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ABSTRACT

The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses
caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately
predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to
these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost).
Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract
essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to enhance the
optimization accuracy of the sparrow search algorithm. Finally, we construct an XGBoost-based model for the
classification prediction of power grid meteorological faults and optimize the hyperparameters such as the optimal
tree depth, optimal learning rate, and optimal number of iterations using an enhanced sparrow search algorithm.
Experimental results demonstrate that our method outperforms the baseline models in predicting power grid faults
accurately.
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1 Introduction

The rapid economic development has led to an increased demand for electricity from the power
grid across society. As a highly important public utility and energy foundation for the whole society,
the power system occupies an irreplaceable position in national security, economic development and
people’s daily life. In recent years, the rapid expansion of the power grid has led to an increasingly
intricate power grid structure. The interconnection of power grids in various regions has fostered
closer connections between them, leading to an increasing mutual influence [1]. Therefore, it is of
great significance to ensure the safe and stable operation of the power grid. The causes of power grid
accidents are complex, including internal factors such as equipment aging and operational errors,
alongside external factors like natural disasters including lightning, floods, ice, and snow. Among
them, meteorological disasters have become one of the most important factors threatening the safe
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operation of power grids due to their suddenness, destructive power and wide impact range [2].
Amidst the backdrop of global warming, there is a heightened frequency of extreme weather and
climate events, including typhoons, heavy rainfall, ice storms, and snowfall. These disastrous weather
occurrences are increasingly exacerbating the vulnerability of power grids [3]. The majority of power
equipment is exposed to intricate and dynamic external environments for prolonged periods, rendering
it highly susceptible to severe weather conditions such as lightning, windstorms, hailstorms, and ice
accumulation. These adverse conditions can result in equipment damage, line interruptions, tripping
incidents, power outages, and other critical faults. Therefore, harnessing meteorological monitoring
data to promptly identify power grid failure risks holds paramount importance in enhancing the
disaster prevention and mitigation capabilities of the power grid, thereby ensuring its safe and stable
operation.

Currently, with the advancements in modern meteorological detection and numerical forecasting
technology, acquiring abundant and precise meteorological monitoring data is no longer a formidable
task. Particularly in short-term, small-scale refined weather forecasting, remarkable progress has
been achieved [4]. The rise of big data and artificial intelligence has also provided new opportunities
for in-depth mining and application of meteorological data. For example, the XGBoost regression
model was used to analyze the effect of container orientation on phase change material (PCM)
melting [5], as well as radial-based neural networks to predict thermal and phase change processes
in complex environments [6]. Various researchers have conducted investigations on meteorological
disasters in power grids. Guo et al. [7] employed the distance between lightning and the transmission
line, along with the electric field strength, as warning factors for calculating the initial level of
lightning warning. They proposed a multi-information fusion method for lightning warning based
on atmospheric electric field, lightning location, and assessment technology of lightning disaster
risk. Hou et al. [8] proposed a hybrid prediction model, integrating extreme value type I probability
distribution, Monte Carlo method, and random forest, to quantitatively assess the likelihood of
transmission line damage during typhoon disasters. These studies [9,10] all focused on power grid
fault prediction for a specific type of meteorological disaster, extensively analyzing the underlying
mechanisms causing such faults and proposing corresponding warning methods. However, it should be
noted that real-life meteorological impacts on power grids exhibit significant diversity. Subsequently,
a large number of scholars have studied the prediction methods of multiple types of faults by
integrating the impact of various meteorological factors on power grid facilities. Li et al. [9] analyzed
power grid and meteorological data, utilizing Geographic Information System (GIS) technology and
visualization techniques to propose a design plan for such a warning system, facilitating resource
sharing. Chen et al. [10] proposed an enhanced logistic regression model-based data-driven approach
for predicting the reliability of overhead line operation, considering multiple meteorological factors.
With the development of artificial intelligence, intelligent technologies such as fuzzy logic, support
vector machines and deep learning have gradually been used in power grid fault prediction, and the
level of power grid intelligence has been greatly improved. Lin et al. [11] trained multiple support
vector machines as voting models, and then used an improved random forest algorithm to change the
decision-making process to improve the fault prediction accuracy. Fang et al. [12] constructed a power
grid fault prediction model using the extreme gradient boosting algorithm, and used the particle swarm
optimization algorithm to find the optimal hyperparameters for the model to improve the model
prediction accuracy. However, most existing research simply utilizes meteorological information and
lacks comprehensive and systematic analysis of complex and diverse meteorological characteristics.
The focus is mainly on fault diagnosis and status assessment during and after the event [13]. Moreover,
traditional feature engineering methods exhibit significant vulnerabilities in smart grids due to their
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insufficient adaptability to the dynamics of complex systems and highly nonlinear models. This makes
it difficult to extract truly useful key information from meteorological big data for fault prediction,
resulting in poor performance of the prediction models [14].

