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ABSTRACT

Open networks and heterogeneous services in the Internet of Vehicles (IoV) can lead to security and privacy
challenges. One key requirement for such systems is the preservation of user privacy, ensuring a seamless experience
in driving, navigation, and communication. These privacy needs are influenced by various factors, such as data
collected at different intervals, trip durations, and user interactions. To address this, the paper proposes a Support
Vector Machine (SVM) model designed to process large amounts of aggregated data and recommend privacy-
preserving measures. The model analyzes data based on user demands and interactions with service providers or
neighboring infrastructure. It aims to minimize privacy risks while ensuring service continuity and sustainability.
The SVM model helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum
and minimum privacy recommendations. The results demonstrate the effectiveness of the proposed SVM model
in enhancing both privacy and service performance.
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IoV Internet of vehicles
SVM Support vector machines
VANET Vehicular ad-hoc network
ML Machine learning

1 Introduction

Big data is a technology that analyzes or identifies data from a large amount of heterogeneous
data. Big data technology is widely used in various fields to improve the efficiency ratio of systems
[1]. The Internet of Vehicles (IoV) faces various privacy and security issues that cause severe damage
to the network. Big data-based privacy-preserving schemes are used in IoV that provide feasible
privacy services to the users [2–4]. Big data-based technique identifies the key privacy issues which
occurred during the authentication process. A vehicular ad-hoc network (VANET) is implemented in
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IoV which provides prominent services to the users [5]. Big data solves privacy issues that improve
the performance range of the networks. The actual goal of big data in privacy issues is to increase the
safety and security level of users from third-party members [6]. An authentication and key agreement
(AKA) scheme is mostly used in IoV systems [7]. AKA scheme provides a secret key value to the users
used during the authentication process. The secret key values contain important values that reduce the
complexity of the authentication process [8]. The AKA scheme ensures the privacy and security level
of user data from unauthorized persons in IoV networks. A privacy-preserving data-sharing scheme
is also used in IoV [9]. The privacy-preserving scheme collects the data captured via vehicular sensors.
The sensors produce optimal information for the authorization process that reduces the authentication
error [10]. The privacy-preserving scheme improves the trustworthiness and feasibility level of IoV by
providing optimal privacy services to the users. A blockchain (BC), based privacy-preserving policy
is also used in IoV which preserves users’ data from hackers. The BC-based policy is a distributed
framework in IoV [11]. A filtering model is used in the policy which filters the privacy issues based
on priorities and severity. The BC-based policy achieves high privacy that improves the performance
range of IoV systems [12]. Machine learning (ML) algorithms are commonly used for detection and
prediction processes. ML algorithm is used in IoV to identify the privacy issues which occurred in the
systems [13]. A long short-term memory (LSTM) algorithm-based privacy framework is used for IoV.
The LSTM model is mainly used to detect intrusion in IoV. The detected intrusion provides relevant
data for privacy-preserving policies. The LSTM models increase the accuracy of intrusion detection
which enhances the efficiency of privacy-preserving policies. The LSTM model improves the quality
of experience (QoE) range of the systems [14,15]. A deep reinforcement learning (DRL) algorithm
is also used in the privacy management process. The DRL algorithm uses a task offloading scheme
that provides an effective architecture for IoV [16]. The DRL algorithm analyses the datasets which
are relevant to privacy and security. The DRL-based privacy policy ensures the safety and security
level of users in IoV [17]. A privacy-preserving-based secured framework (P2SF) for IoV provides an
efficient enclosure technique for securing users’ data from third-party members. The P2SF maximizes
the performance range of the systems [18].

1.1 Motivation

This work is motivated by the growing need for privacy-preserving data processing inside the
Internet of Vehicles (IoV) context, where substantial volumes of sensitive, diverse data are shared to
provide connected and autonomous vehicle services. As IoV networks expand, the danger of privacy
violation increases due to data sharing across diverse vehicle, edge, and cloud infrastructures. The
research acknowledges the difficulty of maintaining user and vehicle privacy while providing real-
time, responsive services essential for applications such as traffic management, safety warnings, and
predictive maintenance. Conventional privacy-preserving models often encounter difficulties reconcil-
ing privacy with the requisite performance for Internet of Vehicles (IoV) systems, particularly under
substantial data loads on congested networks. This work aims to address this gap by creating a scalable
and effective privacy-preserving approach, the Privacy Recommending Data Processing approach
(PRDPM), focusing on the adaptation to the dynamic data and security requirements specific to IoV
contexts. The emphasis on enhancing Support Vector Machine (SVM) techniques inside PRDPM
is to provide a resilient solution that maintains privacy while preserving performance, following
the advancing framework of intelligent transportation systems. This study ultimately addresses the
increasing need for secure, dependable, and privacy oriented IoV infrastructures, enhancing the safety
and efficiency of transportation networks.
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1.2 Contribution

