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ABSTRACT

Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.
The watermark is embedded in significant spatial or frequency features of the media to make it more resistant to
intentional or unintentional modification. Some of these features are important perceptual features according to the
human visual system (HVS), which means that the embedded watermark should be imperceptible in these features.
Therefore, both the designers of watermarking algorithms and potential attackers must consider these perceptual
features when carrying out their actions. The two roles will be considered in this paper when designing a robust
watermarking algorithm against the most harmful attacks, like volumetric scaling, histogram equalization, and
non-conventional watermarking attacks like the Denoising Convolution Neural Network (DnCNN), which must
be considered in watermarking algorithm design due to its rising role in the state-of-the-art attacks. The DnCNN
is initialized and trained using watermarked image samples created by our proposed Covert and Severe Attacks
Resistant Watermarking Algorithm (CSRWA) to prove its robustness. For this algorithm to satisfy the robustness
and imperceptibility tradeoff, implementing the Dither Modulation (DM) algorithm is boosted by utilizing the Just
Noticeable Distortion (JND) principle to get an improved performance in this sense. Sensitivity, luminance, inter
and intra-block contrast are used to adjust the JND values.
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1 Introduction

Watermarking involves embedding secret messages within a cover media, such as an image,
to maintain copyright protection or preserve authentication [1,2]. In this process, imperceptibility
(minimizing cover image degradation due to watermark embedding) and robustness (the ability of the
watermark to withstand intentional or unintentional signal processing) are the two most important
requirements for a watermark [3–5]. The signal processing operations may be necessary to eliminate
noise and unwanted interleaved communication signals [6].

When adding a watermark, it’s crucial to consider the Human Visual System (HVS) to ensure that
the watermark is not noticeable. This means that the intensity of the watermark should be adjusted
based on the significance of each area according to the HVS. Using fixed intensity levels for the
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watermark can result in poor quality, as it will be added with the same intensity in every area regardless
of its visual significance. Therefore, it’s important to make this adjustment to enhance the watermark’s
invisibility [7,8].

The HVS is less sensitive to changes in high textures, contrast, and high-intensity regions. For this,
the Just Noticeable Distortion (JND) model in [9] considers the various aspects of the HVS, such as
contrast sensitivity function, luminance adaptation, and contrast masking, Eq. (1). Such a JND model
can help determine the most suitable embedding strength factors based on these aspects, enabling the
desired imperceptibility level [10].

Tk
JND (x, y) = Tk

base · Fk
LA (x, y) · Fk

CM (x, y), (1)

where TK
JND (x, y) is the JND threshold for the kth block, Tk

base is the base threshold based on the spatial
CSF for kth block, the modulation factor is LA factor Fk

LA (x, y) and the CM factor Fk
CM (x, y). x, y are

the indices (x = 0, 1, 2, . . . , 7, y = 0, 1, 2, . . . , 7) in a block.

When choosing the embedding strength for a watermark, it’s important to consider its non-
proportional relationship to imperceptibility. It’s widely known that embedding a watermark in the
frequency domain, using specific frequency coefficients, can provide greater robustness than using the
spatial domain [8]. Therefore, using the Discrete Cosine Transform (DCT) as an energy representation,
combined with a Dither Modulation (DM) watermarking algorithm, which is one of the most
robust watermarking algorithms, can significantly increase the watermark’s robustness. Such a hybrid
algorithm may withstand conventional and unconventional modifications or attacks [11].

For an attack to be considered powerful, it must defeat the most powerful watermarking
algorithms, whatever the watermark’s robustness and appearance are, without much-watermarked
image fidelity degradation. Denoising Convolution Neural Network (DnCNN) attacks usually treat
watermarks as noise, which is dealt with through image denoising. However, this method is only
effective for Gaussian-distributed noise. A marginal difference between Gaussian-distributed noise
and watermark distribution leads to less accurate watermark removal performance [12]. The ability
of an adversarial network to remove different types of noise, including watermarks, depends on
training it with a diverse set of inputs from a specific class. When trained in this way, it becomes
difficult for most watermarking algorithms to resist. This paper will investigate a DCT-based DM
watermarking algorithm that is enhanced with suitable step size adjustment using JND models to
assess its imperceptibility and robustness against various types of conventional and severe attacks
(such as volumetric, histogram equalization, and DnCNN).

Our motivation is to boost the DM watermarking algorithm as one of the most robust algorithms
by utilizing the DCT transform. The ease of this transform energy spectrum representation facilitates
the selection of the proper watermark embedding strength regarding imperceptibility and robustness
considerations. Also, spanning the embedded watermark energy across frequency spectrum terms can
grant more control over the watermark requirements. The wider the spanning, the more learning time
and samples will be needed for the DnCNN to learn patterns in such a complicated and confused
environment. Such a spanning is perceptually guided through two JND models for determining the
watermark embedding strength and spreading out this strength respectively. Last but not least, the
relative stability of the relation between the Direct Current coefficient (DC) and the Alternating
Current (ACs) coefficients, such as the ‘DC/ACs’ ratio before and after some attacks, will be employed
to gain robustness against such attacks.

