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ABSTRACT

The Internet of Things (IoT) is integral to modern infrastructure, enabling connectivity among a wide range of
devices from home automation to industrial control systems. With the exponential increase in data generated
by these interconnected devices, robust anomaly detection mechanisms are essential. Anomaly detection in this
dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behav-
ior by learning intricate patterns. This paper presents a novel approach utilizing generative adversarial networks
(GANs) for anomaly detection in IoT systems. However, optimizing GANs involves tuning hyper-parameters
such as learning rate, batch size, and optimization algorithms, which can be challenging due to the non-convex
nature of GAN loss functions. To address this, we propose a five-dimensional Gray wolf optimizer (5DGWO) to
optimize GAN hyper-parameters. The 5DGWO introduces two new types of wolves: gamma (γ ) for improved
exploitation and convergence, and theta (θ) for enhanced exploration and escaping local minima. The proposed
system framework comprises four key stages: 1) preprocessing, 2) generative model training, 3) autoencoder (AE)
training, and 4) predictive model training. The generative models are utilized to assist the AE training, and the
final predictive models (including convolutional neural network (CNN), deep belief network (DBN), recurrent
neural network (RNN), random forest (RF), and extreme gradient boosting (XGBoost)) are trained using the
generated data and AE-encoded features. We evaluated the system on three benchmark datasets: NSL-KDD,
UNSW-NB15, and IoT-23. Experiments conducted on diverse IoT datasets show that our method outperforms
existing anomaly detection strategies and significantly reduces false positives. The 5DGWO-GAN-CNNAE exhibits
superior performance in various metrics, including accuracy, recall, precision, root mean square error (RMSE), and
convergence trend. The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,
UNSW-NB15, and IoT-23 datasets, with values of 0.24, 1.10, and 0.09, respectively. Additionally, it attained the
highest accuracy, ranging from 94% to 100%. These results suggest a promising direction for future IoT security
frameworks, offering a scalable and efficient solution to safeguard against evolving cyber threats.
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1 Introduction

The rapid advancement of the Internet of Things (IoT) has revolutionized numerous sectors
by connecting billions of devices that communicate vast amounts of data across distributed and
diverse networks. These data are generated by a wide range of sources, including sensors, home
automation devices, and industrial equipment, which interact continuously to provide valuable insights
and automation [1,2]. However, as the number and diversity of connected devices grow, so does the
complexity of IoT networks and, consequently, the potential for security vulnerabilities. The sheer
scale and heterogeneity of IoT systems make them a prime target for cyber threats, as each connected
device represents a possible entry point for malicious actors. In recent years, cyberattacks have not only
increased in frequency but have also become more sophisticated, with attackers developing complex
strategies that exploit the dynamic and often decentralized nature of IoT networks. This trend has
elevated network security to a critical concern, particularly in IoT-enabled environments where real-
time data integrity is paramount.

Within specific IoT applications, such as smart grids [3–5], vehicle-to-grid networks [6–8], smart
homes, and healthcare systems, the consequences of security breaches can be severe, impacting not only
individual privacy but also broader societal infrastructure and safety. For instance, a security breach
in a smart grid could disrupt power distribution, while vulnerabilities in healthcare IoT could expose
sensitive patient data or jeopardize life-critical medical devices. Thus, developing effective defense
mechanisms is not merely a technical challenge but a necessity for safeguarding critical services. As
IoT technology permeates diverse areas, from industrial automation to urban infrastructure, the need
for reliable, adaptive, and scalable security frameworks becomes increasingly pressing. Addressing
these challenges requires advanced solutions that can quickly detect and respond to abnormal network
behaviors, ensuring the security and resilience of IoT applications against the ever-evolving landscape
of cyber threats.

Detecting anomalies within IoT networks has emerged as one of the fundamental challenges in
securing these complex environments [9–11]. Conventional approaches to intrusion detection have
often relied on machine learning (ML) models, such as decision trees (DT) and support vector
machines (SVM), which classify network traffic based on predefined rules or statistical patterns
[12–14]. While effective in static and well-defined settings, these methods often struggle with the unique
demands of IoT networks, which are characterized by dynamic traffic patterns, high variability, and
an evolving threat landscape. The adaptability of traditional ML models is limited, and their ability
to detect new, unknown types of cyber threats is often insufficient, as they rely on historical data and
predefined attack signatures. As a result, these methods may produce high false-positive rates or fail
to identify subtle, complex attack patterns within IoT ecosystems.

In recent years, the focus has shifted toward leveraging deep learning (DL) techniques, which
have demonstrated superior capabilities in handling large-scale, high-dimensional data and detecting
intricate patterns in real-time [15]. Among these, generative adversarial networks (GANs) and deep
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neural networks (DNNs) have garnered significant interest due to their ability to learn complex data
distributions and adapt to the dynamic conditions of IoT networks. GANs, in particular, offer a
powerful framework for anomaly detection by generating synthetic data that can help models learn
rare or previously unseen attack patterns, effectively enhancing their sensitivity to novel threats. DNNs,
with their layered architectures, are well-suited for capturing hierarchical features in network traffic
data, allowing them to recognize both obvious and subtle anomalies. By employing these advanced DL
models, researchers aim to address the limitations of traditional intrusion detection systems, creating
robust and scalable solutions that can adapt to the continuously changing nature of IoT environments.
These innovative approaches hold the potential to provide a more reliable defense against cyber threats,
ensuring that IoT networks remain secure as they continue to expand and evolve.

1.1 Problem Statement and Motivation

A major challenge in deploying these models in practice is the optimization of their hyperpa-
rameters, which significantly contribute to achieving optimal performance. In complex models like
GANs, hyperparameters such as learning rate, batch size, and network depth must be carefully tuned.
However, gradient-based optimization methods, which are commonly used, often struggle with non-
convex problems like GAN training. These methods tend to get trapped in local minima, leading to
suboptimal performance and slow convergence. Additionally, determining the correct configuration
of hyperparameters is computationally intensive and sensitive to initialization, especially in large-scale
IoT networks where real-time response is critical. Poorly optimized GANs can result in ineffective
anomaly detection, increasing the risk of undetected threats in IoT environments.

To tackle these issues, this paper introduces an innovative approach to intrusion detection in IoT
networks, leveraging the five-dimensional gray wolf optimizer (5DGWO). Unlike traditional gradient-
based techniques, the 5DGWO algorithm enhances both exploration and exploitation, helping the
model avoid local minima and achieve faster convergence. This optimization approach is particularly
beneficial for GANs in dynamic IoT environments, where a balance between accuracy and compu-
tational efficiency is essential for timely and effective anomaly detection. The proposed 5DGWO-
GAN framework thus addresses critical limitations in current models, offering a more robust, efficient,
and scalable solution for safeguarding IoT networks against increasingly sophisticated cyber threats.
The 5DGWO algorithm introduces two new wolf types, γ and θ , to enhance exploration and
exploitation capabilities. These additional wolves help the GAN escape local minima and converge
faster, improving intrusion detection accuracy and reducing false positives. To evaluate our system,
we experimented with three network flow data sets considering different scenarios: 1) NSL-KDD
[16,17]; 2) UNSW-NB15 [18]; 3) IoT data set [19]; The proposed system framework comprises four key
stages: 1) preprocessing, 2) generative model training, 3) autoencoder (AE) training, and 4) predictive
model training. The generative models are utilized to assist the AE training, and the final predictive
models (including convolutional neural network (CNN), deep belief network (DBN), recurrent neural
network (RNN), random forest (RF), and extreme gradient boosting (XGBoost)) are trained using
the generated data and AE-encoded features.

1.2 Contributions and Organization of Paper

According to the mentioned gaps, the main contributions of this paper are summarized as
follows:

• We propose 5DGWO-GAN, a novel intrusion detection approach for IoT systems based
on a developed GAN model. Traditional GANs, while effective at capturing complex data
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patterns, face significant challenges in hyper-parameter optimization due to the non-convex
nature of their loss functions. To address this issue, we introduce 5DGWO, a novel optimization
algorithm that significantly improves the tuning of critical hyper-parameters such as learning
rate, batch size, and network depth. The 5DGWO method is specifically designed to overcome
the limitations of gradient-based optimization techniques, which often struggle with getting
trapped in local minima or require excessive computational resources.

• A key innovation of the 5DGWO algorithm is the inclusion of two new types of wolves, γ and
θ , which greatly enhance the exploration and exploitation phases of the optimization process.
The γ wolves, representing elite members of the pack, focus on refining the search around
promising regions of the solution space, accelerating convergence towards optimal solutions.
Meanwhile, the random θ wolves are designed to increase the diversity of the search space,
enabling the model to escape local minima by exploring less conventional areas. This dual
mechanism significantly improves the overall performance of the GAN in terms of convergence
speed and model accuracy.

• We utilize generative models to assist in the AE training, and the predictive models are
trained using both the generated data and the encoded features from the AE. As part of
our contribution, we proposed hybrid algorithms, including DBNAE, CNNAE, 5DGWO-GAN-
RNN, 5DGWO-GAN-DBNAE, and 5DGWO-GAN-CNNAE, to enhance the overall detection
performance in IoT systems.

