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ABSTRACT

The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been
occupying an increasingly important role in real life. The development of the Internet of Things (IoT) relies on
the support of base stations, which provide a solid foundation for achieving a more intelligent way of living. In a
specific area, achieving higher signal coverage with fewer base stations has become an urgent problem. Therefore,
this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle
Swarm Optimization (EPSO) algorithm based on collective prediction, referred to herein as ECPPSO. Introducing
a new strategy called neighbor-based evolution prediction (NEP) addresses the issue of premature convergence
often encountered by PSO. ECPPSO also employs a strengthening evolution (SE) strategy to enhance the algorithm’s
global search capability and efficiency, ensuring enhanced robustness and a faster convergence speed when solving
complex optimization problems. To better adapt to the actual communication needs of base stations, this article
conducts simulation experiments by changing the number of base stations. The experimental results demonstrate
that under the condition of 50 or more base stations, ECPPSO consistently achieves the best coverage rate exceeding
95%, peaking at 99.4400% when the number of base stations reaches 80. These results validate the optimization
capability of the ECPPSO algorithm, proving its feasibility and effectiveness. Further ablative experiments and
comparisons with other algorithms highlight the advantages of ECPPSO.
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AIS Artificial Immune System
CLPSO Comprehensive learning particle swarm optimization algorithm
EPSO Evolutionary Particle Swarm Optimization
FLC Fuzzy logic control
GIS Geographic Information System
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IoT Internet of Things
NEP Neighbor-based evolution prediction
OLPSO Orthogonal learning particle swarm optimization
PSO Particle Swarm Optimization
SE Strengthening evolution
SSA Sparrow search algorithm
AR Augmented Reality
VR Virtual Reality

1 Introduction

In current highly interconnected world, base stations play an indispensable role as the link connect-
ing us all. From the bustling streets of urban centers to the remote pathways of rural areas, base stations
have always supported our communication and connectivity needs. Whether facilitating collaboration
between businesses or facilitating personal interactions, base stations are fundamental. The unimpeded
communication network provides convenient conditions for business activities, information exchange
and technological innovation, and promotes the development of economy.

With the rise of the IoT [1], the importance of base stations is further underscored. An increasing
number of devices require connectivity to the internet, and base stations serve as the bridge between
these devices and the internet. From smart cities to smart homes, from intelligent transportation to
telemedicine, the development of the IoT relies on the support of base stations, which provide a solid
foundation for realizing a smarter way of life [2].

The quality of signals emitted by base stations, which are used to build wireless communication
networks, is crucial as it directly determines users’ network experience [3]. At present, the 5G network
signals emitted by base stations have been widely adopted, spreading across streets and alleys. The
performance of 5G has improved significantly compared to the previous 3G and 4G networks, meeting
the needs of the majority of people [4,5]. However, the 5G network also faces some problems and
challenges [6], so the 6G technology is proposed to make up for the defects of the 5G network, and it
is already in the stage of research and development [7,8].

Compared with 5G network, the 6G communication network offers more pronounced advantages
[9–11]. 6G networks are expected to be even faster than 5G. According to predictions, the download
speed of 6G could reach up to 1 TB per second. This means that users will be able to download and
share large files more quickly and enjoy higher-quality streaming content and real-time gaming expe-
riences. 6G networks will further reduce latency, which refers to the delay in data transmission. This
will make real-time interactive applications such as Augmented Reality (AR), Virtual Reality (VR),
remote healthcare, and autonomous driving more feasible, providing a smoother user experience. 6G
will provide higher network capacity, supporting a larger number of devices to connect simultaneously.
This is crucial for the growth of IoT devices and the development of smart cities, as these devices
require ample bandwidth and stable connections. 6G is expected to have a wider effective coverage
area, including remote and sparsely populated areas. This will enable people around the world to enjoy
high-speed and stable network connections. Security will be a major focus for 6G networks, adopting
advanced encryption technologies and authentication mechanisms to ensure the privacy and security
of user data.

Various factors affect network signals within a specific area, including but not limited to distance
and obstacles, signal frequency, electromagnetic interference, weather conditions, network congestion
and device performance [12,13]. In mobile communication networks or the IoT, base stations act as
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nodes, while the connections between nodes represent communication links [14]. In networks associ-
ated with base stations, common network structure models can be used to describe the connectivity
between base stations, the distribution of communication links, and the overall performance of the
network [15]. For example, random network models, small-world network models, scale-free network
models, hierarchical network models, and modular network models [16]. These network structure
models can help analyze and optimize the structure, performance, and reliability of base station
networks in associated scenarios, thereby improving the operational efficiency and user experience
of wireless communication systems [17].

Certainly, it’s inevitable that base stations face a myriad of challenges if they are to deliver satis-
factory results [18–20]. As the demand for mobile communication continues to increase, base stations
need to handle a greater volume of data transmission. However, spectrum resources are finite, posing
difficulties for base stations in providing higher rates and broader coverage. The construction costs
of base stations are relatively high, particularly in urban areas, where land leasing and infrastructure
development require substantial capital. Furthermore, the deployment of base stations necessitates a
certain amount of space, presenting challenges in locating suitable sites within urban environments.
Base stations require continuous power supply to ensure the continuity of communication services,
resulting in significant energy consumption. Concurrently, the construction and operation of base
stations can have environmental implications, such as electromagnetic radiation and visual pollution.
The ongoing evolution of communication technologies demands timely updates and upgrades of base
station equipment to meet new technical requirements, which also necessitates substantial funding
and technical support. Base stations’ communication signals may be susceptible to interference or
attacks, potentially jeopardizing the stability and security of communication services. Moreover, the
deployment and operation of base stations may give rise to privacy concerns, such as the leakage and
monitoring of personal communication data.