The contributions that have been gained in this work can be summarized as follows:



CMC, 2025, vol.82, no.1 1029

• Implementing severe covert attack capable of destroying the watermarks with as little fidelity
degradation as possible of the attacked watermarked image.

• Developing a watermarking algorithm with relative resistance capabilities against such attacks
and conventional severe attacks.

• Supporting the proposed method with JND models to adapt the amount of embedding strength
and spread this energy across a wider band based on HVS concepts.

The paper is organized as follows: Section 1 introduces the subject principles. Section 2 reviews the
related work. Section 3 concerns all the materials and methods utilized. Section 4 gives details of the
watermarking algorithm proposal. Section 5 shows the experiments and results. Section 6 concludes
with conclusions and recommendations for future work.

2 Related Works

As a crucial matter, robust watermarking is essential to ensure digital content protection. Tradi-
tional and non-traditional (AI-based) approaches have been used to develop watermarking schemes
that meet these requirements. Invariant signal features under various signal processing operations
supported by incorporating neural network capabilities, as in [13], can be used as a base to enhance
watermarking algorithms’ robustness performance. Such robustness can be further boosted by utilizing
blind watermarking algorithms based on quantization techniques [14]. However, attackers can exploit
these same schemes to launch attacks and remove watermarks to violate copyright protection [15].
Volumetric scaling and histogram equalization, which are two of the most used image processing
operations, can be easily maliciously exploited by attackers as two forms of the formal approach
attacks. Such attacks can cause watermark destruction due to their high impact on the cover image’s
pixel modification and, consequently, the embedded watermark. To be robust to volumetric scaling,
the proposed algorithm [16] adopted a small modification to the Watson model, which makes slacks
scale linearly. Consequently, the quantization step sizes are scaled using the same scaling factor that the
signal underwent during the embedding to perform Quantization Index Modulation (QIM) decoding
correctly. To address the previously discussed issues, a robust JND model in the DCT domain is
introduced in [17]. This model can estimate the specific JND threshold for each pixel. A logarithmic
function is also applied to the DC value, and an optimal quantization step is derived based on different
block types.

Using deep neural networks (DNN) has led to increased attacks against image watermarks. Unlike
traditional attacks, these attacks are particularly harmful and have less obvious effects. They can
cause significant damage to watermarks without significantly degrading the quality of the cover image.
Understanding these types of attacks can help in developing more resilient watermarking algorithms.

To successfully attack a robust watermarking scheme, the attack should be comprehensive and
flexible enough to be effective, regardless of the watermarking algorithm used or the availability
of information about it. Real covert communication scenarios make it harder for the attacker to
succeed than when complete information about the watermarking algorithm and image distribution
is already available [12]. An attack known as a black box attack assumes that the attacker has
only a watermarked image and does not know the watermarking algorithm used. To investigate its
effectiveness, this type of attack must be validated against various algorithms’ watermarked images
through a cross-validation test [15]. Such a black box scenario should not be a barrier to designing
a successful watermark-removing attack. Therefore, a DNN denoiser can be considered a candidate
solution for designing watermark removal attacks in such a scenario. The idea comes from the fact
that the watermarks are also considered as one form of the images’ noise. For a more general attack,
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introducing various noise levels as inputs to be presented in parallel with the watermarked images to
the network to be trained can satisfy such generality [18]. By introducing some noise to the training
data, the network learns to recognize and remove different forms of noise [19]. In black box scenarios,
finding a general distribution function for use as an image watermarking pair generator is crucial. With
the unavailability of any knowledge about the watermarking algorithm used, the general distribution
functions can be derived using a model based on the common features of the widely used robust
watermarking algorithms [12]. Such a model aims to estimate the latent watermark features and satisfy
the Minimum Mean Square Error (MMSE) when mapping between the watermarking pair [12].

In addition to cross-validation, an attack should be tested against the most robust watermarking
algorithms. It is well-known that robustness can be achieved by using the frequency domain. Various
kinds of research have shown that the transform coefficients usually modified to achieve the watermark
robustness. For this, the low and middle frequencies are used for watermark embedding due to their
stability against various processing operations. The changes made to these coefficients are indeed
spread across the entire set of other transform domain terms, with most of the changes concentrated in
the low and middle coefficients and minimal changes in the high-frequency coefficients. Therefore, in
such scenarios, a watermarked image of a corresponding cover image can be simulated by changing the
low, mid, and high-frequency coefficients to produce cover and watermarked image pairs as a training
dataset [12].

