXR images
and enhance the precision of feature extraction, this paper utilizes the contrast-limited adaptive
histogram equalization technique applicable to color images [34] to enhance CXR images. This method
dynamically adjusts the enhancement level based on the local contrast of CXR images, thereby better-
preserving image details and avoiding issues such as excessive noise enhancement or detail loss that
may occur with traditional grayscale histogram equalization methods [35].

The detailed process for enhancing CXR images includes the following steps:

Step 1: Convert the color image to an appropriate color space. Represented as Eq. (1):

XYUV (i, j) = RGB2YUV (XRGB (i, j)). (1)

Step 2: Separate the luminance channel. The luminance channel Y is extracted from the YUV
color space, as shown in Eq. (2):

Y = Wr × R + Wg × G + Wb × B, (2)

where W is the weight factor, where W r, W g, and W b are the weights for the red, green, and blue
channels.

Step 3: Enhance the image under the luminance channel using the contrast-limited adaptive
histogram equalization technique applicable to color images.

Step 4: Reconstruct the luminance channel.

Step 5: Convert the enhanced color image back to the RGB color space, enabling it to serve as the
correct input image for subsequent network models.

Fig. 2 shows the comparative images before and after the enhanced images of the proposed
method.

Figure 2: Enhanced image vs. the original: (a) Original Image, (b) Enhanced Image

Fig. 2 clearly shows that the enhanced image exhibits clearer details compared to the pre-enhanced
(unenhanced original CXR image) counterpart, without excessive distortion. This indicates that the
method is effective and suitable for enhancing CXR and similar medical images.
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3.3 Construction of Triplet Deep Hashing with Multi-Attention Mechanism

Within the feature extraction module shown in Fig. 1, based on the image characteristics of CXR
images, this paper combines the channel attention mechanism [36] with the designed enhanced spatial
attention mechanism. This combination enables the neural network to focus more on locally important
features during feature extraction. Additionally, the triplet loss function is utilized to improve the
discriminative ability of CXR image features and reduce the redundancy in the embedding space,
thereby achieving triplet deep hashing. Fig. 3 shows the network architecture of MATDH.

Figure 3: The network structure of MATDH

During feature extraction, a UNet-based architecture is used [37], incorporating a dual attention
mechanism in residual blocks to emphasize important local features of CXR images. The training
combines triplet loss and reconstruction loss to enhance feature distinctiveness. As shown in Fig. 3,
the feature encoder includes convolutional layers, maximum pooling layers, downsampling, residual
blocks with channel and enhanced spatial attentions (RCESA), average pooling layers, full connectivity
layers, and hash layers.

For the i-th CXR image, two large-kernel 2D convolutional layers are applied to capture local
features, followed by a max pooling operation to downsize the image for better focus on local content.
Four RCESA modules are then stacked to extract features, with downsampling after the first three
modules to capture more abstract high-level features. The feature map from the fourth module is
processed through an average pooling layer and a dense layer, producing a 1000-dimensional feature
vector f i.

During feature decoding, alternating maximum pooling and upsampling operations reconstruct
the feature maps from the encoding phase. A composite loss function integrates triplet loss, enhancing
feature discriminability by ensuring similar samples are closer together than different ones. The multi-
attention mechanism highlights important regions, allowing the network to focus on key features,
thereby improving the distinction between similar and dissimilar samples. This approach retains
essential information while minimizing redundancy. After minimizing the loss through the fully
connected layer, a k-bit deep hash code representing CXR features is generated in the hashing layer,
which includes a full connectivity layer and a hash function. The resulting hash codes are stored in
a hash index table for future retrieval, the hash codes of the i-th CXR image can be represented as
Eq. (3):

bi = I (ω (fi)) , (3)
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where bi is the k-bit hash code of the i-th CXR image X i, bi ∈ {0, 1}, ω represents the trainable mapping
in the fully connected layer, and h(x) denotes the hash function, defined as Eq. (4):

h (x) =
{

0 x < 0
1 x ≥ 0. (4)

3.3.1 Multi-Attention Mechanism

To concurrently and adaptively determine the importance of key regions and various channels
in CXR images, this paper combines the channel attention mechanism with the designed enhanced
spatial attention mechanism in the residual block to form a multi-attention mechanism to achieve this
goal. Fig. 4 shows the structure of the residual block (RCESA) with the multi-attention mechanism.