To address the above limitations, we propose a new approach for grid fault warning. First, we
automatically extract important features by combining Gradient Boosting Decision Tree (GBDT)
[15] with Recursive Feature Elimination (RFE) [16]. Then, we utilize PieceWise Linear Chaotic Map
(PWLCM) [17] to optimize the parameter finding process of the Sparrow Search Algorithm (SSA) [18]
to enhance the XGBoost. The method aims to achieve accurate early detection of grid fault types. Our
main contributions are summarized as follows:

• We innovatively propose the FE-XGBoost, which combines GBDT and RFE to extract key
features from meteorological data, overcoming the limitations of manual feature selection;

• We introduce PWLCM to enhance SSA, improve its optimization accuracy and efficiency, and
further enhance the accuracy of the fault prediction model;

• Through a large number of simulation experiments, the results show that the proposed FE-
XGBoost is superior to traditional machine learning methods and other advanced prediction
models in multiple evaluation metrics.

2 Preliminary

In this section, we review some of the works that are most related to our approach. We then
summarize these approaches and briefly describe our work in this paper.

2.1 XGBoost

The XGBoost [19] consists of multiple classification and regression trees [20], which are considered
“weak classifiers’’. By integrating these “weak classifiers”, the XGBoost is constructed. When making
predictions, the sample passes through each decision tree of XGBoost in turn, and its output value is
accumulated on the results in each decision tree to obtain the final prediction result:

ŷi =
n∑

k=1

fk (xi) (1)

where n is the number of decision trees; fk (xi) is the calculation result of the k-th tree model; xi is the
i-th sample.

The objective function of the model is:

Obj(θ) =
N∑

i=1

l
(
yi, ŷi

) +
n∑

k=1

� (fk) (2)

where N represents the total number of samples; yi and ŷi denote the true and predicted values of
the i-th sample, respectively; l

(
yi, ŷi

)
serves as a loss function that quantifies discrepancies between

predictions and actual values; �(fk) is the regularization term, which represents the sum of the
complexity of n tree models:

� (fk) = γ T + 1
2
λ ‖ ω ‖2 (3)

where T represents the number of leaf nodes of the tree; ω is the value of the leaf node; λ and γ

are adjustable parameters. Obviously, a larger γ will impose a greater penalty on trees with a large
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number of leaf nodes, thereby simplifying the tree structure. Similarly, increasing λ can also reduce the
complexity of the model.

After substituting Eqs. (2) into (3), and subsequently applying a second-order Taylor expansion
of the loss function based on the principle of forward distribution addition, an approximate objective
function can be derived. The expression is as follows:

Obj ∼=
N∑

i=1

[
gifk (xi) + 1

2
hif 2

k (xi)

]
+ � (fk) (4)

where gi is the first-order derivative of the loss function l
(
yi, ŷi

)
with respect to the predicted value ŷi,

and hi is the second-order derivative of the loss function with respect to ŷi.

The decision tree model is further defined as a relational expression containing branch structures
and leaf node weights, and its specific relationship can be expressed as follows:

fk(x) = ωq(x) (5)

where q(x) is the leaf node index corresponding to sample x; ω ∈ RT , RT is a leaf node weight set with
t-dimensional real numbers.