In [20], a Fully Convolutional Neural Network (FCNN) deep architecture with an improved
training process and performance is proposed as a denoising attack to deal with and remove the
watermark as image noise with less watermarked image structure degradation. In [19], a new water-
marking attack scheme called Fast and Covert Watermarking Attack Network in Wavelet Domain
(Wavelet-FCWAN) has been developed using deep learning. The scheme uses noise filling as a pre-
processing step for the watermarked image. This image is then transformed into sub-images using
wavelet transform operation. The wavelet-transformed sub-images are then input in parallel into the
Wavelet-FCWAN along with the noise level map. When used as an attack, the network can then
be quickly trained as a denoiser capable of ensuring the visual quality of the cover image details.
In [18], A new method called FFDNet has been developed to quickly and effectively reduce noise,
using the same notion of noise level maps. It produces good results when the input noise level matches
the actual noise, striking a balance between noise reduction and detail preservation. The method has
been tested on synthetic images with Additive White Gaussian Noise (AWGN). An adversarial attack
scheme, proposed in [15], demonstrates effectiveness against popular watermark embedding schemes.
Different datasets were generated, as in [11], to train Convolutional Neural Network (CNN) models
for attacking watermarked images based on varying levels of knowledge about the watermarking
algorithm.

The challenge of making a watermarking algorithm robust enough to withstand attacks comes at
the cost of reducing its imperceptibility, which is a conflicting requirement. This is why JND models
are useful for finding a balance. These models use elements such as contrast sensitivity function,
luminance adaptation, and contrast masking to adjust the embedding strength based on the details
of the region [17]. In [21], a study has found that the strength of embedded energy should not be
concentrated in a single block, but instead, it should be spread across a wider zone. To achieve this,
the researchers developed the Spread Transform Zone Modulation (STZM) technique, which uses
the DCT transform. They examined the texture energy within each block, as well as the regularity
between neighboring blocks in horizontal, vertical, and diagonal directions. The difference between the
corresponding horizontal, vertical, and diagonal vectors in the neighbors with the selected block was
then modulated based on the watermark bit. The energy was controlled by an adequate JND threshold
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suitable for each directional vector. In a study referenced in [22], a method for watermarking colored
images was proposed. This method uses a quaternion just-noticeable-difference (QJND) model to
embed the watermark. A colored contrast masking factor is added to the three commonly used
frequency-based JND factors to adjust the quantization step size for the DM scheme. In [23], a network
architecture similar to U-Net was trained to serve as a robust watermark embedding and extraction
system for colored images. The system utilizes a JND for each color channel instead of mean square
error (MSE) as a loss function. This decision was made due to the incompatibility of MSE with the
principles of the human visual system. In [24], the step size of the Spread Transform Dither Modulation
(STDM) was adaptive, based on their developed JND model. This model utilized the first, second, and
fourth AC coefficients of the DCT for the JND calculation. These coefficients were selected because
the first nine AC coefficients, in zig-zag order, contain most of the energy of the entire block features.

In this paper, we plan to use the DnCNN denoising attack as a test system for our proposed
watermarking algorithm. This is because the DnCNN can recognize different watermark pattern
appearances. Our training dataset is generated based on two assumptions. The first assumption is that
the well-known DM watermarking algorithm, which can produce robust watermarks, will be used for
both the watermarking process and to generate training images for the DnCNN. This will serve as
a challenge for our proposed watermarking algorithm, as the images will simulate the hardest noise
forms for the network to treat. The second assumption is that random Gaussian noise will give the
generated training watermarked images various latent watermark appearances.

Our proposed JND model considers sensitivity, LA (Luminance Adaptation), and intra- and inter-
block contrast masking factors to ensure the watermark’s imperceptibility. The factors are based on
psychological experiments on the HVS. Furthermore, the sensitivity table of the DCT-based Watson
model will be used to distribute the watermark’s energy across the DCT coefficients of the watermarked
image.

3 Methods and Materials

The next sections discuss the key principles used to develop the proposed Covert and Severe
Attacks Resistant Watermarking Algorithm (CSRWA). These methods aim to balance robustness
and imperceptibility, which the algorithm is expected to provide. The following sections also cover
image denoising as a potential attack for removing the watermark. They also address the tools used to
maintain the tradeoff mentioned above, even when facing such attacks, as well as other severe attacks
or common image processing operations.

3.1 DnCNN Attack for Watermark Removal

The ability of an attack to defeat the most resilient watermarking algorithms can provide a good
indication of its effectiveness and universality against many other similar or less robust algorithms.
Therefore, when planning the design of a harmful attack, one should consider employing non-
traditional approaches, such as using Convolutional Neural Networks (CNN) as a denoiser (Dn) to
attack the most robust watermarking algorithms.