Figure 4: The structure of RCESA

In Fig. 4, incorporating residual blocks into the network allows for image feature extraction
and helps tackle the issue of network degradation. Taking the intermediate feature vector Min

extracted by the neural network as input, the weight of important areas is first enhanced through
the enhanced spatial attention mechanism, and then its output serves as the basis for the channel
attention mechanism operation to improve the accuracy of feature extraction. Specifically, within
each residual block, different-sized convolutional layers are first used to extract multi-scale features
to obtain the multi-scale feature vector MF . Then, the extracted features are subjected to max-pooling
operation (used for further downsampling of the feature map after partial feature extraction to reduce
network computational load and enhance the network model’s abstraction ability for important
features of CXR images). Next, features are further extracted through a 3 × 3 convolutional layer,
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and bilinear interpolation is used for upsampling to match the feature map size with that of the input.
The upsampled operation is then combined with the preceding feature map to generate the feature
fusion vector MA. Feature fusion is performed through 1 × 1 convolutional operation, allowing the
network to more effectively utilize features of varying scales. Ultimately, the feature vector after fusion
is normalized to the [0, 1] range with the sigmoid activation function to obtain the weight matrix m,
which is subsequently multiplied by the input feature Min to generate the weighted feature map as the
output Mout of enhanced spatial attention operation, achieving enhanced spatial attention to enable
the network model to utilize crucial regional information in input CXR images more effectively. This
series of operations is represented by Eq. (5):

Mout = x × Sigmoid (Conv (Conv (Interpolation (MaxP (Conv (Conv (x)))) + Conv (Conv (x))))) . (5)

Subsequently, the feature vector Mout processed by the enhanced spatial attention mechanism is
used as the input of the channel attention mechanism. Initially, the convolutional feature vector MG

is obtained through two convolutional layers. This is followed by max-pooling and average-pooling
to generate two vectorized representations. These vectors are then inputted into a shared multi-layer
perceptron (MLP). The representations generated by the MLP are summed to form an attention vector,
which is then multiplied with MG to produce the feature map MH with channel attention. This series
of operations is represented by Eq. (6):

MH = σ (ϕ (ω1 (MG)) ⊕ ϕ (ω2 (MG))) ⊗ MG, (6)

where σ is the sigmoid function, φ represents a trainable transformation within the MLP, ω1 and
ω2 respectively represent max-pooling and average-pooling operations. After this step, the shortcut
connection defined by Eq. (7) is applied to obtain the output of the RCESA.

Me = Mout ⊕ MH . (7)

Each RCESA’s MLP comprises two convolutional layers with a kernel size of 1 × 1, referred to
as Layer-1 and Layer-2. The detailed settings of the MLP are shown in Table 1.

Table 1: The configuration of MLP

Layers RCESA-1 RCESA-2 RCESA-3 RCESA-4

Layer-1 (Input/Output) 64/4 128/8 256/16 512/32
Layer-2 (Input/Output) 4/64 8/128 16/512 32/512

3.3.2 Triplet Loss

To understand the complex relationships among the input samples, triplet constraints serve as
the loss function guiding the training of deep networks, improving the distinguishing ability of the
obtained deep feature hash codes. The post-training CXR images are represented as {X 1, . . . , X i, . . . ,
X M}, and the associated class labels are represented as {L1, . . . , Li, . . . , LM}, where Li∈{1, . . . , c}, and
c represents the number of categories. Fig. 5 shows an example of triplet training.

As shown in Fig. 5, the triplet loss is designed to increase similarity among samples from the
same class while decreasing similarity between samples from different classes [38]. Mathematically,
given a triplet unit {q, p, n}, where q represents the query sample, p represents the positive sample, and
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n represents the negative sample. The goal of triplet loss is to reduce the following items:

d (q, p) − m ≤ d (q, n), (8)

where d(q, p) is the distance between the query and the positive sample, d(q, n) is the distance between
the query and the negative sample, and m represents a preset positive margin value.