In recent years, meta-heuristic algorithms have been widely used to solve various complex
problems such as computationally expensive simulation model [21] and structural optimization [22],
among many others, with their high efficiency, robustness and fast convergence rate [23]. Among them,
the particle swarm optimization (PSO) is one of the most popular algorithms in the meta-heuristic
algorithms, which has been widely used in several fields due to its simplicity, easy implementation and
fast convergence [24–26]. The concept behind the PSO algorithm draws inspiration from the collective
behavior observed in bird flocks during foraging. In PSO, solutions are represented as particles
navigating through a search space, mirroring the dynamic interactions within bird flocks. Within a
flock, each bird maintains a specific velocity and position while engaging with nearby peers. As birds
seek sustenance, they adapt their speed and trajectory based on the movements of neighboring birds,
gradually homing in on food sources. Similarly, every particle in PSO represents a potential solution
within the solution space, characterized by three key attributes: position, velocity, and individual best
solution (pBest). Concurrently, the collective group shares a global best solution (gBest). By leveraging
both individual experiences and collective experience, particles dynamically adapt their speed and
position, collectively navigating the solution space towards optimal solutions.

The deployment of a limited number of base stations in specific areas presents a unique challenge.
It necessitates maximizing signal coverage across the entire city while ensuring adequate signal
supply to high-demand areas such as gyms, residential zones, and major commercial centers [27].
Optimizing the placement of base stations can lead to cost savings, resource efficiency, enhanced
regional signal stability, and improved utilization of signal resources. To address the challenges of
base station deployment, researchers have employed various techniques including greedy algorithms,



348 CMC, 2025, vol.82, no.1

genetic algorithms, branch and bound algorithms, particle swarm optimization algorithms, cluster-
ing algorithms, and other methodologies [28]. Under the consideration of the contraction effect,
Wang et al. integrated the Artificial Immune System (AIS) and Geographic Information System (GIS)
to achieve superior comprehensive performance in the global optimization of base station deployment
[29]. This innovative approach offers a valuable solution for the planning of 5G base stations in densely
constructed areas. Ayati et al. proposed a mobile base station mobility control strategy for wireless
sensor networks, which combined the PSO algorithm, fuzzy logic node clustering, fuzzy clustering
head selection, and fuzzy logic control (FLC) for base station mobility, significantly improving the
lifespan of mobile base station wireless sensor network [30].

In order to enhance the effective coverage area under a specific number of base stations in a
particular region, this paper has made improvements to the Particle Swarm Optimization (PSO)
algorithm, ECPPSO, and applied it to the aforementioned optimization problem. This algorithm
addresses two critical issues of the original PSO: premature convergence and limited global search
capability. Firstly, it introduces the NEP strategy to alleviate the problem of premature convergence.
Secondly, the ECPPSO algorithm employs a refined SE strategy to counteract the possibility of
individuals falling into local optimal traps. The proposed algorithm was then applied in a base
station layout experiment and compared with variations of PSO and sparrow search algorithm
(SSA). By varying the number of base stations, the experiments demonstrated the ECPPSO’s superior
optimization efficiency in addressing the effective coverage area of base station deployment, further
validating the effectiveness and competitiveness of the proposed algorithm. The specific contributions
and innovations are as follows:

• The NEP strategy was introduced in the PSO to predict the most correct direction of evolution
for each individual to accelerate convergence and reduce uncertainty.

• By adjusting the SE strategy, selective evolutionary operations were conducted to optimize
individuals with poor performance in the population, thereby enhancing the overall fitness
level of the population. This approach has led to a more efficient and accurate resolution of
optimization problems.

• The proposed algorithm was compared with variations of PSO and SSA by varying the number
of base stations.

The subsequent sections of the paper will be organized as follows: Section 2 will introduce the
proposed model. Section 3 will present and analyze the ECPPSO algorithm. Section 4 will demonstrate
the results of the base station layout experiments and provide an analysis of the obtained results.
Finally, Section 5 will conclude the main research findings of this paper and propose future research
directions.

2 Model

This section discusses the issue of signal effective coverage, using the effective coverage area of the
signal as a criterion to test the algorithm.

The paper assumes that there are NM base stations with negligible volume, each with the
same signal transmission radius R and capability. Furthermore, the signal strength is assumed to be
independent of distance, so the signal transmission range of any base station forms a circular region
with the base station as the center and R as the radius. This set of base stations can be denoted as S =
{S1, S2, . . . ,SNM}, and let (xi, yi) represent the two-dimensional spatial coordinate of Si in set S.
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Assuming that these NM base stations are placed in a rectangular area of length L meters and a
width of W meters, the total area is L ∗ W square meters. Therefore, this rectangle area can be divided
into small rectangles, each with an area of 1 ∗ 1 and represented by the center point of each small
rectangle. The set of these central points can be classified as M = {m1, m2, . . . , mL∗W} and order (xj, yj)
as the two-dimensional spatial coordinates of mj in set M.

If a certain central point is effectively covered by the signal emitted from any base station, then
the entire small rectangular area is considered effectively covered, meaning that the signal from the
base station effectively covers a specific small area. This is the concept of signal effective coverage
mentioned at the beginning of this section. By comparing the Euclidean distance D(si, mj) between the
central point and the base station location with the signal transmission radius R of the base station,
it can be determined whether the small rectangular area is effectively covered. This process can be
described by the following Eqs. (1) and (2):

D
(
si, mj

) = √
(xi − xj)2 + (yi − yj)2 (1)

PCOV

(
si, mj

) =
{

1 if D
(
si, mj

) ≤ R
0 otherwise

(2)

where PCOV

(
si, mj

)
represents the effective coverage of the small rectangular area at mj, which is

effectively covered 1, and 0 otherwise. In this paper, the effective coverage area of a specific large
area is defined as the sum of PCOV

(
si, mj

)
, as shown in the following Eq. (3):

S(M) =
j=L∗W∑

j=1

i=NM∑
i=1

PCOV(Si, mj) (3)

S(M) drepresents the effective coverage area of base station signals within the entire region M.