• In this paper, we tested the system on three benchmark datasets: NSL-KDD, UNSW-NB15, and
IoT-23. The results show that the proposed method achieves superior performance across key
metrics such as accuracy, recall, precision, root mean square error (RMSE), and convergence
trend, reducing false positives and improving overall detection accuracy.

The remainder of this paper is organized as follows: In Section 2, we review related works in
the field of intrusion detection, focusing on traditional ML models and more recent DL approaches,
particularly the use of GANs in this domain. Section 3 provides background information on GANs
and the datasets used in this study. Section 4 describes the proposed intrusion detection framework
based on 5DGWO combined with GANs. Section 5 presents the experimental results, and finally,
Section 6 concludes the paper.

2 Related Works

The domain of network intrusion detection systems (NIDS) has received considerable attention,
particularly as IoT networks grow, expanding the attack surface for cyber threats. Early studies in
NADS primarily relied on traditional ML techniques such as DTs [12], SVMs [13], and RF [20]. These
models focused on identifying known attack patterns by analyzing the attributes of network traffic.
However, their performance declined when handling more complex and sophisticated threats in IoT
environments, which are dynamic and diverse. One major limitation of these traditional ML models is
their inability to handle data imbalance effectively, with the vast majority of traffic being normal and
only a limited amount showing signs of malicious behavior. DL approaches have emerged as a more
robust solution to intrusion detection in NADS, leveraging the power of neural networks to better
capture complex, nonlinear relationships within network data [14]. Techniques such as CNNs [21],
long short-term memory networks (LSTMs) [22], and DBNs [23] have shown significant promise.

Ingre et al. [24] proposed a NIDS using a multilayer perceptron and achieved accuracies of
81% and 79.9% for binary and multi-class classifications, respectively, on the NSL-KDD dataset.
Similarly, Gao et al. [25] proposed a semi-supervised learning method for NIDS, utilizing fuzzy
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and ensemble learning, reporting an accuracy of 84.54% on the NSL-KDD dataset. Leveraging
a DBN model, Alrawashdeh et al. [26] developed an anomaly-based NIDS that showed superior
classification performance when tested on subsets of the original dataset. Focusing on a software-
defined networking (SDN) environment, Tang et al. [27] presented a DNN model for anomaly
detection, demonstrating that it outperformed traditional models such as Naïve Bayes, SVM, and DT.
Imamverdiyev et al. [28] introduced a restricted Boltzmann machine (RBM)-based NIDS, showing
that the Gaussian-Bernoulli RBM variant surpassed other RBM-based models, such as the Bernoulli-
Bernoulli RBM and DBN.

From the perspective of utilizing both behavioral characteristics and content-based features,
Zhong et al. [29] integrated big data with a tree architecture-driven DL system. They combined
shallow learning and DL techniques to enhance the system’s effectiveness in detecting subtle intrusion
patterns. Haghighat et al. [30] introduced an ensemble-based NIDS using DL models and voting
mechanisms, demonstrating a significant reduction in false alarms (up to 75%) compared to traditional
DL approaches. Additionally, for real-time detection in industrial IoT settings, Yang et al. [31]
developed a tree-structured anomaly detection system incorporating window-sliding and model-
updating techniques within a locality-sensitive hashing-based iForest model [32,33], enabling effective
handling of infinite data streams. In a related effort, Qi et al. [34] introduced a NIDS for multi-aspect
data streams by combining locality-sensitive hashing, isolation forests, and principal component
analysis (PCA), effectively identifying group anomalies and processing data rows faster than previous
models.

When working with time-series data, several researchers have explored the potential of recurrent
neural networks (RNNs). Kim et al. [35] designed an LSTM-based NIDS model and demonstrated its
efficiency. Similarly, Yin et al. [36] proposed an RNN-based NIDS that achieved accuracies of 83.3%
for binary and 81.3% for multi-class classification. Xu et al. [37] developed a NIDS based on RNNs
and found that the gated recurrent unit (GRU) was more suitable for intrusion detection tasks than
the LSTM unit. In a study focused on SCADA networks, Gao et al. [38] introduced an omni-intrusion
detection system by combining LSTM with a feed-forward neural network, showcasing effective
intrusion detection regardless of temporal correlations. Their Omni-IDS outperformed previous DL-
based approaches through tests conducted on a SCADA testbed.

Beyond supervised learning, unsupervised techniques, particularly autoencoders (AE), have
gained traction in anomaly detection. Javaid et al. [39] introduced a sparse AE-based NIDS, achieving
79.1% accuracy for multi-class classification on the NSL-KDD dataset. Similarly, Yan et al. [40]
applied a sparse AE to extract high-level feature representations, demonstrating the efficiency of a
stacked sparse AE model as a feature extraction technique. Shone et al. [41] introduced a NIDS
based on a stacked non-symmetric deep AE, reporting 85.42% accuracy in multi-classification.
Ieracitano et al. [42] also contributed to this area by comparing AE and LSTM-based NIDS models,
demonstrating that AE-based systems achieved superior performance with accuracies of 84.21% and
87% for binary and multi-class tasks, respectively. Generative models have also been explored to
enhance NIDS performance [15].

Early works focused on applying basic GANs, which rely on the Jensen–Shannon divergence
or Kullback–Leibler divergence [43–45]. Since then, various GAN models have been developed for
specific use cases. Li et al. [46] and Lee et al. [47] utilized Wasserstein GANs to generate synthetic
data, while Dlamini et al. [48] introduced a conditional GAN for improving classification accuracy in
minority classes. In more specific industrial environments, Li et al. [49] and Alabugin et al. [50] intro-
duced LSTM-GAN and bidirectional GAN-based anomaly detection models, respectively, showing
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effective performance on the secure water treatment (SWaT) dataset. Siniosoglou et al. [51] developed
an anomaly detection system capable of detecting anomalies and classifying attack types, embedding
an AE into the GAN architecture by deploying the encoder as a discriminator and the decoder as
a generator, proving its efficiency in smart grid settings. The recent work by Park et al. [52] adopts
a reconstruction error-based GAN to generate more realistic synthetic data. Specifically, they utilize
the boundary equilibrium GAN (BEGAN) model, which combines AE principles with Wasserstein
distance to minimize reconstruction error. By incorporating AE models into the detection process,
they extract more meaningful features and extend model adaptability, ultimately demonstrating that
their framework surpasses existing ML-based NIDS solutions.

Javadpour et al. [53] proposed a novel distributed multi-agent intrusion detection and prevention
system (DMAIDPS). The DMAIDPS framework utilizes learning agents that conduct a six-step
detection process to classify network activity as either normal or indicative of an attack. Their
system was evaluated using the KDD Cup 99 and NSL-KDD datasets. Results demonstrated that
the DMAIDPS achieved notable improvements, with average increases of 16.81% in recall, 16.05%
in accuracy, and 18.12% in F-score, indicating enhanced detection capabilities. Sangaiah et al. [54]
explored the use of IDSs as a critical defense strategy in cloud computing environments, where security
challenges are prevalent. Their study emphasized the importance of feature selection in distinguishing
between malicious and legitimate activities, as it significantly impacts IDS performance. To enhance
classification accuracy, they proposed a hybrid ant-bee colony optimization (HABCO) method, which
reframes feature selection as an optimization problem. The effectiveness of HABCO was tested against
several methods, including ANNIDS, IDSML, HCRNNIDS, DLIDS, GAPSAIDS, BHSVM, and
SVMTHIDS. Results indicated that HABCO achieved superior accuracy compared to these existing
approaches, demonstrating its potential for improved intrusion detection. Altamimi et al. [55] Al-
Haija proposed an IDS framework designed to enhance the security of IoT communication networks
against cyber threats. Their approach incorporates an extreme learning machine (ELM) to improve
IDS performance by reducing false positives and providing flexible attack pattern construction. Using
two established IoT network datasets their study evaluates the ELM’s effectiveness in a supervised
learning context. The authors focus on the ELM algorithm’s ability to process high-dimensional and
imbalanced data, demonstrating its potential to increase IDS accuracy and operational efficiency.
Their experiments, conducted on Python and Google Colab, included binary and multi-class classifi-
cation for both datasets. Results indicate that the ELM-based IDS outperformed other conventional
supervised learning models and advanced IDS frameworks in this domain.

3 Backgrounds

In order to develop a robust intrusion detection system, it is essential to understand the underlying
technologies and datasets that support such a framework. This section provides an overview of AEs,
GANs, and GWO, which form the core of our proposed intrusion detection system and introduces the
benchmark datasets used in our evaluation.

3.1 AE Model

AE are essential models in DL and are trained through unsupervised learning. Their primary goal
is to reconstruct the input data as accurately as possible. During training, the model parameters are
continually adjusted to reduce the reconstruction error. Typically, an AE is composed of two parts: 1)
an encoder and 2) a decoder. The encoder is responsible for transforming the raw input data x into a
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latent representation z, as represented by Eq. (1):

z = f (xW + b) (1)

where f is the encoder’s activation function, W is the weight matrix, and b represents the bias vector.
The decoder, on the other hand, attempts to reconstruct z back into an approximation of the original
input x̃, described as Eq. (2):

x̃ = g(zW ′ + b′) (2)

where g is the decoder’s activation function, and W ′ and b′ represent the weight matrix and bias vector
for the decoder. The AE works by minimizing the reconstruction error LRE, which can be defined as
Eq. (3):

LRE(x, x̃; W , W ′) = ∣∣x − x̃
∣∣2

2
= |x − g(W ′ · f (xW + b) + b′)| (3)

A key feature of AEs is their ability to compress high-dimensional input data into lower-
dimensional, meaningful representations. In this study, we employed AEs for feature extraction and
dimensionality reduction. While PCA is traditionally used to reduce high-dimensional data, AEs offer
the advantage of performing nonlinear transformations on complex datasets. Although this section
outlines the basic structure of AEs, these models can be extended with multiple layers and asymmetric
architectures.