Figure 5: An illustration of triplet learning

In this study, given an image X q
i , triplet

{
X q

i , X p
i , X n

i

}
is generated through random selection. To

attain a more distinctive representation for effective CXR image retrieval, this paper simultaneously
applies triplet constraints to both deep features and hash codes, as outlined in Eq. (9):

LT =
∑T

i=1

[
max

(
0, m − d

(
hq

i , hp
i

) + d
(
hq

i , hn
i

)) + max
(
0, m − d

(
f q

i , f p
i

) + d
(
f q

i , f n
i

))]
, (9)

where T indicates a total number of triplet units across the training images, hq
i , hp

i and hn
i denote the

hash codes of the query image X q
i , positive sample image X p

i , and negative sample image X n
i in the

i-th triplet unit, respectively. f q
i , f p

i and f n
i represent the deep features of the query image X q

i , positive
sample image X p

i , and negative sample image X n
i in the i-th triplet unit individually, m denotes the

margin value, and d (·) represents the Euclidean distance.

The specific learning algorithm for MATDH is shown in Algorithm 1.

Algorithm 1: MATDH Learning Algorithm
Input: CXR image dataset M; Length of hash codes k; Number of network iterations Ti; Number of
epochs Te

Output: Hash codes for the dataset V ; Neural network parameters Θ; Set of feature values P
1: Initialize hash codes V∈{0,1}n∗k and neural network parameters Θ

2: for i = 1 to Ti do
3: Randomly select z images from dataset M to initialize the feature set P
4: Feature Extraction:
5: for each image I i∈z do
6: Pass the image I i through two large-kernel 2D convolution layers to extract local features
7: Apply max-pooling to down-sample the feature map to focus on local regions
8: Pass through four Residual blocks with Channel and Enhance Spatial Attention (RCESA)

to extract hierarchical features
(Continued)
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Algorithm 1 (continued)
9: Apply average pooling and fully connected layers to generate a 1000-dimensional feature

vector
10: end for
11: Feature Decoding and Hash Code Generation:
12: Reconstruct the feature map using alternating max-pooling and up-sampling layers,

followed by convolution layers to restore the original image dimensions
13: Combine the reconstruction loss and triplet loss to form the composite loss function
14: Use backpropagation to update the neural network parameters Θ

15: Hash Code Update:
16: After minimizing the loss function, apply the hash function in the fully connected layer to

the feature vector f i to generate the hash codes for the i-th image, as described by
Eq. (3). The hash function is defined by Eq. (4)

17: Update the hash code matrix V accordingly
18: end for

3.4 Lightweight Image Encryption Algorithm

The construction of the encrypted image database utilizes a lightweight CXR image encryption
method as shown in Fig. 6 to encrypt the original images.

Figure 6: Lightweight CXR image encryption processing

To overcome the shortcomings of simple encryption algorithms, this paper requires randomization
of the original image before encrypting the coefficients of the Discrete Cosine Transform (DCT) in
the image frequency domain. Firstly, in the spatial domain, use the two-dimensional Arnold transform
to scramble the pixel blocks of the ordinary original image for encryption. Then, segment the image
and perform DCT transformation on each image block to transition from the spatial representation
to the frequency representation. Next, use the two-dimensional Logistic chaotic mapping to encrypt
the DCT coefficients of each block. Finally, after the inverse, Discrete Cosine Transform (IDCT),
secondary encryption uses the PRESENT algorithm with a 128-bit key to produce the final encrypted
image. The specific steps for lightweight CXR image encryption are as follows:

Step 1: Apply a two-dimensional Arnold transformation to scramble and encrypt the pixels of
the original image. With the definition of the two-dimensional Arnold transformation as shown in
Eq. (10):[

xi+1

yi+1

]
=

[
1
c

b
bc + 1

] [
xi

yi

]
mod (N), (10)
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where b and c are arbitrary positive integers, and the matrix’s determinant needs to equal 1 to preserve
the same region in the CXR image, the two-dimensional Arnold transformation iterates m times,
generating a random image in each iteration. The values of parameters b, c, and m serve as the
encryption key.

Step 2: Divide the scrambled image into 8 × 8 pixel blocks.

Step 3: Perform DCT processing on the segmented image blocks to transform them from the
spatial domain to the frequency domain. The expression for the two-dimensional DCT of an M × N
matrix is as shown in Eq. (11):

C (u, v) = αuαv

M−1∑
x=0

N−1∑
y=0

I (x, y) cos
π (2x + 1) u

2M
cos

π (2y + 1) v
2N

. (11)

Step 4: Encrypt the DCT coefficients of each pixel block using two-dimensional Logistic chaotic
mapping. The definition of two-dimensional Logistic chaotic mapping is as shown in Eq. (12):{

xn+1 = r1xn (1 − xn) + δ (1 − r1) yn

yn+1 = r2yn (1 − yn) + δ (1 − r2) xn
, (12)

where xn and yn are the two-state components at time n, r1, and r2 are control parameters, and δ is the
coupling function.