However, the position of the base station is not fixed. This article achieves the maximum effective
coverage area by changing the placement of the base station.

3 Proposed Algorithm

In this section, the original PSO is outlined and the motivation, principle and pseudocode of the
proposed algorithm are illustrated.

3.1 The Traditional PSO Algorithm

The traditional PSO algorithm, proposed by Eberhart and Kennedy in 1995, is a global optimiza-
tion algorithm based on swarm intelligence. This algorithm effectively solves complex optimization
problems by simulating social behaviors such as foraging in bird flocks. The PSO algorithm not only
considers the social interactions of biological populations but also integrates the cognitive and learning
abilities of each individual, thus forming an efficient search strategy.

In the PSO algorithm, each candidate solution in the search space is abstracted as a particle, with
each particle possessing two attributes: velocity and position. The velocity determines the direction
and step size of the particle’s movement in the search space, while the position represents the current
location of the particle in the search space.

The core idea of the particle swarm optimization algorithm is to start from a set of random
solutions (i.e., particles) and gradually approach the optimal solution through collaboration and
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information sharing among particles during the iterative process. During the algorithm’s iteration,
each particle tracks two “extremes” to update its velocity and position: the first extreme is the best
solution found by the particle individually so far, known as the personal best (pBest), which represents
the particle’s search experience and historical best position; the second extreme is the best solution
found by the entire particle swarm so far, known as the global best (gBest), which represents the
collective search experience and best position of the entire population.

During each iteration process, once each particle acquires the crucial information of individual
best (pBest) and global best (gBest), they will adjust their velocity and position according to Eqs. (4)
and (5) in order to further explore the optimal solution in the search space:

Vi,t+1 = w ∗ Vi,t + c1 ∗ r1 ∗ (
Xpbest − Xi,t

) + c2 ∗ r2 ∗ (Xgbest − Xi,t) (4)

Xi,t+1 = Xi,t + Vi,t+1 (5)

where t represents the current iteration count, Xi,t+1 represents the position of the i-th particle in the
(t + 1)-th generation, Xi,t represents the position of the i-th particle in the tth generation, Vi,t represents
the velocity of the i-th particle in the t-th generation, Vi,t+1 represents the velocity of the i-th particle
in the (t + 1)-th generation, Xpbest represents the historical best position of the i-th particle, Xgbest is
the global best position, w represents the inertia weight for balancing algorithm development and
convergence effect, c1 and c2 are the individual cognitive and social cognitive factors, and r1 and r2 are
random numbers generated within the range of [0, 1].

3.2 Motivation

The PSO algorithm, as a population-based optimization strategy relying on collective intelligence,
has demonstrated significant advantages in various fields due to its simplicity, intuitiveness, ease
of implementation, and efficient convergence speed. However, as the application domains continue
to expand and problem complexity increases, the challenges faced by the PSO algorithm in solving
complex optimization problems are becoming increasingly apparent. These challenges not only limit
the application scope of the PSO algorithm but also demand higher performance from it.

In the process of in-depth research into the PSO algorithm, researchers have identified several
limitations of this algorithm when addressing complex optimization problems. On the one hand, the
PSO algorithm is prone to premature convergence, leading to rapid convergence to a local optimum
in the early stages of the search, while neglecting the existence of the global optimum. This limitation
stems from the close information sharing mechanism among particles in the algorithm, which causes
the particle swarm to prematurely converge and lose diversity. On the other hand, when facing complex
and dynamic search spaces, the global search capability of the PSO algorithm is often restricted. The
algorithm may be at risk of being trapped in a local optimum and finding it difficult to escape, or it
may lose direction during the search process, resulting in a slowdown in convergence rate and even
failure to converge. This is mainly because the particles in the algorithm typically tend to follow the
search path of the current best particle. However, in complex search spaces, there may be multiple
local optima, and the algorithm may explore only one and then stop the search. This “short-sighted”
behavior prevents the algorithm from discovering the global optimum, leading to performance loss. In
addition, the convergence speed and stability of the PSO algorithm also exhibit deficiencies in certain
scenarios, further limiting its application in complex optimization problems.

In order to overcome the aforementioned limitations of the PSO algorithm and expand its
application scope, researchers have begun to improve the algorithm from multiple dimensions. Firstly,
in order to enhance the diversity of the population and avoid premature convergence, researchers have
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attempted to introduce different parameter adjustment strategies, diversity maintenance mechanisms,
and cross-mutation operations. Yang et al. introduced an acceleration coefficient based on the Singer
map, where fluctuating acceleration coefficients made particle movement more disorderly, effectively
helping particles reduce the probability of entering local optima [31]. Chen et al. employed the chaotic
grouping mechanism (CGM) to partition the entire population into multiple subgroups, and then
utilized the dynamic regrouping strategy (DRS) to guide the reorganization of the population, enabling
the population to initiate the exploration of a new configuration. This approach improved the quality
of population grouping during the search process and enhanced the population’s learning diversity
[32]. Molaei et al. drew inspiration from genetic algorithms to propose a novel variant of PSO with
an enhanced learning strategy and crossover operator, significantly elevating the algorithm’s search
precision [33]. These strategies contributed to maintaining diversity among particles, enabling the
algorithm to explore a wider search space.