3.2 Standard GAN Model

Generative models aim to approximate the probability distribution of a given training dataset and
strive to produce synthetic data that resembles the real data (i.e., training data). Recently, GANs have
emerged as a prominent topic within generative models, leading to numerous studies. Several GAN
models have been introduced to enhance both performance and functionality [56]. A GAN consists
of two key components: 1) a generator G and 2) a discriminatorD. The generator G is responsible
for generating synthetic data (fake data) that closely mimics real data, while the discriminator D
works to distinguish between real and fake data. Thus, these two models have competing goals during
training. Formally, let pz represent the probability distribution of the latent code, and pdata be the
probability distribution of real data. The objective function V(D, G) of a GAN, which incorporates
both a generator G and a discriminator D, is structured as a minimax game and can be described by
the Eq. (4):

V(D, G) = min
G

max
D EX∼pdata

[log(Dθ D(X))] + EZ∼pZ
[log(1 − Dθ D(Gθ G(Z)))] (4)

where θD and θG refer to the parameters of the discriminator D and the generator G, respectively.
The discriminator is trained to provide higher confidence scores for real data, whereas the generator
learns to produce synthetic data that maximizes the confidence score from the discriminator. Over
multiple iterations, the generator and discriminator eventually reach a point of balance, known as a
Nash equilibrium, where no further improvements can be made.

Since the original introduction of GANs, various extensions have been developed, refining the
objective functions or modifying the architecture. One such variation is the BEGAN model [57], which
builds on the principles of AEs and focuses on minimizing reconstruction errors. Unlike traditional
GANs, which define their objective function based on the distance between confidence vectors of real
and synthetic data, BEGAN’s objective is based on the Wasserstein distance between reconstruction
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error distributions, as shown Eq. (5):⎧⎪⎨
⎪⎩

LD = L(x; θD) − kt · L (G (z; θG) ; θD)

LG = L (G (z; θG) ; θD)

kt+1 = kt + λk · (γ · L (x; θD) − L (G (z; θG) ; θD))

(5)

Here, the hyper-parameter γ ∈ [0, 1] represents the diversity ratio, and λk serves as the learning
rate for k. The function L(·) denotes the reconstruction error of the autoencoder, and t indicates the
iteration step.

3.3 Standard GWO

GWO is an algorithm inspired by the hunting and social hierarchy of grey wolves. It is used to
tackle optimization problems by mimicking the structured way in which wolves hunt and interact
within their pack. The algorithm assigns potential solutions to a group of wolves, where the positions
of wolves represent different solutions. The wolves are classified into four categories based on their
hierarchy: alpha (α), beta (β), delta (δ), and omega (ω). Each of these categories plays a unique role in
guiding the exploration of the search space, with the alpha wolf typically leading the hunt for optimal
solutions while beta and delta wolves assist in decision-making. The GWO algorithm begins with an
initialization phase, where the positions of the alpha, beta, and delta wolves are set randomly within
the search space. These initial positions symbolize potential solutions to the problem. During the
search phase, the other wolves adjust their positions relative to the alpha, beta, and delta wolves.
This adjustment follows the pack’s natural hierarchy and aims to balance exploration, which involves
searching new regions of the solution space, and exploitation, which focuses on refining promising
areas. In the social dynamics of grey wolves, the omega wolf plays a significant role despite being
the lowest in the hierarchy. The omega is submissive and typically follows the commands of higher-
ranking wolves, but its presence is crucial for maintaining pack stability and reducing internal conflicts.
This mirrors how the GWO algorithm functions, where weaker solutions still contribute to the overall
optimization process by supporting the pack and preventing disarray in the search process.

The GWO’s update process is critical for improving the solutions generated by the pack. The
positions of the alpha, beta, and delta wolves are updated based on their performance and relative
positions to other wolves in the group. This update mechanism allows the algorithm to continuously
refine the solutions, drawing inspiration from the wolves’ coordinated hunting behavior, where they
strategically encircle their prey. This behavior is mathematically modeled in the GWO algorithm,
allowing it to find optimal or near-optimal solutions to complex problems effectively. Eqs. (6)–(9) are
introduced to mathematically represent this encircling behavior.

�D = �C �Xp (t) − �X(t) (6)

�X(t + 1) = �C �Xp (t) − �A. �D (7)

�A = 2�a�r1 − �a (8)

�C = 2�r2 (9)

where �X is the position vector of a gray wolf, �Xp is hunting position vector, �A and �C are coefficient
vectors, �r1 and �r2 are random vectors in the interval [0, 1], the �a vector is linearly reduced from 2 to 0
during the repetition.

When mathematically modeling the hunting strategies of grey wolves, it is assumed that the alpha,
along with the beta and delta wolves, have superior knowledge of the prey’s likely location. As a result,
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the algorithm retains the three best solutions found and requires the remaining search agents, including
the omega wolves, to update their positions based on the top-performing wolves. This approach is
reflected in Eqs. (10)–(12), which are designed to simulate this aspect of the process.

�Dα =
∣∣∣ �C1

�Xα − �X
∣∣∣ �Dβ =

∣∣∣ �C2
�Xβ − �X

∣∣∣ , �Dδ =
∣∣∣ �C3

�Xδ − �X
∣∣∣ (10)

�X1 = �Xα − �A1.( �Dα) �X2 = �Xβ − �A2.( �Dβ), �X3 = �Xδ − �A3.( �Dδ) (11)

�X(t + 1) = �X1 + �X2 + �X3

3
(12)

Fig. 1 illustrates how a search agent’s position is updated in a 2D search space, influenced by
the positions of the alpha, beta, and delta wolves. The new position is randomly selected within a
circular region, the size of which is determined by the locations of the alpha, beta, and delta wolves.
These leading wolves estimate the prey’s position, causing the other wolves to periodically adjust their
positions within the surrounding area of the prey.

R

Figure 1: Position update in the standard GWO algorithm

3.4 Dataset Description

In this research, we utilize three well-established network traffic datasets that are frequently used
as benchmarks for NIDS evaluations.

1. NSL-KDD Dataset: This dataset is an enhanced version of the KDDcup99 dataset [16,17].
It contains two distinct sets: KDDTrain for training, with 125,973 records, and KDDTest
for testing, with 22,544 records. Each record is composed of 41 features, which include three
nominal, six binary, and 32 numerical attributes that describe various aspects of network
traffic. The dataset labels traffic as either normal or belonging to one of four major attack
categories: Denial of Service (DoS), Probing, Remote-to-Local (R2L), and User-to-Root
(U2R). DoS attacks aim to flood system resources with excess traffic, Probing seeks to
gather information about the target system, R2L involves unauthorized remote access to local
systems, and U2R attempts to gain root-level access by exploiting system vulnerabilities [16,17].

2. UNSW-NB15 Dataset: The UNSW-NB15 dataset [18] was created using the IXIA Perfect-
Storm tool and serves as another widely adopted benchmark for intrusion detection system
assessments. It comprises 175,341 records for training and 82,332 for testing, with each
record characterized by 43 attributes that describe various network flow features. In addition
to a binary indicator showing if the traffic is normal or malicious, there is a categorical
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label specifying nine different types of attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode, and Worms. These attack types reflect a variety of
malicious activities, ranging from fuzzing techniques to identify vulnerabilities, to backdoor
access attempts [20].

3. IoT-23 Dataset: To assess performance in IoT-specific environments, the IoT-23 dataset [19]
was employed. This dataset consists of network traffic collected from real-world IoT scenarios,
including 20 sub-datasets that document malicious activity and three sub-datasets representing
benign traffic. For this study, we focused on data related to the Mirai botnet (CTU-IoT-
Malware-Capture-34-1), which contains 23,145 network flows categorized into four types:
Benign, Command & Control (C&C), DDoS, and PortScan. While the benign data captures
normal IoT network activity, the other categories encompass various forms of malicious
behavior, such as C&C communications and DDoS attacks [19].

4 The Proposed 5DGWO-GAN-Based NIDS

The 5DGWO-GAN framework is designed to improve anomaly detection in IoT systems by
combining the strengths of GANs for data generation with the optimization capabilities of the
5DGWO. This framework is composed of four primary stages, each contributing to the system’s goal
of accurate and efficient intrusion detection. Here’s a detailed breakdown of each stage as visualized
in Fig. 2:

1. Preprocessing: The process begins with preparing the raw IoT data for model training. Datasets
like NSL-KDD, UNSW-NB15, and IoT-23 are used, each presenting diverse attack types
and network behaviors. This stage involves data cleaning, normalization, and transformation,
which are crucial for eliminating inconsistencies and noise in IoT network traffic data.
By standardizing features and formatting data appropriately, this step ensures that both
generative and predictive models can accurately learn from and distinguish between normal
and anomalous patterns. Given the IoT datasets’ class imbalance (where certain types of
attacks are underrepresented) preprocessing also focuses on balancing data distribution to
make it suitable for GAN training and subsequent feature extraction.