Step 5: Perform IDCT on each pixel block to obtain the preliminarily encrypted image. The
definition of the two-dimensional IDCT of an M × N matrix is as shown in Eq. (13):

I (x, y) = αuαv

M−1∑
x=0

N−1∑
y=0

c (u, v) cos
π (2x + 1) u

2M
cos

π (2y + 1) v
2N

. (13)

Step 6: Utilize the PRESENT algorithm to perform secondary encryption on the preliminarily
encrypted image, obtaining the final encrypted image.

4 Simulation Results and Analysis
4.1 Experimental Settings

The experimental hardware environment consists of CPU: Intel(R) Core(TM) i7-13700H CPU
@2.20 GHz, GPU: NVIDIA GeForce RTX 4060 Laptop GPU, memory: 12 GB, software environ-
ment: Windows11, JetBrains PyCharm Community Edition 2023.2x64, Anaconda. The deep learning
framework is PyTorch. This paper uses Adam to optimize the objective function, with a learning
rate set to 0.001, batch size set to 32, 30 training iterations, and the margin threshold in triplet loss
set to 0.2.

Dataset: This experiment evaluates the suggested approach using the public COVIDx dataset
[39], which includes CXR images related to COVID-19. To enhance the model’s generalization ability
during training, the 29,986 CXR images are divided into multiple subsets, which are alternately used as
the test set to reduce the risk of overfitting. Additionally, the independent test set includes 400 medical
images, including 200 negative images and 200 positive images for COVID-19.

Data preprocessing: CXR images are resized to 256 × 256 for uniformity, randomly cropped to
224 × 224, and horizontally flipped to enhance the model’s ability to handle spatial variations and
orientation of chest structures.
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4.2 Network Model and Performance Analysis

In this paper, experimental adjustments are made to the parameters of the network model, and
accuracy and loss are evaluated. After multiple experiments, the deep network model based on the
UNet architecture with optimal performance is obtained. Fig. 7 shows the training and testing curves
for the network model.

Figure 7: The training and testing curves for the network model

As can be seen from Fig. 7, it can be observed that the training and testing accuracy curves
initially converge but stabilize after a certain number of iterations, with no significant jumps or drastic
fluctuations, indicating good generalization capability of the network model and no overfitting. After
30 iterations of training, the training accuracy is 94.56%, and the testing accuracy is 94.42%. Therefore,
the network model adopted in this paper exhibits high performance and accuracy, with good retrieval
performance.

4.3 Retrieval Performance Analysis

4.3.1 Retrieval Accuracy Analysis

Mean Average Precision (mAP) is commonly used to evaluate object detection models, considering
the average precision (AP) across different categories; a higher mAP indicates more similar images at
the top of the retrieved list. Additionally, P@H ≤ 2 is a key measure in image retrieval, emphasizing the
use of shorter hash codes to capture similarity within the feature space. This paper calculates the
average precision for instances where the Hamming distance between the query and database images
is no more than 2. To mitigate bias from model initialization, five independent experiments were
conducted.

To validate the CXR image retrieval performance of the proposed method, a comparison was
conducted between our MATDH method and six other deep hashing methods, namely TCDH [8],
SWTH [12], ATH [22], DPN [40], ASH [41], and DBDH [42]. For fairness, the comparison was
conducted using the same data and parameter settings as MATDH. Table 2 shows mAP values for
different methods across various hash code lengths.
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Table 2: The comparison of mAP values for different methods

Methods Bits = 16 Bits = 24 Bits = 32 Bits = 48 Bits = 64

TCDH 0.8152 0.8257 0.8359 0.8691 0.8271
SWTH 0.7847 0.7919 0.8022 0.8219 0.8386
DPN 0.8066 0.8297 0.8418 0.8511 0.8643
ASH 0.7691 0.7774 0.7866 0.7978 0.8246
ATH 0.8073 0.8196 0.8485 0.8681 0.8704
DBDH 0.6392 0.6524 0.6549 0.6697 0.6866
MATDH(Ours) 0.8331 0.8427 0.8648 0.9117 0.8789