Furthermore, to enhance the algorithm’s global search capability and locate the global optimum,
researchers have focused on improving the algorithm’s overall search performance. They have adopted
various multi-population strategies or introduced new search strategies, enabling the algorithm to con-
duct parallel searches within different regions, thereby increasing the probability of finding the global
optimum. Zhao et al. proposed an elite-ordinary synergistic particle swarm optimization, where elite
members and ordinary members were classified based on particle fitness. Elite individuals achieved
high-level global exploration through self-learning, while ordinary particles performed auxiliary local
searches around elite individuals [34]. Zhang et al. established three elite archives to store particles at
different levels, and designed six learning strategies to aid the particles in their evolutionary learning
process [35]. Inspired by conditional integration in automatic control, Xiang et al. proposed a method
for adaptive learning of search directions. This method utilized the linear combination of a particle’s
past momentum and the current search direction to achieve particle updates [36]. Xu et al. constructed
a strategy pool for an existing PSO variant, selecting the optimal combination of learning strategies
each time and effectively enhancing the performance of PSO [37].

Undeniably, these well-designed improved PSO variants possessed superior global search capa-
bilities and stability compared to the original PSO. However, when tackling complex optimization
problems, their robustness, convergence speed, and ability to escape local optima were still suboptimal.
In order to overcome the inherent limitations of particle swarm optimization, this paper proposes a
novel Evolutionary Particle Swarm Optimization algorithm based on collective prediction, named
ECPPSO, aiming to significantly enhance the overall performance of the algorithm. The ECPPSO
algorithm focuses on addressing two core issues of PSO: firstly, it employs the NEP strategy to tackle
the problem of premature convergence in PSO by predicting the future positions of individuals using
historical information, combining multi-individual predictions to guide evolution, reducing errors,
and making full use of population diversity. Secondly, to address the issue of early entrapment in
local optima or late-stage low fitness, the algorithm utilizes the SE strategy to evolve low-fitness
individuals multiple times, enhancing the algorithm’s global search capabilities and search efficiency,
while ensuring that the algorithm possesses stronger robustness and higher convergence speed when
solving complex optimization problems.

3.3 ECPPSO

The algorithm primarily focuses on improving two key issues of the original PSO. Firstly, to
alleviate the problem of premature convergence, this paper introduces the NEP strategy. This strategy
was initially proposed by Zhao et al. in the SEDE-PS (strengthening evolution-based differential
evolution with prediction strategy) algorithm, aiming to predict the future positions of individuals
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and guide the direction of evolution [38]. In this study, this strategy is applied to PSO by combining
predictive information from multiple individuals to reduce the errors associated with individual
predictions and fully utilize population diversity information to guide the search.

Furthermore, to address the potential local optima traps that individuals may encounter, the
ECPPSO algorithm adopts a unique SE strategy. This strategy also originates from the research of
Zhao et al., used for multiple evolutionary operations in the SEDE-PS algorithm [38]. In this study, this
strategy is adjusted and applied to PSO, guiding the lower-fitness individuals to escape local optima
and evolve towards higher fitness through carefully designed multiple evolutionary operations.

3.3.1 NEP

According to the description of Eq. (4), Xpbest − Xi,t denoting the local exploration capability, the
PSO relies on the individual’s local exploration capability when exploring the search space. However,
relying solely on the information from a single particle for local search may have limitations. The
information from a single particle often cannot fully reflect the complexity and diversity of the search
space, which may lead to premature convergence to a local optimum or the phenomenon of “individual
bias”.

To overcome this limitation, this paper introduces the NEP strategy. The core idea of the NEP
strategy is to use the historical evolutionary information of each particle to predict its future position
and to guide the individual’s evolutionary direction through the predictive information from multiple
individuals. Specifically, it involves recording and analyzing the particle’s movement trajectory and
speed in past iterations, and using a predictive vector to estimate the particle’s potential position in the
next iteration. In the NEP strategy, the velocity learning strategy for individual particles is updated as
shown in Eqs. (6) and (7):

ui,t = ui,t−1 + (Xpbest − Xi,t) (6)

Vi,t+1 = w ∗ Vi,t + c1 ∗ r1 ∗ (
Xgbest − Xi,t

) + c2 ∗ r2 ∗ ui,t (7)

where w are the inertial weights, c1, c2 represent learning factors, r1, r2 are the random numbers
generated within the [0, 1] range, ui,t is the prediction vector based on itself, ui,t−1 represents the total
evolutionary trend selected in the previous generation, Xpbest −Xi,t indicates the individual evolutionary
trend.

By accumulating the historical evolutionary trends of individuals, the vector ui can comprehen-
sively consider the dynamic changes of individuals in multiple iterations in the past, more fully utilizing
the historical information of individuals to provide a more accurate prediction of the movement
direction.

However, as the number of evolutionary generations increases, the later predictive vectors may
gradually increase. This may cause particles to make overly aggressive movements in the later stages
of the search space, which is not conducive to fine-grained search and finding the global optimum. To
address this issue, a dynamic adjustment mechanism is introduced in this paper to limit the size of the
predictive vector, thereby changing the velocity learning strategy for individual particles as shown in
Eqs. (8) and (9):

Vi,t+1 = w ∗ Vi,t + c1 ∗ r1 ∗ (
Xgbest − Xi,t

) + c2 ∗ r2 ∗ FNEP (8)

FNEP = Vi,t

t
(9)
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where, t represents the current generation and is used to balance the evolutionary trend.