The complexity of the decision tree is determined by the number of leaf nodes and the two-norm
of all weight vectors, thus Eq. (3) can be reformulated as Eq. (6):

� (fk) = γ T + 1
2
λ

T∑
j=1

ω2
j (6)

Define Gj and Hj as the sum of the first-order and second-order partial derivatives of the sample
set on the leaf node j:

Gj = ∑
i∈Ij

gi

Hj = ∑
i∈Ij

hi

(7)

where Ij = {i | q (xi) = j} represents the sample set located on the leaf node j. Therefore, the objective
function can be further reformulated as:

Obj = −1
2

T∑
j=1

G2
j

Hj + λ
+ γ T (8)

The objective function Obj is a quadratic function, and the optimal solution of its extreme value
at the axis of symmetry is as follows:

ωj = − Gj

Hj + λ
(9)

2.2 SSA

The Sparrow Search Algorithm is inspired by the sparrow population’s foraging and avoiding
being preyed on. It is a swarm intelligence optimization algorithm [21] proposed by simulating this
biological behavior to establish a model. According to the different division of labor, sparrows are
divided into discoverers, joiners and guards.
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Assume that the space composed of N sparrows is X = [x(1, i), x(2, i), · · · , x(N, i)]
T , where

i = {1, 2, · · · , d}, d is the dimension, and the discoverer position update is described as follows:

xt+1
i, j =

⎧⎨
⎩

xt
i, j · exp

(
− i

α · itermax

)
if R < ST

xt
i, j + Q · L if R ≥ ST

(10)

where t represents the t-th iteration, itermax represents the maximum number of iterations; xt
i, j denotes

the position information of the j-th dimension of the i-th sparrow in the t-th iteration, α is a random
number between (0, 1], and follows a uniform distribution; Q is a random number following a standard
normal distribution; matrix L is defined as a row vector with all elements being 1; R is a random
number uniformly distributed in [0, 1], serving as an alarm value; ST is a constant within [0.5, 1] that
represents the alarm triggering condition.

The joiner position update is described as follows:

xt+1
i, j =

⎧⎪⎪⎨
⎪⎪⎩

Q · exp
(

xt
w − xt

i, j

tt

)
if i >

N
2

xt+1
p + ∣∣xt

i, j − xt+1
p

∣∣ ·
(

AT
(
AAT

)−1
)

· L if i ≤ N
2

(11)

where xt
w represents the worst position of the current sparrow population in the t-th iteration, xt+1

p

represents the optimal position of the current sparrow population, A is a 1×d matrix and the elements
are randomly assigned 1 or −1.

During the foraging process, 20% of the sparrow individuals are selected as guards, and the
position update is described as follows:

xt+1
i, j =

⎧⎪⎨
⎪⎩

xt
b + β · ∣∣xt

i, j − xt
t

∣∣ if fi > fg

xt
i, j + K ·

∣∣∣∣ xt
t, j − xb

w

fi − fw + ε

∣∣∣∣ if fi = fg

(12)

where xt
b is the global optimal position at the t-th iteration, β represents the step size control parameter,

which is a random number that obeys the standard normal distribution, K is a random number in the
interval [−1, 1], fi represents the current individual fitness value, fg and fw are the fitness values of the
current best and worst individuals, and ε is a small constant to prevent the denominator from being 0.

3 Proposed Method
3.1 Framework Overview

In this section, we introduce the proposed FE-XGBoost. The overall architecture is shown in
Fig. 1, which contains three important components: (1) Feature Enhancement: First, we preprocess
the meteorological fault dataset, and then combine GBDT and RFE to calculate the classification
accuracy and feature importance scores in order to extract the key features from the dataset; (2) P-
SSA: We propose P-SSA by using PWLCM to improve SSA, which makes the initial distribution of
sparrow population more uniform and enhances the algorithm’s ability to find optimal parameters;
(3) Fault Prediction Classification: Based on optimal hyperparameters found by P-SSA, we construct
an XGBoost fault prediction model to achieve fault type prediction.
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Figure 1: Framework of the FE-XGBoost