As can be seen from Table 2, it can be observed that MATDH outperforms the compared existing
deep hashing methods. For example, with a 48-bit hash code length, MATDH (0.9117) enhances the
mAP by approximately 4.2% over the top-performing deep learning technique, TCDH (0.8691). This
is because the features extracted from CXR images after image enhancement under the dual attention
mechanism are more accurate, and guided by the triplet loss function, the network can extract more
discriminative features. Furthermore, after performing a t-test distribution calculation comparing the
mAP of the MATDH method with that of six other methods, it was found that there is no significant
difference between MATDH and ATH, while significant differences exist with the other five methods.
This indicates that the MATDH method has statistical significance, providing important evidence for
selecting and optimizing medical image retrieval methods. Fig. 8 shows the curve of P@H ≤ 2 for
MATDH compared to six other methods.

Figure 8: Line graph comparing P@H ≤ 2 across various methods

As can be seen from Fig. 8, P@H ≤ 2 curves further illustrate the method’s effectiveness within
a Hamming radius of 2. The accuracy curve in Fig. 8 shows that the proposed MATDH method
consistently outperforms other advanced methods across hash code lengths from 16 to 64 bits. At
a hash code length of 48 bits, the accuracy is approximately 20% higher than that of the DPN method.
This suggests that the MATDH method is capable of retrieving a greater number of images from the
same category when the Hamming radius is set to 2. Moreover, in comparison to other methods, the
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precision attained by MATDH consistently exceeds 0.85 as the number of hash bits increases. This
highlights MATDH’s effectiveness in CXR image retrieval and its resilience to Hamming sorting.

Additionally, with a 48-bit hash code length, MATDH achieves the highest mAP values. This
suggests that for CXR images, using 48-bit hash codes with MATDH can better preserve the main
features of the images. Therefore, the MATDH method in this paper adopts a 48-bit deep hash code.

4.3.2 The Recall Rate, Precision Analysis

Besides relying on mAP, in medical image retrieval, accuracy for items positioned highest in the
ranking is often a key priority for users. Therefore, this paper also uses the recall rate in the top-K
retrieval results (Recall@K) and the precision of the top-N retrieval results (P@N) to evaluate the
effectiveness of CXR image retrieval methods [8].

Fig. 9 shows the recall rate curves of top-k images across various techniques using a consistent 48-
bit hash code length, and Table 3 presents the comparison results of P@1, P@5, and P@10 obtained
through various methods using 48-bit deep hash codes in the COVIDx dataset. The XMIR method
[43], which is not a deep hash method, is not concerned with the issue of hash code length.

Figure 9: Recall curve for different methods

Table 3: The comparison of P@N results for different methods

Method mAP P@1 P@5 P@10

TCDH 0.8691 0.9142 0.8857 0.8831
SWTH 0.8219 0.8766 0.8544 0.8395
DPN 0.8511 0.8917 0.8845 0.8798
ASH 0.7978 0.8524 0.8408 0.8233
ATH 0.8681 0.8874 0.8780 0.8677
DBDH 0.6697 0.7586 0.7468 0.7153
XMIR 0.8616 0.9015 0.9001 0.8815
MATDH(Ours) 0.9117 0.9333 0.9154 0.9081
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As shown in Fig. 9, the recall rate of MATDH remains consistently higher than that of other
methods as the number of returned CXR images increases from 0 to 200. For example, when 180
images are returned, the recall rate is approximately 30% higher than that of the DBDH method. This
indicates that MATDH retrieves a higher number of relevant images, consistent with the comparative
analysis results.

As can be seen from Table 3, it is evident that when the limit on returned images is set, MATDH
outperforms other methods. This is because, under the effect of the multi-attention mechanism,
with the iterative training of deep neural networks, the constructed hash codes can more accurately
represent images, thereby improving the accuracy of CXR image retrieval.

Although this study mainly uses the COVIDx dataset for experiments, the proposed MATDH
method has the potential for clinical application. It can serve as an auxiliary diagnostic tool, helping
doctors make faster and more accurate judgments on COVID-19 infections. The model can be
integrated into hospital imaging systems for real-time radiological image analysis, improving early
detection accuracy. Additionally, the proposed MATDH method can assist doctors in quickly and
accurately retrieving medical imaging data, reducing the workload of data queries during treatment,
especially when medical resources are limited.