Many watermarking algorithms embed watermarks in the low-frequency terms of the transform
domain, while denoisers typically focus on removing noise from the high-frequency terms of images.
However, because watermarks are considered a noise embedded in frequencies other than the higher
ones, they cannot be removed using denoising alone. To address this, adding complementary noise to
the watermarked image before applying the denoiser can help remove these watermarks, as they are
present in some high-frequency terms. Adding this complementary noise is important, as denoising an
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image without it can lead to undesirable fidelity consequences [19]. The fidelity of the predicted image
is affected in proportion to the level of the added noise [18]. Configurations such as network depth,
filter numbers and sizes, pooling, and batch normalization are crucial for determining prediction
accuracy and time consumption.

3.2 Transform Domain Quantization for Robustness

The QIM-based watermarking algorithm family is known for its robustness against various
attacks. One well-known algorithm in this family is the DM algorithm, which we used in our exper-
iments to embed binary watermark image bits. We can use the cover image’s DCT frequency terms
to enhance robustness, choosing either low or high-frequency terms for higher or lesser robustness,
respectively. We can then embed and extract these bits by quantizing selected DCT terms. The Eqs. (2)–
(5) for DCT and Eq. (6) for DM are provided below [25].

For M × N image f (x, y) (x = 0, 1, 2, . . . , M − 1, y = 0, 1, 2, . . . , N − 1) 2-D DCT is given as
follows:

C (u, v) = αuαv

∑M−1

x=0

∑N−1

y=0
f (x, y)cos

π(2x + 1)u
2M

× cos
π(2y + 1)v

2N
(2)

where M and N is the row, and the column size of f x, y, u, and v are the horizontal and vertical
frequency (u = 0, 1, 2, . . . , M − 1, v = 0, 1, 2, . . . , N − 1) and C (u, v) is DCT coefficient of image
f (x, y).

αu =
{√

1/M, u = 0√
2/M, 1 ≤ u < M − 1

(3)

αv =
{√

1/N, v = 0√
2/N, 1 ≤ v < N − 1

(4)

DCT coefficients of an image include one DC coefficient and some alternating current (AC)
coefficients with different frequencies. From Eq. (5), the DC coefficient can be obtained as:

DC = C (0, 0) = 1
MN

∑M−1

x=0

∑N−1

y=0
f (x, y) (5)

The DM quantization formula is given in Eq. (6).

yn (xn, mn) = Q (xn + d (n, mn), Δ) − d (n, mn) (6)

Where the dithers are driven utilizing Eq. (7).

d [n, 1] =

⎧⎪⎨
⎪⎩

d [n, 0] + Δ

2
, d [n, 0] < 0,

d [n, 0] − Δ

2
, d [n, 0] > 0,

n = 1, 2, . . . , L (7)

The basic quantization process is done utilizing the formula of Eq. (8) below [26].

s = Qm (x, Δ) = round
( x
Δ

)
Δ + (−1)m+1 ∗ Δ

4
, where m ∈ {0, 1} (8)
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3.3 JND Model for Imperceptibility

To ensure robustness, it’s important to choose a high step size value while balancing it with the
need for imperceptibility of the watermark. This can be achieved by determining a suitable threshold
for the allowable change in each cover frequency term before any noticeable distortion occurs. To strike
the right balance, a JND model based on Weber’s law for luminance adaptation, combined with the
contrast of both inter and intra-cover image blocks, is utilized to control the step size. Additionally,
a Watson-based JND model is employed to enhance watermark imperceptibility and regulate the
distribution of the watermark energy across the cover image blocks’ DCT terms. This is to avoid
noticeable watermark patterns that could be detected during the DnCNN training and noise removal
phases.

3.3.1 Weber-Based JND Model

The German physician and psychologist Ernst Weber stated that HVS sensitivity to the signal
change has a constant non-proportional relation to the background luminance. Thus, according to
Weber’s law of Eq. (9), the allowed JND for a signal increasing with the background luminance.

JND = ΔL = (|Ly − Lx|) = constant ∗ Lx (9)

where Lx, and Ly are the background and foreground luminance values, respectively.

Thus, the smallest allowed signal’s luminance changes before getting a noticeable distortion is
proportionally related to the background luminance.

Since the digital image processing operations are done utilizing pixel intensities, which are non-
linearly related to the luminance values due to the Gamma correction (Eq. (10)), a recent measure
metric (LA-SSIM) has been developed to reflect Weber’s law utilizing pixel intensity values [27]
(Eqs. (11) and (12)). The JND model for this metric can be used to determine the suitable embedding
strength thresholds for the imperceptibility considerations in the pixel domain.