3.2 Meteorological Key Feature Extraction

The occurrence of equipment meteorological failures can be attributed to the combined impacts
of multiple meteorological factors. Due to the diversity of meteorological factors and their differences
in impact on equipment, although they are associated with equipment failures, they are difficult to
analyze quantitatively. Therefore, meteorological factors are difficult to directly use for equipment
failure prediction. In order to conduct a comprehensive analysis of the correlation between meteo-
rological factors and equipment failures, we have devised Module 2 as depicted in Fig. 1, with the
aim of delving into the intrinsic characteristics of meteorological data pertaining to specific types of
equipment malfunctions.

We combine GBDT and RFE for feature selection and model training. We initiate the feature
extraction process by utilizing a comprehensive set of original features, iteratively eliminating those
with the lowest importance scores during each round of training. Ultimately, we identify the subset of
features that significantly contribute to power grid failure prediction. To enhance the readability and
comprehension of our framework, Algorithm 1 presents the pseudo-code for this feature extraction
method.

Algorithm 1: Feature selection process
Require: Training set D = {(xi, yi)}N

i=1 with xi ∈ R
M and yi ∈Y

Ensure: Optimal feature subset S∗

1: Initialize feature set S = {1, 2, · · · , M}
2: while |S| > 0 do
3: Trained GBDT model on S
4: Compute classification accuracy α and feature importance scores I = {I1, I2, · · · , I|S|}
5: Find the feature j∗ = arg minj∈S Ij

(Continued)
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Algorithm 1 (continued)
6: Remove the least important feature using RFE: S ← S\{j∗}
7: end while
8: Select the feature subset S∗ with the highest classification accuracy α∗

3.3 P-SSA

The random initialization values of the SSA population exhibit disorder and unevenness, thereby
impeding algorithm convergence and constraining its global exploration capability. In view of the
above shortcomings of the SSA algorithm, we use the chaotic sequence [22] to initialize the individual
positions of sparrows in the SSA algorithm, so as to promote the uniform distribution of the sparrow
population and enhance the algorithm’s optimization ability.

The values of chaotic sequences exhibit regularity and ergodicity. Incorporating chaotic sequences
as sparrow individuals for population initialization enhances the uniform distribution of individuals,
thereby improving population diversity and enhancing the algorithm’s global optimization capability.
Therefore, the P-SSA based on PWLCM is proposed to optimize the population initialization of SSA.
Its mathematical model is as follows:

zi+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi

p
, 0 < zi < p

zi − p
0.5 − p

, p ≤ zi < 0.5

1 − p − zi

0.5 − p
, 0.5 ≤ zi < 1 − p

1 − zi

p
, 1 − p ≤ zi < 1

(13)

where p ∈ (0, 1) is a control parameter for mapping, and zi represents a chaotic sequence. For detailed
information regarding the comparative experiments conducted on chaotic map methods, please refer
to Section 4.4.2.

3.4 Grid Fault Prediction Model Based on FE-XGBoost

This section constructs an XGBoost for meteorological fault prediction, but the model has many
main hyperparameters, such as the optimal tree depth, optimal learning rate, optimal number of
iterations, subsampling rate, column sampling rate, and minimum child node weight. These hyper-
parameters are usually randomly defined by users, and the model prediction performance is greatly
affected by hyperparameters. The P-SSA algorithm is proposed to optimize the hyperparameters
of the XGBoost, aiming to achieve an optimal meteorological fault prediction model. During the
utilization of the XGBoost for predicting the meteorological failure rate in a specific region, the weights
assigned to each node within the tree model are continuously adjusted to progressively approximate
the intricate relationship between equipment failure rate and meteorological influencing factors. The
process exhibits similarities to conventional supervised learning, where the XGBoost utilizes the
training set to generate predictions for the target variable. Since the model cannot predict successfully
in one attempt, the XGBoost will add a decision tree after each prediction. It then adjusts and corrects
the prediction results of the previous tree based on the error function until the final prediction meets
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the accuracy requirements. To enhance the readability of our framework, we present Algorithm 2,
which illustrates the pseudo code for the FE-XGBoost fault prediction model.