4.4 Visual Analysis

This section uses the 48-bit deep hash codes to display the 10 most similar CXR images obtained
through various methods. Fig. 10 shows the visualization results. The images within the red boxes
represent those returned in the wrong categories compared to the query image.

Figure 10: The visualization results of the top 10 CXR images are recognized by different methods
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As can be seen from Fig. 10, it can be observed that most of the images returned by MATDH
compared to other methods are correct. This indicates that the retrieval results of MATDH are highly
accurate, demonstrating that the multiple attention mechanism and optimized loss function used in
MATDH outperform other advanced methods. Additionally, the visualization results of different
methods further confirm the accuracy of the P@10 results.

4.5 Ablation Study

4.5.1 Impact of Network Architecture and CXR Image Enhancement Methods

To objectively evaluate the network model and framework of this paper’s method, disintegration
experiments are conducted through the removal or substitution of modules in the network architecture.
For the network structure, the basic structure of ResNet18 in the UNet network used by the proposed
method is replaced with AlexNet [44] and ResNet34 [45], and these two variants are respectively
denoted as MATDH-AlexNet and MATDH-ResNet34. Furthermore, before extracting features from
the deep network, the approach described in this paper does not enhance the original images, which are
denoted as MATDH-NoEnhanced, and experiments are conducted using 48-bit deep hashing codes.
The detailed data can be found in Table 4, where the top entries are emphasized in bold.

Table 4: The impact of network architecture and CXR image enhancement methods

Method mAP P@1 P@5 P@10

MATDH-NoEnhanced 0.8344 0.9150 0.8979 0.8868
MATDH-AlexNet 0.7806 0.8109 0.7945 0.7748
MATDH-ResNet34 0.7909 0.8255 0.8215 0.7806
MATDH(Ours) 0.9117 0.9333 0.9154 0.9081

As can be seen from Table 4, MATDH enhances the retrieval performance of input CXR images
by utilizing image enhancement, and it outperforms variant networks with different frameworks.

4.5.2 The Impact of Multi-Attention Mechanism

To examine how the dual attention mechanism within the RCESAs module influences the
outcomes of CXR image retrieval experiments, this section modified the attention mechanisms used
in the RCESAs module of the MATDH framework. One of the variants utilizes only the channel
attention mechanism, referred to as MATDH-CA, while the other variant utilizes only the enhanced
spatial attention mechanism, referred to as MATDH-ESA. Fig. 11 shows the comparison between
MATDH and its variants that utilize various attention mechanisms for CXR image recovery from the
COVIDx dataset, using a 48-bit hash code length, with the top outcomes emphasized in bold.

According to the results in Fig. 11, MATDH with a dual-attention mechanism outperforms the
standalone CA and ESA mechanisms in retrieval performance. The specific contributions to this
performance improvement can be summarized as follows:

1) Feature enhancement: The dual-attention mechanism effectively captures and enhances the
correlation between useful feature channels, enabling the model to better identify features related to
lesions in CXR images, thereby improving retrieval accuracy.
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2) Redundant information suppression: This mechanism effectively reduces the influence of
unnecessary data and noisy channels in CXR images, allowing the network to focus more on key
information, thus enhancing the clarity of feature representation.

3) Dynamic attention adjustment: The dual-attention mechanism dynamically adjusts the focus
of the deep neural network on different regions of CXR images, enabling the model to better capture
important spatial features. This flexibility allows MATDH to maintain high retrieval performance
across a diverse set of input images.

4) Combined effect: By integrating the above factors, the dual-attention mechanism significantly
enhances the overall performance of MATDH, demonstrating its effectiveness and superiority in
medical image retrieval tasks.

Figure 11: The comparison of MATDH and its variants

4.6 Encryption Performance Analysis

The cryptographic performance analysis in this section is demonstrated using three CXR images
selected from the COVIDx dataset, as shown in Fig. 12, referred to as CXR-1, CXR-2, and CXR-3.

Figure 12: The three CXR images were used for encryption analysis: (a) CXR-1; (b) CXR-2; (c) CXR-3
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4.6.1 Information Entropy Analysis

In cryptography, information entropy indicates the degree of unpredictability in image data. For a
perfectly random image, it is essential that all grayscale values have an equal probability of occurrence.
The formula for calculating information entropy is shown in Eq. (14):

H = −
L∑

i=0

p (i) log2 p (i) , (14)

where L represents the total number of grayscale levels in the image, while p(i) denotes the probability
of occurrence for grayscale value i. For an image with p(i) = 256, when each pixel value in the image has
an equal probability of occurrence, the entropy of the image can reach its maximum value of 8. A higher
entropy indicates greater randomness in the image, leading to better encryption performance. Table 5
shows the compares the entropy between the original and encrypted images, both with dimensions of
512 × 512.