Due to the existence of errors in individual predictions, multiple neighboring individuals are
chosen to generate the prediction vectors. However, because individual predictions often contain
a certain degree of error and uncertainty, in order to improve the accuracy of predictions, this
paper chooses to comprehensively consider the information from multiple neighboring individuals to
generate prediction vectors. By integrating the prediction results of these neighboring individuals, the
collective intelligence can be fully utilized, reducing the bias brought about by individual predictions,
and thus obtaining more robust and reliable prediction results. Therefore, the prediction vector
generated by multiple neighboring individuals can be obtained through Eq. (10):

uri,t =
∑n

j=1 ui,t

P1

(10)

where uri,t represents the predicted vector generated by the sum of the effects of multiple adjacent
individuals, including the individual particle itself, in the i-th particle at the t-th generation, n is the
number of neighbouring individuals of the i-th particle, and the selection of neighboring individuals
is based on the closest fitness distance and the best fitness. The update of FNEP is then carried out as
shown in Eq. (11):

FNEP = uri,t

t
(11)

Fig. 1 demonstrates the role of the NEP strategy in improving the accuracy of the solution.

Figure 1: (Continued)
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Figure 1: Comparison and effect diagram of the NEP strategy

The NEP strategy not only considers the predictive information of individual particles, but
also integrates the predictive information of multiple neighboring particles to collectively guide the
evolution direction of individuals. This collective intelligence approach can reduce the potential errors
from individual particle predictions and fully utilize the historical information and search experiences
of different individuals in the population. By implementing the NEP strategy, the PSO algorithm can
more robustly handle complex and changing search spaces, reduce the risk of premature convergence,
and improve solution accuracy. Additionally, this population-based predictive approach also helps the
algorithm to better explore local areas, thus discovering superior global solutions. Therefore, the NEP
strategy provides an effective way to improve the PSO algorithm’s performance in solving optimization
problems.

The detailed flow of the NEP strategy is presented in Algorithm 1.

Algorithm 1: NEP strategy
Input: N, the number of particles; T , the number of times the algorithm was executed.
Output: Xi, vi

1: for t = 1,2,3, · · · , T do;
2: for i = 1,2,3, · · · , N do;
3: The particle with the least fitness in the t-generation will be denoted as pos1

4: Look for the closest fitness distance to the i-th particle, denoted as pos2

5: The population prediction vector for the i-th particle will be calculated according to
Eq. (11)

6: Update the velocity of the i-th particle according to Eq. (8)
7: Update the position information of the i-th particle according to Eq. (5)
8: end for
9: end for



CMC, 2025, vol.82, no.1 355

3.3.2 SE

After adopting the NEP strategy, the exploration process sometimes encounters individuals that
prematurely converge to lower levels or become trapped in local optimal states, as well as individuals
with significantly lower fitness levels than the population’s average optimal fitness in the later stages.
These individuals waste evaluation resources due to repeated evaluations. To address this issue, this
paper introduces the SE strategy to improve the NEP strategy.

The core idea of the SE strategy is to perform multiple evolutionary operations on poorly
performing individuals in the population without evaluating their fitness temporarily. After these
individuals undergo evolutionary transformations through the SE strategy, the newly generated
individuals are directly selected for the next generation to avoid wasting resources due to repeated
evaluations.

Specifically, we first rank individuals based on their fitness and select the bottom G% of
individuals in terms of fitness ranking as the target group for the SE strategy. For these individuals,
traditional fitness evaluations are no longer conducted. Instead, the SE strategy is directly applied to
perform multiple evolutionary operations, guiding the individuals toward directions of higher fitness
using the velocity learning modes described by Eqs. (12) and (13). This approach guides these initially
poor-performing individuals to move toward better solution spaces, gradually approaching or even
surpassing the average optimal fitness level in the population, thereby improving the overall fitness
level of the entire population.

Vi,t+1 = w ∗ Vi,t + c1 ∗ r1 ∗ (
Xgbest − Xi,t

) + c2 ∗ r2 ∗ FSE (12)

FSE = usi,t ∗ Cur

Max
∗ Fd (13)

where usi,t is the prediction vector generated for the individuals behind the rank, used to distinguish
from the previous ui,t.

With the continuous application of SE strategy, multiple evolution will also make the prediction
vector larger and reduce the exploration ability of the algorithm in the search space. To balance this
trend, this paper also introduces a control parameter Cur

Max
balance control, where Cur is the current

number of times the individual uses the SE strategy, Max is the total number of iterations of the
individual, it can adjust the size of the prediction vector according to the proportion of the current
times using the SE strategy to the total number of iterations. For high-dimensional problems, due to
the complexity of the search space, the prediction vector may gradually deviate from the actual optimal
solution. Therefore, in this paper, the parameter Fd is used to balance the influence, and the calculation
formula of Fd is shown in Eq. (14):

Fd = 1 + d
3

(14)

where d is the dimension of the problem.

The SE strategy is an advanced improvement over the NEP strategy, specifically addressing
the issues of local optima and wastage of computational resources. The SE strategy does not
completely abandon fitness evaluation but rather selectively applies it at specific stages and under
certain conditions. The core idea of this strategy is to concentrate limited computational resources on
those individuals that are most likely to improve the overall population fitness, thereby enhancing
the efficiency and effectiveness of the entire optimization process. Through selective evolutionary
operations, the SE strategy can optimize the performance of individuals with lower fitness within the
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population, thereby elevating the overall fitness level of the population and enabling more efficient
and accurate resolution of optimization problems.

The detailed flow of the SE strategy is shown in Algorithm 2.