2. Generative Model Training: In this stage, the GAN model is trained on the preprocessed data
to generate synthetic samples that mimic the real data distribution. This synthetic data is
particularly valuable for handling class imbalance, as it allows the model to generate samples
of underrepresented attack types. Here, the GAN consists of two networks that compete in a
minimax game. The GAN framework operates through an interaction between the generator
(G) and the discriminator (D) to produce synthetic data that resembles real data. The process
begins with real data from the original dataset, which is fed directly into the discriminator
for training. The generator, fine-tuned by the 5DGWO optimization, creates synthetic data
samples that aim to mimic this real data distribution as closely as possible. These synthetic
samples, along with the actual data, are then presented to the discriminator, whose task is to
classify each input as either “Real” or “Fake.” As the generator produces increasingly realistic
samples in its effort to deceive the discriminator, the discriminator simultaneously becomes
better at distinguishing genuine data from synthetic data. This adversarial interaction pushes
the generator to refine its output, learning to generate highly realistic data that aligns with the
patterns in the original dataset. By employing the 5DGWO optimization, key GAN hyper-
parameters (such as learning rate, batch size, and network depth) are fine-tuned, resulting
in faster convergence and greater model stability. Through this iterative process, the GAN
achieves a balanced data generation that effectively addresses class imbalances, producing
samples that are representative of both normal and underrepresented attack classes.
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3. AE Model Training: The AE, consisting of an encoder (E) and a decoder (D), learns to
extract core features from both real and synthetic data produced by the 5DGWO-GAN.
The AE model’s encoder component captures critical features from both real and synthetic
data generated by the 5DGWO-GAN, enabling efficient dimensionality reduction and feature
extraction. Generative models assist in the training of AEs by supplementing the training
data with diverse, high-quality synthetic samples, enabling the AE to achieve a higher level of
accuracy and reliability in anomaly detection. By training on a dataset enriched with synthetic
samples, the AE learns to represent both normal and attack data patterns effectively, capturing
the nuanced differences that characterize each class. These encoded features are then used as
inputs for the predictive models, contributing to a more informative feature space that aids in
accurate anomaly detection. The AE’s role is fundamental to improving the overall system’s
ability to generalize across different types of network traffic.

4. Predictive Model Training: In the final stage, a diverse set of predictive models (including CNN,
DBN, RNN, RF, and XGBoost) are trained using both the AE-encoded features and the GAN-
generated synthetic data. Each model leverages the feature-rich input space created by the AE,
while the synthetic data helps address class imbalance, ensuring that even minority classes
are well-represented. This ensemble approach allows the system to capitalize on each model’s
strengths, achieving robust performance across multiple metrics. Additionally, we proposed
hybrid models, such as 5DGWO-GAN-CNNAE, 5DGWO-GAN-DBNAE, and 5DGWO-GAN-
RNN, which combine the advantages of GAN-generated data, AE-encoded features, and the
respective model architectures to further enhance detection accuracy and reduce false positives.
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Figure 2: The proposed 5DGWO-GAN-based NIDS architecture consists of four main components:
preprocessing, GAN training, AE training, and predictive models. The GAN generates synthetic data,
fine-tuned by 5DGWO to improve accuracy and stability. The AE, with its encoder-decoder structure,
uses GAN-generated data for feature extraction, facilitating efficient learning. Finally, predictive
models classify intrusions based on AE-refined features, boosting detection accuracy and reducing
false positives
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4.1 Proposed 5DGWO-GAN

In this paper, we present an innovative enhancement to the standard GWO, referred to as the
5DGWO. Our enhancement introduces two new types of wolves, denoted as gamma (γ ) and theta
(θ ), to strengthen the algorithm’s overall search intelligence. Gamma wolves, also called elites, focus
on improving the exploitation capability of the algorithm, which enhances its ability to converge on
optimal solutions more quickly. On the other hand, theta wolves, also referred to as random wolves,
are designed to bolster exploration, ensuring that the algorithm can escape local minima and explore
a wider range of potential solutions in the search space. The introduction of these two additional
types of wolves provides a more dynamic balance between exploration and exploitation, making the
5DGWO more robust in finding global optimal solutions and avoiding premature convergence. The
pyramid structure shown in Fig. 3 highlights the new hierarchical order of the 5DGWO, where the
newly added γ and θ wolves occupy ranks between alpha and beta wolves in the traditional GWO.
The alpha wolves still hold the primary leadership role, directing the overall search, but now they
are supported by gamma wolves, which help refine the search for better solutions by focusing more
intensely on exploitation. Theta wolves, placed just after delta wolves, assist in the global exploration
by adding randomness to their movement, allowing the algorithm to probe new areas of the solution
space. This pyramid illustrates the hierarchical positioning of the wolves, showcasing the enhanced
leadership roles in this new structure.

Alpha

Gamma

Theta

Beta

Delta

Omega

Figure 3: The hierarchy of gray wolfs in the proposed 5DGWO

In Eqs. (13)–(15), the new update formulas for the proposed 5DGWO algorithm are presented,
which incorporate the gamma and theta wolves into the standard GWO equations. Eq. (13) shows
how the distances to α, β, δ, γ , and θ wolves are calculated, using the current position of the prey and
their relative positions. Eq. (14) details how the positions of the search agents (wolves) are updated
based on the alpha, beta, delta, gamma, and theta wolves. The additional gamma and theta wolves
add layers of refinement and randomness to the movement of the wolves, enhancing both exploitation
and exploration processes. Finally, Eq. (15) shows the overall position update rule, where the position
of each wolf at time t+1 is calculated as the average of the updated positions of all the wolves, ensuring
a balanced and well-distributed movement across the search space.
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�X(t + 1) = �X1 + �X2 + �X3 + �X4 + �X5

5
(15)

Fig. 4 visualizes how the positions of wolves are updated in the search space with the introduction
of γ and θ wolves. Each wolf moves in response to the position of the prey, indicated by the central
point (R), but the wolves now interact with γ and θ wolves to determine their new positions. The
new wolves improve the algorithm’s strategic flexibility by allowing more diverse movement patterns.
Gamma wolves (C4) and theta wolves (C5) are shown adjusting their positions to assist in both refining
the search (exploitation) and expanding the search boundaries (exploration), ensuring that the wolves
do not get trapped in local minima and continue seeking the global optimum. The introduction
of gamma wolves, or elite wolves with superior fitness function values, significantly enhances the
exploitation capability of the 5DGWO algorithm. Exploitation refers to the algorithm’s ability to fine-
tune and intensify its search in regions of the search space where optimal or near-optimal solutions
are likely to be found. By prioritizing the guidance of wolves with higher fitness values, the algorithm
becomes more focused on refining promising areas of the solution space. The gamma wolves, being
elites with enhanced knowledge of the solution landscape, help the pack zero in on more optimal
solutions, thus accelerating convergence. Their role is particularly crucial during the later stages of the
optimization process when the algorithm needs to exploit known good areas and make incremental
improvements. This selective guidance by elite wolves ensures that the pack does not waste resources on
less promising regions, thereby improving the efficiency and effectiveness of the exploitation process.

R

Figure 4: The position update in the proposed 5DGWO algorithm. Here, different types of wolves
collaborate to locate the optimal solution, represented by the target prey (R). Each wolf’s position
is adjusted based on its distance from the target, allowing them to converge towards the prey. This
configuration emphasizes the exploration and exploitation capabilities of the 5DGWO, where the
additional wolf types, γ and θ , enhance the search diversity and adaptability, helping to escape local
minima and improving convergence efficiency

Theta wolves, or random wolves, play a key role in strengthening the exploration capabilities of
the 5DGWO algorithm. Exploration refers to the ability of the algorithm to search across diverse
areas of the solution space, ensuring that it does not get trapped in local optima. By introducing
a degree of randomness into their movement, theta wolves allow the algorithm to break free from
repetitive or confined search patterns. These wolves encourage the algorithm to explore less visited
regions of the search space, helping to discover new potential solutions that may have been overlooked
by the more deterministic search agents. This added exploration flexibility is critical, especially in
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complex or multi-modal optimization problems, as it helps maintain a balance between exploitation
and exploration, ultimately preventing premature convergence and ensuring a more comprehensive
search of the solution landscape. By integrating these two new types of wolves, the 5DGWO becomes
more adept at finding optimal solutions in complex optimization problems, offering a more intelligent
and adaptable search mechanism compared to the standard GWO. This improvement is crucial for
enhancing convergence speed while maintaining the algorithm’s ability to explore a diverse set of
potential solutions.