Table 5: Information entropy comparison

Image The entropy of the original image The entropy of the encrypted image

CXR-1 6.5566 7.9992
CXR-2 7.7805 7.9994
CXR-3 7.6164 7.9993

As can be seen from Table 5, the average entropy of the encrypted images generated by the
encryption method presented in this paper is 7.9993, approaching the optimal value of 8. This suggests
that the encryption technique presented here achieves strong performance, resulting in encrypted
images that show significant randomness.

4.6.2 Comparative Performance Analysis with Existing Encryption Schemes

As the encryption method described in this study is a secure lightweight encryption algorithm,
this section compares and analyzes it with existing schemes based on three evaluation indicators
reflecting the lightweight and security of encryption algorithms: key space size, encryption speed,
and information entropy. Table 6 shows the performance comparing results between the encryption
method introduced here and various medical image encryption schemes [46–48].

Table 6: Comparison with existing encryption schemes

Method Keyspace Encryption speed(Mbit/s) Information entropy

Proposed 2256 7.9482 7.9993
Castro et al. [46] 2256 4.8840 N/A
Abdelfatah et al. [47] 2478 1.4873 7.9971
Inam et al. [48] 2240∗4 7.9886 7.9992

From Table 6, it is evident that the encryption method in this paper shares the same key space as
in Castro et al. [46], but is significantly smaller than that in Abdelfatah et al. [47] and Inam et al. [48].
This suggests that the proposed method is more resource-efficient, making it suitable for lightweight
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encryption of medical images. Although its key space is smaller, it still provides sufficient security
(greater than 2100), enough to resist exhaustive attacks [48]. The encryption speed is higher than in
Castro et al. [46] and Abdelfatah et al. [47] and slightly lower than in Inam et al. [48], due to frequency
domain operations. These operations, while slowing down the process, offer better attack resistance.
Additionally, the proposed method has higher entropy, indicating strong randomness and resistance
to entropy attacks, making it a secure lightweight encryption algorithm for medical images compared
to other schemes [46–48].

4.6.3 The Analysis Resists Different Types of Attacks

Building on the insights from the previous two sections, this part demonstrates the advantages of
the encryption algorithm in resisting various types of attacks.

First, as discussed in Section 4.6.1, it is understood that the ciphertext generated by this algorithm
exhibits high entropy, meaning that it is statistically close to a random distribution. This randomness
complicates the process for attackers trying to obtain useful information through frequency analysis, as
well as through statistical attacks such as known-plaintext or chosen-plaintext attacks. The existence of
high-entropy ciphertext significantly enhances the algorithm’s defense against these forms of attacks.

Secondly, the analysis in Section 4.6.2 shows that the key space of this encryption algorithm is
2256, and such an extensive key range renders brute-force attacks virtually impossible. Even if attackers
possess powerful computational resources, attempting to exhaust all possible keys within a reasonable
time frame is still unlikely, providing additional security for the algorithm.

In summary, based on the aforementioned points, this encryption algorithm can be considered
to possess strong security, effectively resisting brute-force attacks, statistical attacks, known-plaintext
attacks, chosen-plaintext attacks, and chosen-ciphertext attacks, among other common attack meth-
ods. The high-entropy characteristic and the vast key space complement each other, ensuring the
reliability and robustness of the encryption algorithm under various threats.

5 Conclusions

This paper proposes a secure technique for retrieving medical images utilizing a multi-attention
mechanism and triplet deep hashing, addressing issues like poor feature extraction, low retrieval
precision, and inadequate security in existing solutions. The approach enhances CXR images using
contrast-limited adaptive histogram equalization, which reduces noise and highlights details for
better feature extraction. The multi-attention mechanism dynamically allocates channel attention
and focuses on important local features, improving retrieval accuracy through deep hash codes. A
lightweight CXR image encryption method enhances system security while maintaining efficiency. A
limitation is the small dataset of CXR disease types, with future work aimed at improving retrieval
accuracy and security on more complex datasets.
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