Algorithm 2: Grid fault prediction model based on FE-XGBoost
Require: Weather data Dtrain and Dtest

Ensure: Optimized hyperparameters θ ∗ and trained XGBoost
1: Preprocess Dtrain, Dtest to obtain D′

train, D′
test

2: Extract key features F from D′
train and D′

test

3: Define hyperparameter search space H of XGBoost
4: Initialize sparrow population P = {s1, s2, · · · , sN} using chaotic map sequence within H
5: Sort P by f (θi, D′

train) to identify best sbest and worst sworst individuals
6: while not reached maximum iterations Tmax do
7: Construct XGBoost with hyperparameters θi

8: for each sparrow si ∈ P do
9: Evaluate fitness f (θi, D′

train) using multi-class accuracy
10: Update positions xt+1

i of discoverers, joiners, and guards according to Eqs. (10)–(12)
11: Recalculate fitness f (θi, D′

train)

12: if f (θi, D
′
train) improves then

13: Update position x∗
i ← xt+1

i

14: end if
15: end for
16: end while
17: Identify optimal hyperparameters θ ∗ = x∗

best

18: Construct XGBoost with θ ∗

19: Validate prediction performance f (θ ∗, D′
test) on testing data

When classifying and predicting power grid faults, it is imperative to ensure a high classification
accuracy of the model, minimizing any potential classification errors. Therefore, when using P-SSA
to optimize the XGBoost in Algorithm 2, the multi-classification logarithmic loss of the XGBoost is
used as the fitness value. The Eq. (14) demonstrates the calculation method for the multi-classification
logarithmic loss employed by the model. The P-SSA algorithm is employed to identify a set of
hyperparameters that minimize the model loss, thereby facilitating the construction of a power grid
fault prediction model.

f = − 1
N

N∑
i=1

M∑
j=1

pijlnp̂ij (14)

where N denotes the number of samples, M denotes the number of fault categories, pij and p̂ij denote the
real and predicted fault category labels, respectively. If the i-th sample is belong to j-th fault category,
pij is equal to 1; otherwise, it is equal to 0.

4 Experiment
4.1 Data Pre-processing

The feature enhancement module performs initial cleaning of the acquired meteorological data,
followed by feature extraction using GBDT and RFE. Finally, it is divided into a training set and a
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test set at a ratio of 7:3. The meteorological data in this paper is obtained from the meteorological
monitoring station located closest to the fault site, as indicated in Table 1.

Table 1: Detailed meteorological data

Meteorological element Unit Meteorological element Unit

Wind speed m/s Relative humidity %
Wind direction ◦ Minimum relative humidity %
Average wind speed m/s Average relative humidity %
Maximum wind speed m/s Atmospheric pressure mmHg
Precipitation mm Total cloud cover %
24-h precipitation mm Snow depth mm
Near surface temperature °C 24-h snowfall mm
Maximum temperature °C Horizontal visibility km
Minimum temperature °C PM2.5 μ/m3

Average temperature °C PM10 μ/m3

Dew point temperature °C

The meteorological data comprises 21 dimensions, necessitating key feature extraction. However,
these data exhibit inconsistencies in units and encompass a wide range of values. To enhance
computational efficiency and expedite model convergence, normalization techniques are employed:

x∗
i = xi − min(x)

max(x) − min(x)
(15)

where x is a certain type of meteorological data, xi is the i-th sample in this data type, and x∗
i is the

normalized value of xi. The maximum and minimum values of this data type are represented as max(x)

and min(x), respectively.