In the proposed 5DGWO-GAN framework, the 5DGWO algorithm is utilized to optimize the
hyper-parameters of the GAN architecture. Fig. 5 illustrates the structure of a wolf in the 5DGWO-
GAN algorithm. Each wolf represents a candidate solution in the optimization process, encoded
with a specific set of hyper-parameters. The structure includes components for learning rate (Lr),
batch size (B), weights (Wn), and biases (Bm), which collectively define the configuration of a GAN
model. By adjusting these parameters, each wolf iteratively moves toward the optimal hyper-parameter
combination that minimizes the objective function. The objective function of the proposed 5DGWO-
GAN algorithm, as defined in Eq. (5), guides the wolves toward the global optimum. The 5DGWO
enhances the optimization process by introducing two additional wolf types (gamma and theta) which
contribute to a more intelligent exploration-exploitation balance, leading to improved convergence and
stability during GAN training. By emphasizing exploitation, gamma wolves ensure that the optimal
weights, biases, and learning rates are fine-tuned to accelerate the convergence of the GAN training
process. This is particularly beneficial in DL, where well-optimized hyper-parameters can significantly
enhance model performance and reduce training time. On the other hand, theta wolves enhance the
exploration aspect of the optimization. These wolves introduce randomness into the search process,
allowing the algorithm to explore less examined regions of the hyper-parameter space. This prevents
the GAN from becoming trapped in local minima, a common issue in DL models. Theta wolves help
ensure that the algorithm explores a wide range of potential hyper-parameter configurations, which
is essential for achieving a global optimal solution, especially in complex GAN architectures like the
one proposed for intrusion detection in IoT systems.

Wolf
Learning Rate Batch size Weight Biases

… …

Figure 5: The structure of a wolf in 5DGWO-GAN

Fig. 6 illustrates an example of updating positions in the 5DGWO algorithm. Each row represents
a wolf (agent) with a specific role each assigned unique hyper-parameter configurations, including
learning rate, batch size, and other parameters. The “New Wolf” displays updated parameters, aiming
to reduce the RMSE, which serves as the evaluation metric for model performance. Alpha, with
the lowest RMSE of 12.59, currently represents the best-performing solution, while omega, with the
highest RMSE of 32.74, is the least effective. This structure demonstrates how 5DGWO optimizes
model performance by iteratively adjusting the positions (parameters) of each wolf to minimize
RMSE, allowing the algorithm to converge towards an optimal set of parameters for better accuracy
and stability. The new wolf’s RMSE of 4.32 suggests a substantial improvement, validating the
effectiveness of this update strategy in refining model performance.
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Alpha 0.002 32 0.12 0.18 … 0.29 0.35 … 0.42 RMSE = 12.59

Gamma 0.001 64 0.15 0.42 … 0.09 0.54 … 0.15 RMSE = 15.35

Theta 0.003 128 0.27 0.31 … 0.11 0.25 … 0.38 RMSE = 21.12

Beta 0.004 32 0.33 0.28 … 0.22 0.24 … 0.45 RMSE = 19.19

Delta 0.005 64 0.02 0.20 … 0.33 0.19 … 0.09 RMSE = 23.66

Omega 0.002 128 0.19 0.04 … 0.41 0.29 … 0.10 RMSE = 32.74

New Wolf 0.002 64 0.33 0.31 … 0.09 0.35 … 0.10 RMSE = 4.32

Figure 6: An example of position updates in the 5DGWO algorithm (for training GAN). This figure
presents the structure and parameter configurations of different wolves in the 5DGWO algorithm,
each with a unique set of hyper-parameters such as learning rate, batch size, weights, and biases

The 5DGWO algorithm’s ability to optimize hyper-parameters such as the learning rate, batch
size, weight initialization, and bias adjustments allows for the automatic tuning of the GAN’s training
process. This leads to a more robust architecture that is better suited for handling the intricacies of IoT
data in network intrusion detection tasks. Despite the potential for increased computational costs due
to the iterative nature of the optimization, the benefits of using 5DGWO to optimize GAN parameters
(such as improved convergence speed and model stability) outweigh the drawbacks. The proposed
5DGWO-GAN system thus demonstrates how nature-inspired algorithms can be effectively applied
to optimize DL architectures in real-world applications.

4.2 Preprocessing

Before the DL models are constructed and trained, the raw dataset is refined through a preprocess-
ing module that involves three key steps: 1) outlier analysis, 2) one-hot encoding, and 3) feature scaling.
The outlier analysis step removes anomalous data points that could hinder model training. Outliers
are typically identified by examining the statistical distribution of data using robust scaling methods.
Common techniques for detecting outliers include the interquartile range (IQR) and median absolute
deviation (MAD), with this study opting for MAD. For a numeric attribute A = {x1, x2, . . . , xn}, the
MAD is calculated as Eq. (16):

fA (xi) = x̃i = xi − min xj

max xj − min xj

(16)

where (xi) represents the i-th attribute value within (A). While many DL approaches incorporate
feature extraction techniques (such as PCA or Pearson correlation) at this stage to enrich the model
with informative features, we do not adopt such computational processes here. This is because our
framework integrates an AE that serves the role of feature extraction. In fact, the use of computational
feature extraction yielded minimal performance improvements compared to models without it.
Detailed information on the AE’s role as a feature extractor is provided later.
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4.3 Synthetic Data Generation Using the 5DGWO-GAN Model

The synthetic data generation component involves building and training generative models using
the refined dataset from the preprocessing phase. For this purpose, we employ a state-of-the-art GAN
model called 5DGWO-GAN, which relies on AEs and an objective function based on reconstruction
error. Before training 5DGWO-GAN, the system partitions the dataset according to its class labels
and then builds separate generative models for each class. After training, each model is responsible for
producing synthetic data that corresponds to a particular class. One critical aspect to consider when
applying GANs to NIDS is determining the stopping criteria for training, as it directly affects the
quality of the synthetic data used to train the detection model. Given that GANs are based on a zero-
sum game, monitoring convergence during training is challenging. In conventional GANs, synthetic
data quality is often monitored through visual inspection, but this is impractical for NIDS due to
the non-visual nature of the data. Fortunately, 5DGWO-GAN simplifies this process by allowing the
approximation of training convergence through equilibrium tracking. The measure of convergence
(M) in 5DGWO-GAN is defined as Eq. (17):

M = L(x) + |γ L (x) − L (G (z))| (17)

where (L(·)) denotes the reconstruction error function, and (γ ) is the diversity ratio. Once the
convergence measure (M) falls below a predefined threshold, the generative model’s training process
is terminated. In our experiments, we set this threshold to 0.058. After training, the system generates
class-specific synthetic data using the trained generator, which is then merged with the original dataset
for subsequent stages.

4.4 Training the AE and Detection Model

The next step involves training the AE, which provides feature extraction and dimensionality
reduction. In our framework, the AE shares the same architecture as the 5DGWO-GAN discriminator.
Since the 5DGWO-GAN discriminator functions as an AE, it seamlessly integrates into our detection
model, handling the same data format. After training the AE, the system uses the trained encoder as the
feature extractor. The trained encoder is then used in the detection models as a feature extractor, with
its parameters fixed during the training of the detection models. For classification, we implemented
DBN, CNN, and LSTM models. The CNN model, traditionally used for image analysis, was adapted
with one-dimensional convolutional layers to handle network traffic data directly. Given the LSTM’s
ability to analyze temporal features, we chose not to combine it with the AE, as this could obscure
time-related data. For each model, the output layer was structured with binary fields for anomaly
detection tasks and multi-class fields when identifying specific attack types.

5 Experimental Results

In this section, the performance of the algorithms RF, XGBoost, RNN, DBN, CNN, DBNAE,
CNNAE, 5DGWO-GAN-RNN, 5DGWO-GAN-DBNAE, and 5DGWO-GAN-CNNAE is evaluated on
the NSL-KDD, UNSW-NB15, and IoT-23 datasets within a simulated environment. The experiments
are designed to benchmark the anomaly detection capabilities of these models in realistic IoT
environments, offering insights into their performance under diverse conditions. In this paper, we
employed four key metrics to assess the performance of the proposed models: RMSE, accuracy,
precision, and recall. Accuracy measures the proportion of correct predictions and is widely used to
evaluate the effectiveness of AI models. Precision, in the context of a particular class, is defined as
the percentage of correct positive predictions relative to all positive predictions made by the model.
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Recall, however, represents the ratio of true positive instances that the model successfully detected.
The formulas for these metrics are as Eqs. (18)–(21):

Accuracy = TP + TN
TP + FN + FP + TN

(18)

Precision = TP
TP + FP

(19)

Recall = TP
TP + FN

(20)

RMSE =
(

1
N

N∑
i=1

[Pi − Oi]
2

) 1
2

(21)

where N is the number of observations; Pi is the calculated parameter; Oi is the observed parameter;
TN = true negative; TP = true positive; FN = false negative; and FP = false positive. We used these
metrics to assess the performance of each model on the experimental datasets. Although the models
were constructed with a stable architecture, some variability in results persisted. To address this, we
trained each model independently 20 times and reported the outcomes for the model that achieved the
highest detection rate on the test dataset.