Lx = α + β.μy
x (10)

Lx + ΔL = α + β.μY
X (1 + Δμ/μx)

y (11)

JND (μx) = Δμ = a1.μa2
x + a3.μx + a4 (12)

where α, β, and γ are model parameters of a Gamma correction function , μx is the background pixel
intensity value. According to Taylor series, a1 = −2.655, a2 = 0.9259, a3 = 1.709 and a4 = 21.73.

3.3.2 Watson-Based JND Model

As another JND model, Watson’s model employed the same three common factors of Eq. (1)
to estimate a change threshold for every 8 × 8 image block’s DCT transform individual term. The
sensitivity of each block’s DCT coefficient to the change before producing one JND, which was derived
by Ahumada and Peterson as a DCT-based frequency sensitivity, Fig. 1, is used as a base for the
subsequent calculations of the luminance (Eq. (13)) and contrast masking (Eq. (14)) [28].

tL [i, j, k] = t[i, j](C0[0, 0, K]/C0,0)
αT (13)

where T is a constant with a suggested value of 0.649, C0[0, 0, K] is the DC coefficient of the kth block
in the original image, and C0,0 is the average of the DC coefficients in the image.

S [i, j, k] = max{tL [i, j, k], |C0 [i, j, k]|w[i,j] tL [i, j, k]1−w[i,j]} (14)
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where w [i, j] is a constant between 0 and 1 and may differ for each frequency coefficient. Watson uses
a value of w [i, j] = 0.7 for all i, j.

Figure 1: Sensitivity thresholds, namely JND of the corresponding 8 × 8 block’s DCT coefficients

4 Proposed Work

Fig. 2 involves training a DnCNN on pairs of training images, including cover and watermarked
images generated using a similar approach as the watermarking algorithm. This approach enables the
DnCNN model to learn various watermark patterns, presenting approximately white-box scenarios as
a challenge for our proposed CSRWA. The trained DnCNN is then used to perform a denoising attack
without leaving evidence, as it can remove the embedded watermarks while maintaining the fidelity of
the cover image. The watermarking algorithm is designed to withstand such an attack.

4.1 The Procedure of the DnCNN Attack

The DnCNN attack can be characterized as a covert attack due to its malicious behavior,
which involves destroying the watermark while having minimal impact on the imperceptibility of the
cover image. This makes the attack relatively undetectable, as the alterations are hardly noticeable.
Its effectiveness stems from a well-structured design incorporating multiple convolutional layers,
allowing the model to adjust its parameters throughout the training process for specific tasks. The
model is trained on diverse samples that accurately represent real-world noise patterns, which include
watermarks as a type of noise. To achieve the best results, the following training steps should be
followed:

Step 1: To account for different levels of robustness and shapes of the watermark within the image,
we will use the traditional DM watermarking algorithm. This algorithm is known for its high level of
robustness compared to other algorithms, and it will utilize the DCT transform and a specific step
size value calculated for each image block. To balance the watermark requirements, our proposed
algorithm uses a direct-to-alternate currents relationship for the quantization process. We rely on this
relationship for quantization due to its stability against volumetric scaling and histogram equalization.
See Fig. 3 for more details.
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Figure 2: An emulation for the conditions where a DnCNN can achieve a successful attack when facing
watermarking algorithms other than the proposed one. An attack can be regarded as successful when
it destroys the watermark without much noticeable impact on the cover image fidelity. Our proposed
watermarking algorithm can resist or at least enforce the attack to leave a noticeable impact in extreme
attack cases

Figure 3: The training dataset generation with multiple embedding strengths (�) utilizing one of the
most robust algorithm families (DM) with an aim for providing a comprehensive view of the various
robust embedding map forms of the input data

As shown in Fig. 3, we intentionally utilized the DM algorithm to enhance the resilience of the
embedded watermark. Any potential attacks must be prepared to confront and overcome such robust
watermark scenarios. Furthermore, the range of step sizes enhances the ability of the DnCNN to be
trained to handle the different appearances of the watermark embedding map for each image.

Step 2: The resulting training set from Step 1 undergoes pre-processing to introduce more
randomness for embedding watermarks. This aims to provide the DnCNN with diverse knowledge
from a wide range of embedded watermark appearances (Fig. 4).



1036 CMC, 2025, vol.82, no.1

Step 3: In the training phase, the DnCNN makes multiple parameter (weights) adjustments based
on the loss functions that evaluate the similarity between the original cover image and the predicted
output. This continuous process ensures that the DnCNN produces the best possible prediction results.
Ultimately, this phase results in a trained DnCNN with its adjusted weights.

Figure 4: The DnCNN training phase utilizing the dataset generated in Fig. 3. Some additional
Gaussian noise is added to each input watermarked image to increase the input data randomness
and simulate real-world scenarios

In the previous paragraph, we discussed how the DnCNN is trained using input data. Each
training pair consists of an input watermarked image with added Gaussian noise N (0, 1) and its
corresponding pre-watermarking image as a label. The network continuously compares the predicted
image with its corresponding label to make parameter adjustments until training convergence. As a
result, the DnCNN becomes ready to handle any unseen watermarked image without knowledge of
the watermarking algorithm (black box scenario).