4.2 Experimental Setup

The experimental environment is configured as follows: operating system Windows 10, the
computer processor is 13th Gen Intel(R) Core(TM) i9-13900HX, memory is 2.20 GHz and 16 GB
RAM, Python version 3.11. We simulate 3000 records of power grid faults. The samples are indexed
by date and contain 21 characteristic variables such as wind speed, precipitation, and temperature, as
shown in Table 1. The type of power grid fault is the dependent variable, which is normal (0), wind
disaster fault (1), ice fault (2), pollution fault (3), and rain damage fault (4). The data is sorted and
applied to the prediction of power grid fault type.

4.3 Evaluation Metrics

The meteorological data exhibits high dimensionality and imbalanced distribution, with a pre-
dominance of normal samples compared to faulty samples. If accuracy alone is employed as the sole
metric for evaluating model quality, it fails to effectively capture the true impact of the model and
merely represents the classification accuracy within a large sample population. Simultaneously, in
the context of equipment failure prediction, overlooking any form of failure could result in severe
repercussions. Hence, it is imperative to select appropriate evaluation metrics. In order to accurately
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predict the probability of equipment failure and enhance prediction accuracy, we employ accuracy,
precision, recall, and F1-Score as evaluation metrics. The calculation formula can be expressed as
follows:

Accuracy = TP + TN
TP + FP + FN + TN

(16)

Precision = TP
TP + FP

(17)

Recall = TP
TP + FN

(18)

F1 = 2 × Precision × Recall
Precision + Recall

(19)

where TP represents the count of fault samples correctly predicted as fault samples; FN represents the
count of fault samples incorrectly predicted as normal samples; FP represents the count of normal
samples incorrectly predicted as fault samples; TN represents the count of normal samples correctly
predicted as normal samples. The larger the values of the aforementioned metrics, the more effective
the fault detection and higher the prediction accuracy in equipment fault prediction.

4.4 Comparative Analysis

4.4.1 Grid Fault Type Detection

To validate the efficacy of the proposed approach, we employ the subsequent baseline model and
adapt it to address the task of meteorological equipment failure.

• XGBoost [23]: This model employs XGBoost to process the traffic classification task based on
network traffic.

• GA-XGBoost [24]: This model employs XGBoost to analyze the characteristics of urban road
traffic accidents and constructs a GA-XGBoost feature recognition model.

• GA-RF [25]: The author proposed a novel method, which combines a genetic algorithm and
random forest (GA-RF), for predicting inclusions in continuous casting slabs.

The fault prediction models used in our study include the baseline model and the FE-XGBoost.
We evaluate their performance using metrics such as accuracy, precision, recall, and F1. The corre-
sponding results are presented in Table 2.

Table 2: Performance metrics of different models in meteorological fault prediction

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

XGBoost 0.7756 0.7820 0.7756 0.7713
GA-XGBoost 0.9211 0.9252 0.9211 0.9213
GA-RF 0.9056 0.9169 0.9055 0.9054
FE-XGBoost 0.9411 0.9466 0.9411 0.9413

As can be seen from Table 2, the FE-XGBoost achieves the highest performance among the
comparison models, with accuracy, precision, recall, and F1 reaching 94.11%, 94.66%, 94.11%, and
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94.13%, respectively. This excellent performance is mainly attributed to the combination of P-SSA
and XGBoost, which combines the global search ability of P-SSA and the high accuracy advantage
of XGBoost. P-SSA can adaptively search for the best feature combination, further improving the
prediction accuracy of the model.

The XGBoost algorithm alone exhibits subpar performance in terms of accuracy, precision, recall,
and F1. Additionally, it lacks global search capability which hampers feature selection optimization
and adversely affects the overall model performance. The GA-XGBoost algorithm enhances feature
selection through genetic algorithms. However, its global search ability falls short compared to P-SSA
resulting in slightly inadequate accuracy and prediction capabilities. Despite improvements in feature
selection achieved by the GA-RF, it still achieves lower accuracy and precision than the FE-XGBoost
combination due to inherent limitations of random forest.

4.4.2 Comparison of Chaos Map Methods

In order to verify the performance of the PWLCM selected in this paper, we conduct comparative
experiments with the Logistic chaotic map [26] and the random generation method.