5.1 Tuning Algorithms

In the implementation of our proposed 5DGWO-GAN framework, we meticulously calibrated the
hyper-parameters of each algorithm to optimize performance for intrusion detection in IoT systems.
This calibration process was carried out through an extensive trial-and-error optimization approach,
in which each parameter was adjusted iteratively, observing its impact on model performance in terms
of accuracy, convergence stability, and computational efficiency. The final calibration parameters are
summarized in Table 1, with the initial parameter ranges specified based on prior research and refined
through systematic experimentation to identify the best-performing values. In our trial-and-error
calibration approach, we tested various values for each parameter individually to identify the optimal
settings for our 5DGWO-GAN framework. During this process, we kept all other parameters constant
while varying only the target parameter, allowing us to isolate its impact on the model’s performance.
For each parameter, we evaluated its effect based on key performance metrics, such as accuracy for
classification tasks or RMSE for regression-oriented components. By systematically testing a range
of values for each parameter, we could determine which setting produced the best results according to
these metrics.

Table 1: Parameter setting of proposed models through the trial and error method

Method Parameter Value

GAN Learning rate 0.002
Number of neurons in hidden layers 80
Batch size 64
Momentum term 0.05
Activation function ReLU

(Continued)



898 CMC, 2025, vol.82, no.1

Table 1 (continued)

Method Parameter Value

Convergence threshold 0.059
Epochs 300
Optimizer 5DGWO

5DGWO C 0.7
A 0.3
α [0, 2]
Population size 110
Iteration 300

AE Learning rate 0.001
Hidden layer sizes 60
Batch size 128
Activation function ReLU

DBN Number of hidden layers 8
Number of neurons in hidden layers 44
Learning rate 0.06
Activation Tanh and sigmoid
Optimizer SGD

RF Number of estimators 100
Maximum depth of trees 12
Minimum samples per split 6

RNN Number of hidden layers 12
Number of neurons in hidden layers 36
Learning rate 0.04
Dropout rate 0.2
Activation Tanh and sigmoid
Optimizer SGD

CNN Number of convolution layers 4
Kernel size 3 × 3
Pooling type Max pooling (2 × 2)
Number of neurons 26

XGBoost Learning rate 0.2
Max depth 6
Number of estimators 100

For the GAN model, key parameters were tuned with particular attention to their impact on the
training dynamics and stability of the generated data distribution. We experimented with the learning
rate over a range of [0.001, 0.005], with 0.002 emerging as the optimal setting, balancing convergence
speed and training stability. Batch size was tested in increments of 32, ranging from 32 to 128; a
batch size of 64 provided the best memory efficiency without compromising data richness for training.
Hidden layers were tested with neuron counts from 50 to 120, and a configuration of 80 neurons per
layer was selected to ensure adequate capacity for feature extraction without overfitting. Additional
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parameters, such as the momentum term (0.05) and the ReLU activation function, were introduced
to enhance stability, as these values were found to effectively minimize fluctuations in training loss.
The 5DGWO optimizer was configured with a convergence threshold of 0.059 and a maximum of
300 epochs, as these parameters maintained model accuracy and prevented premature convergence.
The AE model’s hyper-parameters were similarly refined using trial-and-error, targeting optimal
reconstruction accuracy. Initial tests set the learning rate between [0.0005, 0.002], with 0.001 found
to offer the best trade-off between training speed and stability. Hidden layer sizes were progressively
reduced to capture essential features while preserving important information; this approach prevented
over-parameterization and maintained model efficiency. A batch size of 128 was chosen to optimize
convergence speed without overloading computational resources. These configurations were iteratively
tested and fine-tuned to produce an AE model that achieves high reconstruction accuracy and stable
training.

To ensure balanced exploration and exploitation within the 5DGWO algorithm, control param-
eters C and A were optimized with initial values tested in the range [0.2, 0.9]. Values of 0.7 and 0.3,
respectively, were found most effective in balancing search depth and breadth. The population size
was tested from 80 to 150 wolves, with 110 selected to provide adequate diversity without incurring
excessive computational cost. The number of iterations was set to 300 after testing a range of 200 to
500 iterations, allowing sufficient convergence time without compromising efficiency. The parameter
α was optimized within [0, 2], providing necessary flexibility in guiding wolves while achieving fast
convergence. These settings allowed 5DGWO to adapt dynamically to the GAN’s complex parameter
space, refining the search with each iteration. For DBN, a learning rate of 0.06 was selected after trials
ranging from 0.01 to 0.1, paired with 8 hidden layers of 44 neurons each, a balance that provided
effective depth for feature extraction while avoiding overfitting. The RNN was calibrated with a
dropout rate tested in the range [0.1, 0.3], and a rate of 0.2 was finalized to prevent overfitting.
Activation functions Tanh and Sigmoid were chosen for their non-linear properties, which improved
sequential data processing. For the CNN, two convolutional layers with 3 × 3 kernels and max pooling
layers were optimized to maintain key features while reducing dimensionality, preserving essential
patterns in data. Finally, XGBoost underwent learning rate tuning in the range [0.05, 0.2], with 0.1
chosen to balance depth and convergence speed. A max tree depth of 6 was selected to prevent
overfitting while maintaining model complexity. These parameter settings were fine-tuned using a
combination of grid search and manual adjustment through trial-and-error, and they represent the
best performing configurations after extensive testing.

5.2 Algorithm Results on NSL-KDD Dataset

In this dataset, we investigated both binary and multiclass classification tasks. In our experiments
with models such as 5DGWO-GAN-CNNAE, 5DGWO-GAN-DBNAE, and 5DGWO-GAN-RNN,
we generated synthetic data for each class using the generative model and incorporated it into the
training dataset. The results presented in Table 2 highlight a clear performance distinction between
traditional ML models, DL approaches, and the more advanced 5DGWO-GAN-enhanced models
in binary classification. It’s important to highlight that, in the binary classification task, the attack
class data are inherently treated as anomalies and labeled as abnormal. Fig. 7a provides a comparison
of binary classification accuracy on the NSL-KDD dataset. In general, the models demonstrated
relatively high recall rates for the normal class data, while for the abnormal class, the models exhibited
higher precision values.
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Table 2: The comparison of various models for binary classification on the NSL-KDD dataset

Models Accuracy RMSE Normal Abnormal

Recall precision Recall precision

RF 70.25% 13.27 92.21% 61.49% 77.98% 76.24%
XGBoost 76.21% 10.25 93.24% 67.93% 82.93% 75.19%
RNN 83.21% 5.29 95.41% 74.39% 83.64% 85.67%
DBN 80.14% 5.84 93.29% 73.29% 80.19% 80.27%
CNN 82.34% 6.32 95.19% 71.36% 81.32% 82.39%
DBNAE 86.14% 3.41 96.19% 83.19% 84.29% 88.94%
CNNAE 87.19% 2.96 96.29% 82.14% 85.14% 89.63%
5DGWO-GAN-RNN 90.32% 1.87 98.29% 86.19% 87.39% 93.28%
5DGWO-GAN-DBNAE 93.19% 1.04 99.24% 90.29% 88.96% 96.71%
5DGWO-GAN-CNNAE 95.34% 0.24 99.63% 91.32% 90.24% 98.32%
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Figure 7: A comparison of classification accuracy on the NSL-KDD dataset: (a) binary and (b)
multiclass

Traditional methods like RF and XGBoost show relatively lower accuracy (70.25% and 76.21%,
respectively) and higher RMSE values, indicating less precision and greater variability in predictions.
While they manage decent recall values for both normal and abnormal classes, their precision,
particularly for normal instances, is notably lower, suggesting a higher rate of false positives. In
contrast, DL methods such as RNN, DBN, and CNN exhibit substantial improvements in accuracy,
with values above 80%, as well as significantly lower RMSE scores. However, these models still struggle
with maintaining a consistent balance between recall and precision, particularly in the abnormal class,
where misclassifications are more frequent.
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The introduction of AE-enhanced models (DBNAE and CNNAE) results in marked improvements
in both accuracy and precision across all classes, with much lower RMSE values (as low as 2.96
for CNNAE). These models benefit from the AE’s ability to better capture complex data patterns,
improving both recall and precision, particularly for the abnormal class. However, the highest-
performing models in the experiment are those optimized using 5DGWO-GAN. These models,
particularly 5DGWO-GAN-CNNAE, achieve the best overall performance, with accuracy reaching
95.34%, the lowest RMSE of 0.24, and near-perfect recall and precision scores for both normal
and abnormal classes. This clearly demonstrates that the 5DGWO-GAN optimization significantly
enhances model performance by effectively tuning hyper-parameters and improving the detection of
both normal and abnormal instances, making it the most robust solution for the NSL-KDD intrusion
detection dataset.

The results in Table 3 provide a comprehensive comparison of various models for multiclass
classification on the NSL-KDD dataset. In contrast to the binary classification, the system was able
to identify the specific type of threat associated with the data and subsequently generate synthetic
data of varying magnitudes based on the population weights. Fig. 7b presents a comparison of
multiclass classification accuracy on the NSL-KDD dataset. RF and XGBoost show relatively lower
performance compared to DL-based approaches. RF achieves an accuracy of 68.12% with a high
RMSE of 22.18, reflecting substantial variability in its predictions. XGBoost performs slightly better,
with an accuracy of 74.59% and a lower RMSE of 19.96. However, both models exhibit weaknesses
in recall, particularly for difficult-to-detect classes like R2L and U2R. When comparing DL models
such as RNN, DBN, and CNN, we observe a marked improvement in both accuracy and RMSE.
These models not only increase accuracy (achieving over 80% for all three) but also show a better
balance between recall and precision across different attack types. RNN achieves an accuracy of
81.34% with an RMSE of 12.57, offering higher recall for the R2L (22.74%) and U2R (8.51%) classes
than the traditional models. DBN and CNN further improve these results, with accuracies of 82.96%
and 81.74%, respectively, and lower RMSE values. These models still struggle with detecting minority
classes like U2R but perform better in capturing the patterns of the Probe and DoS classes.