Step 4: To verify the attack’s performance under such a scenario, a test watermarked image
generated by an anonymous watermarking algorithm can be a useful choice (Fig. 5).

Figure 5: The result of the DnCNN attack is a severely scrambled watermark without producing much
image fidelity degradation
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Step 5: The trained DnCNN is used to assess the robustness of the proposed watermarking
algorithm by subjecting the watermarked images to the proposed attack.

The structure of the used DnCNN network is shown in Fig. 6 below.

Figure 6: The structure of the watermark attacking DnCNN. The trained network on the original
and the watermarked pairs become aware of the various noise types. It acts as a denoiser to destroy
abnormal noisy form patterns (including watermarks)

4.2 The Procedure of the Proposed CSRWA

The common steps for the proposed watermarking algorithm are illustrated in Fig. 7 below.

The proposed algorithm flowchart presents a comprehensive overview of the general watermark
embedding process. The detailed algorithm steps are as follows:

Step 1: As a preprocessing step, the algorithm divides the cover image into regions or blocks of
defined dimensions (size).

Step 2: The quantized value for each block can be determined using the DC/sum (ACs) ratio, which
is relatively invariant in image processing operations (volumetric and relative histogram equalization).
This ratio will be used for watermark embedding and extraction.

Step 3: To determine an adaptive step size for each block regarding its luminance and texture, the
JND model is going to utilize the regions LA of along with the contrast factor according to Eq. (15).

JND threshold = max (LA, Contrast) (15)

To get an accurate contrast, both inter and intra-contrast effects will be compounded together to
calculate this factor. A block’s inter-contrast is calculated using its gradient orientation with respect
to its neighbor blocks. Intra block’s-contrast is calculated by utilizing the normalized summation of
the three upper left corners ACs coefficients of the DCT transform.

Step 4: The calculated value for the JND of the previous step is then multiplied by a pre-
determined constant to determine the watermark embedding strength (quantization step size). The
DM watermarking algorithm will use this step size to conduct the adaptive embedding processes. The
distortion between the original signal and the watermarked one can be measured as the mean square
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error between them as in Eq. (16).

D (s, x) = 1
L

‖s − x‖2 (16)

where x and s are the received and quantized watermarked images, respectively.

Figure 7: The flowchart of the proposed watermarking algorithm. The dashed line rounded the
processes included in the JND calculations

In this regard, the robustness of the embedded watermarked is determined according to the
minimum distance between the reconstruction points of the quantizer pairs [29].

Step 5: watermark embedding is done by quantizing the DC/sum(ACs) ratio to the nearest
predefined point from a set of such points. During the embedding process, one of two scalar quantizers
is used based on the watermark bit that is to be embedded. The DM watermark embedding formula
is given in Eq. (6).
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Step 6: The extraction process is done utilizing the same quantizer pair used during the embedding
process. The result of the quantizer with the nearest value to the received signal determines the
extracted watermark’s bit.

Hence, the quantization result of a specific quantizer, which has the minimum distance to the
received signal, will determine the embedded watermark bit according to Eq. (17).

m̂ = argminm∈{0,1} |x − s (x, m)| (17)

5 Experiment Results

In this section, we will present our DCT-based CSRWA algorithm. This will demonstrate how
it can withstand the DnCNN attack by using the merits of the transform domain to select the most
robust frequency components against such an attack. Additionally, we will show how spreading out the
watermark energy across the frequency spectrum can preserve the DC/ACs ratio to some extent. This
contributes to mitigating the effects of volumetric scaling, histogram equalization, and noise removal
DnCNN attacks.

The results of this section are experienced utilizing the standard BOSSbase1.01dataset as cover
images, along with the binary watermark of Fig. 8 below.

Figure 8: A binary watermark image of size 64 × 64

5.1 DnCNN Architecture

Network parameters must be configured appropriately, as the choice of their values depends on
the type of application and its balance between prediction accuracy and time complexity. One key
parameter to set is PatchesPerImage, which determines the number and size of patches used to segment
the image for feature extraction. A greater number of patches can improve feature extraction accuracy,
thereby increasing prediction accuracy. However, larger values for this parameter may require more
memory resources and can sometimes lead to overfitting. Another important factor influencing the
network learning process is the InitialLearnRate parameter. Larger values for this parameter can speed
up the training process but may compromise learning efficiency, while smaller values can enhance
learning at the cost of longer training times. Typically, a value of 0.001 is chosen for this parameter,
which can be continuously adjusted to find the optimal rate using various algorithms throughout
the training stages. Additionally, the MaxEpochs parameter—the total number of iterations through
the entire dataset—can initially be set to a high value and modified throughout the learning process.
Increasing MaxEpochs generally helps improve the learning outcome. The MiniBatchSize hyperpa-
rameter specifies the number of training examples used during each training iteration. This can vary
based on the specific dataset size and the capabilities of the hardware used. Finally, shuffling the
dataset before each epoch can enhance learning and reduce the risk of memorization.