Algorithm 2: SE strategy
Input: N, the number of particles; T , the number of times the algorithm was executed.
Output: Xi, vi

1: for t = 1,2,3,· · · ,T do;
2: The particles will be sorted in ascending order of the fitness values
3: for i = 1,2,3,· · · ,N do;
4: if i is the value of the posterior G% then
5: The prediction vector of the individual will be calculated according to Eq. (13)
6: Update the velocity of the i-th particle according to Eq. (12)
7: Update the position information of the i-th particle according to Eq. (5)
8: end if
9: end for
10: end for

3.4 Procedure of ECPPSO Algorithm

First, the particles are arranged in ascending order to determine the position of the particles in the
group: if the particle is ranked high, the group prediction vector is generated according to Algorithm
1, and update the speed and location information of the particles according to the corresponding
formula; if the particles are located G% after the group, the particles will generate the predicted
evolution vector according to Algorithm 2, and update their own speed and position, so that these
originally poor individuals can move to a better solution space, thus improving the fitness level of the
whole population. The specific pseudo-code is shown in Algorithm 3.

Algorithm 3: ECPPSO algorithm
Require: N, the number of mobile devices; T , the number of times the algorithm was executed.
Output: Bestfit, Xgbest.
1: for t = 1,2,3,· · · ,T do;
2: The particles will be sorted in ascending order of the fitness values
3: for i = 1,2,3,· · · ,N do;
4: if i is the value of the posterior G% then
5: The prediction vector of the individual will be calculated according to Eq. (13)
6: Update the velocity of the i-th particle according to Eq. (12)
7: else
8: The particle with the least fitness in the t-generation will be subscripted, denoted

as pos1

9: Look for the closest fitness distance to the i-th particle, denoted as pos2

10: The population prediction vector for the i-th particle is calculated according to
Eq. (12)

11: Update the velocity of the i-th particle according to Eq. (8)
12: end if

(Continued)
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Algorithm 3 (continued)
13: Update the position information of the ith particle according to Eq. (5)
14: end for
15: end for

The algorithm presented in this paper incorporates both NEP and SE strategies and aims to
address specific optimization problems. In order to get insight into the performance and efficiency
of the algorithm, this block will conduct a detailed analysis of the computational complexity of its key
components, where the dimension of the setting problem is D and the total number of particles is N.

First, the algorithm ranks particles by their fitness values and selects the top N∗G% particles with
better fitness values as the basis for the next generation. The complexity of the sequencing operation
is mainly determined by the number of particles N, so the computational complexity at this stage is O
(NlogN). Secondly, the algorithm will choose whether to execute the NEP strategy or the SE strategy
according to the ranking situation of the particles. The NEP strategy requires traversing the entire
population to find the index of the particle with the fitness value closest to the current particle’s fitness
value. The computational complexity is O (N), while the SE strategy only involves the current particle
information, so the computational complexity is O (1), so the computational complexity of this stage
is O (N).

Next, the algorithm calculates the fitness value of each particle, which is a key step in evaluating
the quality of the particle. Since the fitness value of N particles needs to be calculated, and the
computational complexity of each particle does not increase significantly with increasing particle
dimension D, the computational complexity at this stage is also O (N). In conclusion, considering the
computational complexity of the main steps of particle sorting, NEP strategy, SE policy, and fitness
values, it is concluded that the overall computational complexity of the proposed algorithm here in
each generation is O (NlogN).

4 Experiment and Analysis of Base Station Layout

In this section, the optimization capability of each algorithm is discussed by the coverage effect
under different numbers of base stations. The internal parameters of each algorithm used in this article
are shown in Table 1.

Table 1: Internal parameters of each algorithm

Algorithm Parameters

PSO C1 = C2 = 0.7, ω = 0.4
CLPSO C1 = C2 = 2.0
OLPSO C = 2.0, ω = 0.9
RWSSA ST = 0.6, PD = 0.7, SD = 0.2
ECPPSO C1 = C2 = 2.0, ω = 0.4, G = 15

4.1 Base Station Experiments at Different Numbers

In order to comprehensively evaluate the system performance stability of ECPPSO under different
base station configurations, while considering the feasibility and rationality of practical applica-
tions, this paper selected four relatively reasonable numbers of base stations, 50, 60, 70, and 80,



358 CMC, 2025, vol.82, no.1

as experimental scenarios for practical applications. This paper will layout the base stations in
the number of 50, 60, 70, 80, and compare comprehensive learning particle swarm optimization
algorithm (CLPSO) [39], orthogonal learning particle swarm optimization (OLPSO) [40], sparrow
search algorithm with random walk strategy (RWSSA) [41] and PSO, among which RWSSA is an
effective algorithm in the base station layout in recent years. CLPSO and OLPSO are the more
mainstream algorithms in PSO variant.

The population size of each algorithm is 50, the maximum number of evaluations is N ∗ 1000,
the L and W of the overall area are set to 50, and the radius of the signal transmission R is set to
5. The parameters of each algorithm are set as follows. Each algorithm is run independently for 20
times, and the best value, average value, and standard deviation of the effective coverage ratio of base
station signals (i.e., the ratio between the area effectively covered by the base station signals and the
total area L ∗ W , which is specifically denoted as S(M)/(L ∗ W )) in each algorithm are counted, and
then the optimal base station deployment map for each algorithm with different numbers of base
stations is given. On the other hand, the Wilcoxon test was conducted to assess the performance
difference between each algorithm and ECPPSO, with a significant level set as 0.05. A p-value less
than 0.05 indicates a statistically significant difference performance between the two algorithms, while
the performance is comparable. At the same time, the Friedman test is also used to calculate the
comprehensive ranking of each algorithm under the number of different base stations, to test the
comprehensive optimization ability of each algorithm. The specific optimization results are shown in
Table 2, the deployment effect is shown in Figs. 2–5, and the box plot of the data of 20 runs is shown in
Fig. 6. The experimental environment is Windows 11, the processor is 11th Gen Intel (R) Core (TM)
i5-11500 @ 2.70 GHz, and the language environment is pycharm.