Table 3: The comparison of various models for multiclass classification on the NSL-KDD dataset

Models Accuracy RMSE DoS Probe R2L U2R

Recall precision Recall precision Recall precision Recall precision
RF 68.12% 22.18 72.36% 85.11% 41.77% 77.88% 12.62% 55.42% 2.01% 60.13%
XGBoost 74.59% 19.96 77.81% 82.45% 49.09% 81.63% 18.07% 65.36% 4.27% 32.22%
RNN 81.34% 12.57 83.98% 79.87% 47.45% 79.94% 22.74% 69.77% 8.51% 70.50%
DBN 82.96% 11.58 85.76% 81.94% 45.91% 76.50% 20.26% 67.70% 10.36% 72.84%
CNN 81.74% 10.02 86.21% 82.12% 42.37% 81.45% 30.90% 72.89% 14.60% 69.19%
DBNAE 85.19% 6.47 90.22% 88.37% 88.65% 90.08% 41.48% 80.34% 18.07% 75.64%
CNNAE 84.27% 5.86 91.75% 89.76% 90.18% 92.77% 49.71% 81.30% 20.84% 77.46%
5DGWO-
GAN-RNN

89.74% 2.95 97.8/% 94.88% 95.22% 95.46% 82.61% 90.25% 37.26% 82.28%

5DGWO-
GAN-DBNAE

92.88% 1.89 98.47% 96.27% 97.38% 96.18% 92.57% 96.62% 34.37% 85.88%

5DGWO-
GAN-CNNAE

94.12% 0.86 99.09% 97.64% 98.94% 97.83% 96.05% 93.11% 36.86% 88.41%
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The inclusion of AEs in DBNAE and CNNAE significantly enhances performance, as demonstrated
by their higher accuracies (85.19% for DBNAE and 84.27% for CNNAE) and substantially lower RMSE
scores (6.47 and 5.86, respectively). These models also show much better recall for the minority classes,
particularly with DBNAE reaching 18.07% for U2R and CNNAE achieving 20.84%. The 5DGWO-
GAN optimized models deliver the most robust results, particularly in handling all classes more
effectively. 5DGWO-GAN-RNN, 5DGWO-GAN-DBNAE, and 5DGWO-GAN-CNNAE achieve the
highest overall accuracies, with 5DGWO-GAN-CNNAE reaching an impressive 94.12%. These models
also demonstrate the lowest RMSE values (as low as 0.86 for 5DGWO-GAN-CNNAE), indicating
minimal prediction errors. Furthermore, they significantly outperform other models in detecting
the difficult R2L and U2R classes, with 5DGWO-GAN-CNNAE achieving a recall of 96.05% for
R2L and 36.86% for U2R, which are far superior to other models. The incorporation of 5DGWO
optimization ensures more balanced detection across all classes, making these models the most
effective for multiclass intrusion detection in the NSL-KDD dataset.

5.3 Algorithm Results on UNSW-NB15 Dataset

To evaluate model performance on a dataset with a wider variety of classes, we also performed
experiments using the UNSW-NB15 dataset as an additional multiclass classification scenario. This
dataset includes ten different classes, one normal class, along with three major and six minor
attack classes. Similar to previous experiments, synthetic data was generated for each class using the
generative model and integrated into the training data. Table 4 summarizes the experimental results
for the multiclass classification scenario on the UNSW-NB15 dataset. RF and XGBoost perform
moderately well, especially in the Generic class, with accuracies of 72.96% and 73.47%, respectively.
However, these models struggle in more complex attack categories such as DoS and Shellcode, where
their performance drops significantly.

Table 4: The comparison of various models for multiclass classification on the UNSW-NB15 dataset

Models Generic Exploit Fuzzers DoS Reconnaissance Analysis Backdoors Shellcode Worms
RF 72.96% 44.19% 61.14% 13.08% 47.44% 68.20% 77.24% 50.17% 55.33%
XGBoost 73.47% 40.73% 66.58% 14.16% 52.50% 69.11% 80.80% 51.81% 54.26%
RNN 78.83% 54.03% 74.76% 25.29% 50.63% 74.48% 85.01% 55.20% 61.55%
DBN 81.24% 56.25% 72.35% 27.30% 55.08% 76.75% 84.33% 59.35% 63.90%
CNN 80.90% 55.50% 66.70% 28.66% 54.64% 78.94% 87.76% 57.69% 62.04%
DBNAE 85.05% 58.40% 76.92% 30.53% 66.43% 83.97% 90.95% 65.88% 68.64%
CNNAE 86.64% 60.65% 77.28% 33.74% 68.28% 86.60% 91.15% 63.18% 70.27%
5DGWO-
GAN-RNN

90.76% 67.51% 92.17% 39.99% 75.73% 88.31% 95.34% 71.51% 75.39%

5DGWO-
GAN-DBNAE

93.34% 71.27% 94.43% 41.28% 77.90% 90.88% 98.28% 74.24% 78.62%

5DGWO-
GAN-CNNAE

95.68% 70.38% 96.22% 44.01% 80.07% 93.70% 97.72% 79.08% 81.26%

In contrast, DL models like RNN, DBN, and CNN exhibit better overall performance, partic-
ularly in detecting attacks like Exploit and Fuzzers, with RNN achieving 74.76% in Fuzzers and
25.29% in DoS. The introduction of AE-enhanced models like DBNAE and CNNAE brings a noticeable
improvement in classification accuracy. DBNAE consistently outperforms traditional models, espe-
cially in detecting major attack types such as Generic (85.05%), Fuzzers (76.92%), and DoS (30.53%),
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while CNNAE further strengthens the model’s ability to detect classes like Reconnaissance (68.28%)
and Shellcode (63.18%). The standout performers, however, are the 5DGWO-GAN-optimized models,
with 5DGWO-GAN-CNNAE emerging as the top-performing model. It achieves the highest accuracy
across several classes, including Generic (95.68%), Fuzzers (96.22%), and DoS (44.01%). These models
demonstrate their strength particularly in the major classes, but also in minor and complex classes such
as Shellcode (79.08%) and Worms (81.26%). 5DGWO-GAN-DBNAE also delivers high performance,
achieving significant improvements in classes like Exploit (71.27%) and Backdoors (98.28%).

For the major attack classes, such as Generic, Exploit, and Fuzzers, both simple and advanced
DL models performed comparably, with our proposed models showing improvements even in RNN-
based systems. The generative model-enhanced approaches significantly improved classification in
the Generic and Fuzzers classes. For the minor classes, the proposed models displayed moderate
improvements in performance across the board. By testing on the more diverse UNSW-NB15 dataset,
it was evident that the proposed models enhanced classification performance, particularly for the
major classes. Additionally, the generative model showed its effectiveness in boosting performance for
minor and rare attack classes. Despite these gains, challenges remain, particularly in detecting certain
classes, where detection rates remained relatively low.

5.4 Algorithm Results on IoT-23 Dataset

To assess the effectiveness of the proposed models in IoT environments, we carried out experiments
using the IoT-23 dataset. Specifically, we utilized data from the Mirai botnet scenario (CTU-IoT-
Malware-Capture-34-1) and intentionally created an extreme data imbalance scenario to challenge the
models. Table 5 outlines the results from the multiclass classification task on the IoT-23 dataset, while
Fig. 8 provides a visual comparison of the experimental outcomes. In general, all models achieved over
80% accuracy, with even the simpler models showing perfect classification for the DDoS class. This
strong performance can likely be attributed to the simplicity of the IoT dataset, where certain features,
such as “history,” contain highly indicative information about the attacks.