The denoising attack on the watermarked image involves an architecture consisting of an input
layer with dimensions 512 × 512 and one channel. This aligns with the standard BOSSbase1.01 sample
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images used. For feature extraction, a series of four convolution layers is utilized, with 16, 32, and 64
filters of sizes 3 × 3 and one filter of size 1 × 1. Batch normalization layers and ReLU layers are
included between the convolution layers to speed up processing and perform non-linear operations.

Although we intentionally set the patches per image option in this network to “1” to accelerate the
training phase, this resulted in the predicted denoised image not being the closest to the reference one.
Increasing this option to a value of 3 or more can improve the prediction. The Adam loss function is
used for fast convergence.

5.2 DC Coefficient as Part of the Solution

As it is known that the low-frequency coefficients constitute the main image’s informative
components, denoisers can’t do a lot of modification within such coefficients, this is to avoid the main
image’s features destruction. Thus, utilizing such coefficients for watermark hiding can provide more
robustness against attacks. As the main informative coefficient of the DCT transform is the DC term,
it may seem to be the best candidate for hiding the watermark information. This may be true for
getting some extent of robustness, but certainly at the cost of losing imperceptibility. Furthermore, it
shows a failure to some extent in resistance to volumetric and histogram equalization attacks due to
the watermark energy concentration in a single frequency term.

Fig. 9 shows a sample of the BOSSbase1.01dataset watermarked image according to utilizing the
DC for watermark information embedding, and its attacked versions by the various attack types. This
figure also shows the extracted watermarks from their corresponding attacked cover images.

Figure 9: (Continued)
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Figure 9: The image of the first row is a Watermarked image of size 512 × 512, the images of the second,
and the fourth rows are attacked watermarked images by various attack types, the third and the fifth
rows are for the extracted watermarks 64 × 64 from the attacked watermarked images

Table 1 shows three well-known fidelity measures which describe the MSE and structure similarity
between the watermarked and the attacked watermarked image versions by various attack types. It is
worth noting that, even though the PSNR and SSIM table entries show a high degree of watermarked
image disruption due to the effects of the various attacks, the algorithm (utilizing the DC) withstands
some attacks to some extent as it is obvious through the BER entries. It also shows high LA-SSIM
values due to the implementation of the Weber-based JND model. Unfortunately, the algorithm fails
to overcome the histogram equalization and volumetric scaling. The reason is that such attacks act
to redistribute and modify the watermarked image pixels’ intensities and hence affect the watermark
energy that is concentrated within the DC coefficient.

Table 1: PSNR, SSIM, LA-SSIM between the watermarked and attacked images, as well as the BER
of the extracted watermark as compared to the reference one

Attacks PSNR SSIM LA-SSIM BER

Histogram 16.3387 0.8457 0.9343 0.5962
Valumetric (0.7) 17.5665 0.8902 0.9342 0.7544
Salt&Pepper (0.01) 24.8488 0.8794 0.9996 0.0051
Gaussian noise (0.01) 20.3918 0.5707 0.9983 0.0188
Motion blurring 22.2711 0.5633 0.9997 0.0469
Average filtering (3 × 3) 23.4415 0.5900 1 0.0029
Jpeg Q (30) 25.5048 0.7476 1 0.0051
Denoising CNN attack 22.7305 0.6191 0.7476 0.0176

5.3 DC/ACs as a Complete Solution

For the sake of a fair assessment, the same sample image used in the previous DC implementation
will be utilized to conduct the same experiments by implementing the DC/ACs ratio. Fig. 10 below
shows the watermarked image according to this implementation along with its attacked versions by
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the various attack types. The extracted watermarks from their corresponding attacked cover images
are also shown in this figure.

Figure 10: The image of the first row is a Watermarked image of size 512 × 512, the images of the
second, and the fourth rows are attacked watermarked images by various attack types, the third and
the fifth rows are for the extracted watermarks 64 × 64 from the attacked watermarked images

Spreading the watermark energy across multiple frequency terms instead of just focusing on the
DC of the DCT transform helps retrieve more accurate watermark bits for histogram equalization
and volumetric scaling. However, this approach can reduce the watermark’s robustness against some
attacks (Table 2).