Table 2: Optimization results of the proposed algorithm and other algorithms under different numbers
of base stations

NM Index ECPPSO CLPSO OLPSO RWSSA PSO

50 Best 95.5600% 87.8400% 92.2800% 86.2400% 88.7600%
Mean 91.5460% 83.8880% 88.2640% 84.4080% 81.9920%
Std 1.6268% 1.5982% 1.8801% 1.0625% 2.9837%
p 6.7288E − 08 6.6604E − 06 6.7765E − 08 7.8431E − 08

60 Best 97.0800% 90.4000% 92.4000% 90.0800% 90.5600%
Mean 94.9740% 88.0800% 89.2480% 88.6540% 85.6260%
Std 1.1572% 1.3358% 1.8406% 0.9432% 3.5260%
p 6.7765E − 08 6.7765E − 08 6.7669E − 08 6.7669E − 08

70 Best 98.5200% 93.1600% 98.3200% 93.0400% 97.5600%
Mean 97.3820% 90.7480% 96.0700% 91.3740% 91.2620%
Std 0.7213% 1.2383% 0.9812% 0.8945% 3.7290%
p 6.7478E − 08 1.0281E − 04 6.7193E − 08 3.9142E − 07

80 Best 99.4400% 94.6000% 99.8800% 96.0400% 96.5600%
Mean 98.5260% 93.0260% 98.0640% 95.7580% 90.8880%
Std 0.6943% 1.0815% 0.8294% 0.2683% 3.5619%
p 6.7478E − 08 4.0991E − 02 6.6344E − 08 6.7574E − 08

Ranks 1.1125 3.9875 2.1500 3.4375 4.3125
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Figure 2: Deployment of base stations under 50 base stations
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Figure 3: Deployment of base stations under 60 base stations
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Figure 4: Deployment of base stations under 70 base stations
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Figure 5: Deployment of base stations under 80 base stations
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Figure 6: Results of 20 runs of each algorithm

According to the data in Table 2, the ECPPSO, CLPSO, OLPSO, RWSSA, and PSO algorithms
were compared under the scenarios of testing 50, 60, 70, and 80 random locations. In these scenarios,
the coverage rate and average coverage rate of ECPPSO were significantly superior to other algorithms,
with the best coverage rates reaching 95.5600%, 97.0800%, and 98.5200%, respectively. Although the
standard deviation of ECPPSO was not the smallest among all algorithms, its performance remained
relatively stable. Even in the case of 80 random locations, while the coverage rate of ECPPSO was
not the highest among all algorithms, it still approached the highest level, and its average coverage
rate remained optimal among all algorithms. Additionally, the relatively small standard deviation
of ECPPSO demonstrated the stability of the algorithm. The data in the last row of the table also
showed that ECPPSO ranked highest, followed by OLPSO, RWSSA, CLPSO, and traditional PSO
as the last. Through the visual comparisons in Figs. 2 to 5, it is evident that ECPPSO exhibited
outstanding performance in terms of coverage rate, surpassing most of the improved algorithms,
especially outperforming the PSO algorithm by a large margin. Furthermore, the standard deviation
of ECPPSO was significantly smaller than that of PSO, further proving the stability and superiority
of ECPPSO in performance. In summary, ECPPSO demonstrated good performance and robustness
in base station deployment problems, particularly in complex environments, making its deployment
strategy feasible.
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Moreover, Boxplot in Fig. 6 also demonstrated the good data stability and high coverage rate of
ECPPSO. In the boxplot, the higher position of the box represents a higher coverage rate, and the
smaller area represents the stability of the algorithm. In subfigures (a), (b), (c), and (d), the height of
the box representing ECPPSO was higher than those of other algorithm boxes, and in the case of 60
random locations, it was significantly superior to other algorithms in both stability and coverage rate.
This further validates the robustness and superiority of the ECPPSO algorithm.

4.2 Convergence Analysis

In order to further see the advantages and efficiency of each algorithm in base station planning,
the average convergence effect of each algorithm under 20 runs is shown in this section, as shown in
Fig. 7.

Figure 7: Average convergence effect of each algorithm

To accurately demonstrate the convergence consistency of algorithms in the base station deploy-
ment problem, Fig. 7 presents the average convergence curves of 5 algorithms over 20 independent
runs for visual comparison.
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From Fig. 7, it is evident that ECPPSO achieves an average coverage rate of 90% or higher
across different numbers of base stations. For the cases of NM = 50, NM = 60, and NM = 70, the
average coverage rate of ECPPSO far surpasses that of the other three algorithms, excluding OLPSO.
Although the convergence accuracy of OLPSO approaches that of ECPPSO when NM = 70 and
80, the convergence speed of OLPSO is significantly lower than that of ECPPSO. With an increase
in the number of base stations, the average coverage rate of ECPPSO continues to rise, reaching
close to 98% at NM = 80, while PSO only achieves around 90%. In terms of convergence speed and
accuracy, ECPPSO exhibits a significant advantage over PSO. The convergence performance of PSO
is notably inferior to that of ECPPSO, further highlighting the optimization efficiency of ECPPSO in
the base station deployment problem. It is evident that ECPPSO achieves outstanding convergence
accuracy and demonstrates faster convergence speed, indicating a clear advantage. This showcases
the excellent optimization efficiency of ECPPSO in addressing the effective coverage area in base
station deployment, validating its effectiveness in solving complex base station deployment problems
and further emphasizing its efficacy.

4.3 Ablation Experiments

To further validate the effectiveness of the individual strategies within ECPPSO, we conducted an
ablation experiment by introducing the NEP strategy or SE strategy separately into the PSO algorithm,
denoted as PSO-1 and PSO-2, respectively. The same experimental settings were applied, and the
specific optimization results are shown in Table 3.