Table 5: The comparison of various models for multiclass classification on the IoT-23 dataset

Models Accuracy RMSE DDoS C&C PortScan

Recall precision Recall precision Recall precision

RF 81.73% 10.13 90.32% 92.55% 60.37% 84.50% 84.86% 70.34%
XGBoost 85.18% 9.12 92.88% 93.42% 65.64% 85.33% 86.12% 72.83%
RNN 90.51% 7.79 95.52% 96.32% 75.83% 89.12% 91.44% 77.58%
DBN 92.46% 6.32 96.01% 97.41% 71.74% 88.84% 90.90% 79.20%
CNN 91.24% 5.41 97.33% 98.58% 73.32% 90.79% 92.73% 80.13%
DBNAE 93.72% 3.01 99.21% 100.00% 81.76% 93.65% 97.62% 83.99%
CNNAE 94.30% 2.20 99.44% 100.00% 80.08% 95.15% 96.23% 85.85%
5DGWO-
GAN-RNN

96.69% 1.14 100.00% 100.00% 92.64% 100.00% 100.00% 92.47%

5DGWO-
GAN-DBNAE

98.55% 0.76 100.00% 100.00% 93.35% 100.00% 100.00% 96.36%

5DGWO-
GAN-CNNAE

99.20% 0.09 100.00% 100.00% 95.42% 100.00% 100.00% 95.42%
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Figure 8: A visual comparison of proposed models on the IoT-23 dataset: (a) DDoS, and (b) C&C

RF and XGBoost models demonstrate moderate performance, with accuracies of 81.73% and
85.18%, respectively. In contrast, DL models like RNN, DBN, and CNN show a substantial improve-
ment in both accuracy and RMSE. For instance, RNN reaches an accuracy of 90.51%, with notably
better performance in detecting C&C attacks (75.83% recall), though precision in PortScan detection
(77.58%) still shows room for improvement. DBN and CNN further enhance performance, achieving
accuracies of 92.46% and 91.24%, respectively, and better balancing precision and recall across all
attack types. However, the standout models are those enhanced with AE, specifically DBNAE and
CNNAE, which significantly boost detection rates. Both models achieve over 93% accuracy and nearly
perfect recall and precision for DDoS and C&C classes, demonstrating the added value of AE-based
feature extraction. The 5DGWO-GAN-optimized models demonstrate superior performance across
all metrics, with 5DGWO-GAN-RNN reaching an accuracy of 96.69% and near-perfect recall and
precision in detecting all attack classes. The 5DGWO-GAN-DBNAE and 5DGWO-GAN-CNNAE

models further push the boundaries, achieving over 98.5% accuracy, with perfect 100% recall and
precision in detecting DDoS. These models also excel in detecting PortScan attacks, where 5DGWO-
GAN-CNNAE attains 100% for recall. This highlights the effectiveness of the 5DGWO-GAN models,
particularly in IoT-based environments where a diverse range of attack types demands both precise
detection and broad generalization capabilities.

5.5 Convergence Curve and Inference Time of Algorithm

The convergence curves in Fig. 9 clearly demonstrate the superior performance of the 5DGWO-
GAN-CNNAE model across all three datasets (NSL-KDD, UNSW-NB15, and IoT-23). This model
consistently achieves the fastest and most stable convergence, as indicated by its rapidly decreasing
RMSE values, which approach near-zero much earlier than other models. The success of this model
can be attributed to the integration of the 5DGWO, which optimizes the hyper-parameters of the
GAN architecture, thereby enhancing the quality of synthetic data generation and improving the
model’s learning process. Furthermore, the combination of CNN and AE in the architecture plays a
critical role in effective feature extraction and dimensionality reduction, allowing the model to capture
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complex patterns in the data with greater precision. The 5DGWO-GAN-CNNAE model’s remarkable
convergence can also be linked to its ability to balance the strengths of each component. The GAN
architecture, optimized by 5DGWO, ensures high-quality synthetic data generation, which enhances
the model’s training data. The CNN extracts spatial features efficiently, while the AE component helps
generalize the model by reducing overfitting and improving its adaptability to various datasets. This
powerful combination allows the model to learn more quickly and accurately than traditional models
such as RF, XGBoost, or even baseline DL models like RNN and CNN.
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Figure 9: The convergence curve of models: (a) NSL-KDD, (b) UNSW-NB15, and (c) IoT-23 dataset

Table 6 provides a comprehensive overview of the average inference time (in seconds) for each
model on the NSL-KDD (binary classification) and IoT-23 datasets under various RMSE termination
conditions. Analysis of the results shows that traditional ML models such as RF and XGBoost
exhibit the longest inference times across both datasets, especially under tighter RMSE thresholds.
DL models like RNN, DBN, and CNN demonstrate relatively lower inference times compared to RF
and XGBoost but still require significantly more time as the RMSE condition becomes stricter. AE-
enhanced models (DBNAE and CNNAE) provide a noticeable reduction in inference time, benefiting
from the feature extraction capabilities of the AE that streamline the data processing pipeline.
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However, the models optimized with the 5DGWO-GAN framework, particularly 5DGWO-GAN-
CNNAE, consistently achieve the lowest inference times across all RMSE conditions. This reduction in
processing time can be attributed to the hyper-parameter optimization provided by 5DGWO, which
not only enhances model accuracy but also contributes to computational efficiency. For instance,
5DGWO-GAN-CNNAE records an inference time of only 49s for RMSE < 15 on the NSL-KDD
dataset, demonstrating its practical relevance and effectiveness for real-time IoT applications where
latency is crucial.

Table 6: Comparison of algorithm inference time based on RMSE termination conditions

Models NSL-KDD dataset (binary) IoT-23 dataset

RMSE < 15 RMSE < 9 RMSE < 3 RMSE < 15 RMSE < 9 RMSE < 3

RF 657 – – 612 – –
XGBoost 591 – – 524 – –
RNN 329 612 – 309 563 –
DBN 372 621 – 357 603 –
CNN 335 607 – 321 584 –
DBNAE 214 493 – 205 483 –
CNNAE 196 406 983 189 428 960
5DGWO-GAN-
RNN

120 212 684 125 201 621

5DGWO-GAN-
DBNAE

88 145 403 79 132 392

5DGWO-GAN-
CNNAE

49 102 281 35 92 268

6 Conclusions

In this paper, we proposed a novel intrusion detection framework, 5DGWO-GAN-CNNAE,
designed for detecting anomalies in IoT networks. Our approach addresses the challenges of hyper-
parameter optimization in GANs, which are essential for accurately identifying cyberattacks in
dynamic environments. To enhance the performance of GANs, we introduced the 5DGWO, which
incorporates two additional types of wolves, gamma and theta, to improve both the exploration and
exploitation phases of the optimization process. The inclusion of these wolves enables better tuning of
critical hyper-parameters, improving both convergence speed and detection accuracy. Our experiments
were conducted on three benchmark datasets (NSL-KDD, UNSW-NB15, and IoT-23) covering a
diverse range of network traffic scenarios. The results consistently demonstrated that the 5DGWO-
GAN-CNNAE model outperformed traditional ML models and baseline DL models across all key
performance metrics, including accuracy, recall, precision, and RMSE. In the binary classification task
on the NSL-KDD dataset, the 5DGWO-GAN-CNNAE model achieved a 95.34% accuracy, with the
lowest RMSE of 0.24. In multiclass classification tasks, this model continued to outperform, especially
in detecting difficult-to-detect classes like R2L and U2R.
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Further results from the UNSW-NB15 and IoT-23 datasets confirmed that the 5DGWO-GAN
optimized models exhibited superior convergence and detection performance. The 5DGWO-GAN-
CNNAE model achieved near-perfect accuracy and recall rates in detecting DDoS and C&C attacks
on the IoT-23 dataset, with 100% recall for the DDoS class. These results confirm that the inclusion
of generative models (5DGWO-GANs), combined with CNN and AE components, allows for more
efficient feature extraction and dimensionality reduction, leading to higher detection accuracy in both
major and minor attack classes. The optimization provided by 5DGWO helps to overcome common
challenges in GAN training, such as getting stuck in local minima or suffering from slow convergence.
The ability to generate synthetic data through GANs also enriches the training dataset, enabling the
model to generalize better to unseen attack patterns, which is crucial in the dynamic and evolving
nature of IoT systems.

The proposed 5DGWO-GAN framework is designed with scalability in mind, addressing the high-
volume, complex, and real-time requirements of IoT networks. By employing mini-batch processing
and leveraging 5DGWO optimization, the model efficiently manages memory, reduces computational
load, and adapts well to large-scale datasets. These strategies enhance the model’s robustness and
stability, maintaining performance as data volume and complexity increase. Extensive testing on NSL-
KDD, UNSW-NB15, and IoT-23 datasets demonstrates the model’s ability to generalize from test
scenarios to comprehensive, real-world IoT applications. The framework’s resource-efficient design
enables deployment across a range of IoT devices, from powerful servers to edge devices, supporting
both centralized and distributed environments. The efficient structures of CNN and AE layers further
enhance real-time detection capabilities, making the model well-suited for the dynamic and high-
throughput conditions of IoT networks. However, despite the significant improvements in detection
accuracy and efficiency, some limitations remain. One challenge is the computational complex-
ity of training GANs and the associated 5DGWO optimization, which can be resource-intensive,
particularly for large-scale IoT environments. Furthermore, while our approach has demonstrated
effectiveness on benchmark datasets, real-world IoT environments are even more heterogeneous and
could present additional challenges in terms of data diversity and scalability. Although generative
models help with data scarcity, class imbalance remains a challenge, especially when rare attack
types are underrepresented. Generating high-quality synthetic data for these minority classes without
overfitting is complex and can affect detection accuracy. Additionally, GANs are highly sensitive to
hyper-parameter tuning, and finding the optimal settings across different datasets is difficult.

Looking forward, several directions for future research can be pursued. First, the scalability of the
5DGWO-GAN framework can be further optimized to handle real-time intrusion detection in large-
scale IoT networks. Incorporating more advanced generative models and exploring distributed GANs
could also help to address scalability concerns. In addition, expanding the system to work with even
larger and more diverse datasets, including real-time traffic from a wider range of IoT devices, will be
important for improving the system’s robustness and adaptability to emerging threats. Furthermore,
integrating our framework with edge computing techniques could allow for faster, more localized
detection, making the system more practical for real-world deployment in resource-constrained IoT
environments.
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