The algorithm spreads the embedded watermark energy across multiple coefficients of the cover
image frequency domain. This makes attacks like histogram equalization and volumetric scaling have
little degradation effect on the extracted watermark. However, the algorithm has limited resistance
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to JPEG compression attacks, as these attacks reduce data redundancy. This can cause loss to
both the image and the embedded watermark information in removed coefficients. The algorithm
depends on the Watson HVS-based model to determine the watermark energy share for each DCT
coefficient based on their sensitivity before reaching one JND. This spreading process aims to make
the watermark more imperceptible and less informative for the DnCNN feature extraction convolution
layers. This may cause the network to mistake the network into determining watermarks as noise.

Table 2: PSNR, SSIM, LA-SSIM between the watermarked and attacked images, as well as the BER
of the extracted watermark as compared to the reference one

Attacks PSNR SSIM LA-SSIM BER

Histogram 16.0803 0.8307 0.9314 0.1826
Valumetric (0.7) 17.6465 0.8901 0.9348 0.0479
Salt&Pepper (0.01) 24.7980 0.8770 0.9995 0.1311
Gaussian noise (0.01) 20.3955 0.5733 0.9984 0.3005
Motion blurring 22.2120 0.5531 0.9996 0.2366
Average filtering (3×3) 23.3430 0.5866 0.9999 0.1658
Jpeg Q (30) 25.4870 0.7450 0.9998 0.1045
Denoising CNN attack 22.5695 0.6063 0.9993 0.2649

Histograms of Fig. 11 below show the absolute differences between the watermarked image and its
various attacked versions. The difference dispersion across a wide range of these first row histograms
reflects obvious dissimilarity between the image and its corresponding attacked versions, in terms of
individual pixels. Thus, utilizing these pixels for the DM quantizers can lead to catastrophic watermark
extraction BERs. the DC/ACs ratios for these image pairs tend to show less dispersion in this Figure’s
second row. Thus, the stability of such ratios’ behavior before and after attacks leads us to use the
quantization of these ratios for conducting the watermark embedding and extraction processes for
their immunity against alteration under such attacks.

Figure 11: (Continued)
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Figure 11: The first column, from top to bottom, displays histograms representing the absolute
difference between the pixels of the watermarked image and the corresponding pixels of the attacked
image for three types of attacks: denoiser, histogram equalization, and volumetric scaling respectively.
The second column presents the same information, but instead of pixel values, it shows the absolute
differences in terms of the DC/ACs ratio

Communication channels are designed to use the smallest file sizes possible for efficient trans-
mission. As a result, files often need to be compressed and represented in various formats. Table 3
illustrates the effects of different compression formats on transmitted images, even with extreme
compression ratios, such as a 30% quality factor, our proposed algorithm has a reasonable BER values.

Table 3: PSNR, SSIM, LA-SSIM between the watermarked and the various compressed image
formats, as well as the BER of the extracted watermark as compared to the reference one

Attacks PSNR SSIM LA-SSIM BER

jpeg Q (30), tiff Q (30) 25.4870 0.7450 0.9998 0.1045
Lossy png, lossy gif 58 1 1 0.0383
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6 Conclusion

In this paper, we implemented the DCT transform for watermark embedding. We conducted
experiments using the low-frequency components of this transform to provide high protection for the
embedded contents (watermark) against threats such as image processing operations and attacks. The
experiments included using the direct current coefficient and the ratio of it to some mid-frequency AC
coefficients. Both methods showed good resistance to the mentioned threats. The utilization of DM
as one of the most robust watermarking algorithms contributed to increasing this robustness. We also
considered watermark imperceptibility. To achieve this, we adopted Weber and Watson-based JND
models to control the watermark embedding strength and its spread. The algorithm’s performance
was evaluated using benchmark metrics to demonstrate its imperceptibility and robustness against
threats. Additionally, we proposed a DnCNN architecture as a denoiser in this paper to serve as a
basis for evaluating the algorithm’s robustness against recent trends of neural network attacks.

For future works, we should consider the system’s limitations to extend its utilization for
various applications. For instance, this system is unsuitable for real-time applications due to its high
complexity. To develop a more practical solution, future work should consider enhancing the system
performance about time considerations and extending the used formats beyond the binary image
currently used as a watermark. Additionally, while this system utilizes a single-channel (grayscale)
image, it can be expanded to include three-channel (color) images, enhancing the watermark’s payload
capacity. Furthermore, the system can be adapted for video applications, as each video frame can be
treated as an image. Last, the system relies on a JND model to balance imperceptibility and robustness.
However, JND models have intrinsic limitations, as they often rely on approximations of human
perception that may not match all viewing conditions or all types of content. This bias may reduce the
imperceptibility of the watermarking in some specific cases. In this sense, utilizing advanced artificial
intelligent generative neural networks can contribute smartly for getting higher watermarked image
fidelity and robustness.
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