Table 3: Ablation experiment results

NM Algorithms Best Mean Std NM Algorithms Best Mean Std

50 ECPPSO 95.5600% 91.5460% 1.6268% 60 ECPPSO 97.08% 94.97% 1.16%
PSO-1 89.3600% 85.7040% 1.8447% PSO-1 93.8000% 90.6640% 2.6624%
PSO-2 89.6400% 83.7640% 3.1948% PSO-2 91.0400% 88.1480% 1.9676%

70 ECPPSO 98.52% 97.38% 0.72% 80 ECPPSO 99.44% 98.53% 0.69%
PSO-1 97.4800% 93.9680% 1.6913% PSO-1 98.0400% 96.2880% 1.2294%
PSO-2 94.3200% 92.1540% 1.3250% PSO-2 97.6800% 95.0640% 1.6172%

As depicted in Table 3, when considering 50 random locations, ECPPSO achieved the highest cov-
erage rate, followed by PSO-2, while PSO-1 exhibited the lowest coverage rate. In terms of
average coverage rate, ECPPSO demonstrated the best performance, while PSO-2 showed the
lowest average coverage rate. Furthermore, ECPPSO exhibited the smallest variance compared to
PSO-1 and PSO-2, indicating its stable optimization performance. These results signify the excellent
optimization effectiveness of the ECPPSO algorithm, along with its ability to maintain good stability.

When the number of random locations increased to 60 and 70, ECPPSO maintained its leading
position in terms of coverage rate, followed by PSO-1, with PSO-2 exhibiting the lowest coverage
rate. In terms of average coverage rate, ECPPSO continued to outperform the other algorithms, while
PSO-2 showed the lowest average coverage rate. It is worth noting that although the variance of
ECPPSO remained the smallest, at this point, the variance of PSO-2 was lower than that of PSO-1. This
further demonstrates that while the NEP strategy and SE strategy can produce certain optimization
effects when used individually, their combination yields the best results, highlighting the superiority
of the ECPPSO algorithm.
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In the scenario with 80 random locations, ECPPSO still achieved the highest coverage rate,
followed by PSO-1 and then PSO-2. In terms of average coverage rate, ECPPSO significantly
outperformed the other two algorithms. Additionally, the variance of ECPPSO was much smaller than
that of PSO-1 and PSO-2, further validating its stability and superiority. Even when using only the
NEP strategy or SE strategy for optimization, the coverage rates already exceeded 95%. However, the
combined use of both strategies in the ECPPSO algorithm resulted in a coverage rate as high as 99.44%.
Furthermore, the average coverage rate of the PSO-1 algorithm reached 96.2880%, while that of the
PSO-2 algorithm reached 95.0640%. In contrast, ECPPSO achieved a coverage rate of 98.53%. This
fully demonstrates the effectiveness of the NEP strategy and SE strategy within the PSO algorithm,
especially when used in combination. Once again, this emphasizes the superiority and rationality of
the ECPPSO algorithm.

5 Conclusion

The wireless signals emitted by base stations have become the linchpin of communication and
connectivity in today’s society, playing an increasingly crucial role in real-life applications. With the
rapid development of the IoT, the importance of base stations has become even more pronounced
as they not only facilitate communication between individuals but also provide essential support for
realizing smarter and more convenient lifestyles. The applications of IoT encompass various fields
such as smart homes, smart cities, intelligent transportation, all of which heavily rely on the support
and coverage provided by base stations. Therefore, it is vital that signals emitted by base stations cover
specific areas as comprehensively as possible.

This article focuses on the goal of achieving extensive coverage with minimal base stations, with
a particular emphasis on the effective coverage area of base station signals. It proposes an innovative
algorithm based on the concept of collective prediction. This algorithm introduces new strategies such
as the NEP and SE to address the issue of premature convergence often encountered in traditional
particle swarm optimization algorithms. Moreover, it aims to enhance the algorithm’s global search
capability and search efficiency, ensuring robustness and faster convergence speed when dealing with
complex optimization problems.

In addressing scenarios with different numbers of base stations, the article conducts experiments
and analyses the proposed algorithm through base station layout. Through simulation experiments,
it is observed that ECPPSO outperforms other algorithms, significantly enhancing the performance
of PSO. ECPPSO demonstrates outstanding convergence accuracy and faster convergence speed,
presenting clear advantages. The algorithm displays excellent optimization efficiency in solving the
problem of effective coverage area in base station deployment, further validating its effectiveness.

However, this article does not consider the three-dimensional layout of base stations and solely
focuses on the effective coverage area of base station signals in a two-dimensional scenario. Addition-
ally, the model used is idealized and does not account for the relationship between signal strength and
distance from the signal source. In reality, signals emitted by base stations exist in three dimensions,
forming irregular spheres expanding outward from the signal source due to various factors, including
obstruction from tall buildings and interference from other sources. Future research directions for
the algorithm will focus on more complex situations, such as establishing a three-dimensional model,
considering the impact of signal strength and distance from the signal source, and incorporating
constraints related to signal range and other factors like obstructions. Furthermore, it is essential
to integrate the proposed algorithm with strategies or algorithms that yield superior performance to
achieve more satisfactory results.
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It is noted that rural areas are geographically remote, with a wide geographical scope and relatively
low economic development, resulting in fewer base stations being available for deployment. It is
desirable for every household to be covered by signals emitted by base stations, making the research
proposed in this article relevant in such circumstances. Additionally, in addition to considering the
effective coverage area of base station signals, it is also important to consider signal strength. Poor
signals are likely to cause dissatisfaction among individuals, as demonstrated in scenarios such as
concert venues where the demand for wireless signals reaches tens of thousands, resulting in weak or
nonexistent signals becoming commonplace. Therefore, enhancing the signal strength in specific areas
is also a future research direction for the team.
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