The comparison of the frequency distribution between PWLCM and logistic chaotic map is
presented in Fig. 2. It can be observed that PWLCM exhibits a higher level of stability in its chaotic
behavior, thereby offering enhanced global search capabilities. Fig. 3 shows the distribution of the same
number of samples generated by PWLCM and random generation method. The sequence generated
by the random generation method exhibits local aggregation and partial sparseness, with no values
falling between 0.4 and 0.6. In contrast, the sequence generated by PWLCM demonstrates an even
distribution, enabling the generation of a high-quality initial population for optimization.

Figure 2: Comparison of frequency distribution of PWLCM and logistic chaotic map
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Figure 3: Comparison of initial population distribution; (a) PWLCM; (b) Random generation method

4.4.3 ROC Curve Comparison

This section is based on the classification results of the FE-XGBoost in the test set. The predicted
power grid fault types are “normal (0)” and “pollution flashover fault (3)”, and the ROC curves of the
FE-XGBoost and the GA-XGBoost are respectively drawn, as shown in Fig. 4. The figure illustrates
that the FE-XGBoost predicts AUC areas of 0.98 and 0.99 for categories 0 and 3, respectively, while
the GA-XGBoost predicts AUC areas of both 0.97 for categories 0 and 3. The AUC areas of the
FE-XGBoost for predicting category 0 and category 3 surpass those of the GA-XGBoost, exhibiting
superior accuracy and discrimination.

Figure 4: ROC curve comparison

4.4.4 Generalization Experiments

To validate the generalization ability of FE-XGBoost, we further conduct generalization exper-
iments on larger-scale datasets. Fig. 5 presents the experimental results of FE-XGBoost and GA-
XGBoost on ROC curves across datasets of varying sizes. We train FE-XGBoost on a dataset with
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3000 samples and evaluate its performance under the same settings on a dataset with 4000 samples. We
observe that FE-XGBoost outperforms GA-XGBoost when scaled to larger datasets. This superiority
is mainly attributed to the fact that the FE-XGBoost extracts key meteorological features through
GBDT and RFE, which enables it to efficiently deal with the complex nonlinear relationships among
meteorological features. By accurately identifying and utilizing these meteorological characteristics,
FE-XGBoost can achieve higher generalization performance on larger-scale datasets.

Figure 5: Generalization results on larger scale data

4.4.5 Error Analysis

The root mean square error calculation results of the four models on the test set are presented in
Fig. 6. It is evident from the figure that the FE-XGBoost exhibits the lowest root mean square error
value of 0.5083. The prediction error of the GA-RF is slightly higher compared to that of the FE-
XGBoost. The XGBoost serves as the baseline, exhibiting the highest root mean square error value of
0.7756. The GA-XGboost demonstrates an intermediate performance between FE-XGBoost and GA-
RF, yielding a moderately effective prediction outcome. Therefore, based on the calculation results of
root mean square error, the FE-XGBoost outperforms other models in predicting power grid fault
types with higher prediction accuracy and smaller error.

Figure 6: Comparison of RMSE for different models
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5 Conclusion

We propose a feature-enhanced XGBoost-based power grid fault prediction model, FE-XGBoost,
to address the nonlinear relationship between complex meteorological factors and power grid faults.
First, we combine GBDT and RFE to calculate the classification accuracy and feature importance
score to extract the key features. Then, we design the optimization algorithm P-SSA to find the optimal
hyperparameters of XGBoost. Finally, we construct the XGBoost fault prediction model to predict
the grid fault type. The experimental results show that FE-XGBoost significantly outperforms other
baselines on the datasets of different sizes, verifying its effectiveness and superiority.

In the future, we intend to integrate real-time meteorological data streams, which will bolster the
predictive abilities of model in ever-changing environmental conditions. Furthermore, we envision
expanding the scope of model to incorporate a broader range of external factors, such as infrastructure
maintenance conditions and human interventions. This expansion aims to provide a more holistic and
nuanced approach to power grid fault prediction, considering both environmental and operational
elements that could influence grid performance.
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