Privacy-preserving in IoV requires dynamic mobility support and sustainable security implications
across heterogeneous application demands. Based on the available data, the augmenting privacy
demands are to be classified under differential security. This augmentation is satisfied by the limited
methods proposed above such that the processing increases the complexity without instigating the
recommendations. By considering this feature across various information exchange intervals, the
proposed model is designed to mitigate the above issues.

The following are the contributions of this article:

• Proposes an SVM based Internet of Vehicles privacy recommended processing model to
increase service sustainability under safe application environments.

• Using support vector classification to validate the privacy presence and sustainability enriches
the recommendations throughout several service intervals.

• Validating the consistency of the suggested model by means of a comparison analysis conducted
under several criteria and approaches connected to security and data handling.

The rest of the paper is prearranged as follows: Section 2 discusses the related works, Section 3
proposes the PRDPM model, Section 4 deliberates the results and discussion, and Section 5 concludes
the research paper.

2 Related Work

For the IoV, Aman et al. have presented a scalable and privacy-preserving authentication system
[19]. Offering IoV users efficient services is the key goal. Here we reduce the complexity ratio in the
authentication process using physical unclonable functions. The suggested paradigm raises the IoV
system security level. In another work, for location-based service (LBS) in IoVs, Huang et al. have put
up a privacy-preserving scheme. Mostly, the LBS is utilized to give drivers the best services [20]. LBS
finds the precise positions of the cars improving IoV performance. The suggested system optimizes IoV
safety and privacy ranges. The other work by Benarous et al. has presented a concerted silence-based
location privacy-preserving method (CSLPPS) [21]. Travelling unlinkable attacks are detected by the
CSLPPS. The CSLPPS marks the cyber-attacks that reduce task performance delay. The scheme raises
the authentication process’s performance degree.

A privacy-preserving data scheduling in the incentive-driven vehicular network (VN) has been
suggested by Xia et al. [22]. The real objective is to offer VN cars a suitable data scheduling method.
Here efficient data security services are given to the users by means of an incentive structure. The
scheduling guarantees the degree of security during the data transfer process. In another work,
Liu et al. have built up a distributed and privacy-preserving reputation system for the social Internet
of Vehicles (SIoV) [23]. From third-party members, the suggested system guarantees users’ safety and
privacy spectrum. The system investigates the privacy and attacks of the networks using Blockchain
(BC) technologies. The suggested system raises SIoV’s performance range and efficiency. While
Atmaca et al. have put up a privacy-preserving way of planning [24]. This offers the users efficient
routing schemes. Furthermore, included in the planned system are graph-based location-sharing
mechanisms among the cars. The suggested system maximizes IoVs’ spectrum of privacy efficacy. For
IoV, Zhang et al. have presented a blockchain (BC) enabled data access approach based on attribute-
based encryption [25]. Here the Roadside Unit (RSU) generates ideal data for regulations aimed at
maintaining privacy. Here the BC is mostly utilized to find the latent characteristics of the encryption
mechanism. The technique improves IoV systems’ safety and privacy ratio. While Xing et al. have



392 CMC, 2025, vol.82, no.1

proposed SIoV a location entropy-based privacy protection (LEPPV) algorithm [26]. The major goal is
to give the users appropriate location entropy elements. We find points of interest (POIs) that generate
required data for the process of location entropy. The suggested method guarantees the systems’
security and privacy degree. In another work, Benarous et al. presented a location privacy-preserving
method for the Internet of Vehicles (CE-IoV) supported by clouds [27]. The suggested method
maximizes CE-IoVs’ level of competence and robustness. For IoV, Hu et al. presented a lightweight and
safe privacy-preserving data aggregation (SLPDA) system [28]. The system encrypts the data used for
authentication by means of masking technology. SLDPA points out the cyberattacks that happened
during the authentication procedure. The presented SLPDA reduces the IoV authentication overload
ratio. For vehicle clouds (VC), Hu et al. developed an effective privacy-preserving data query and
dissemination technique (EPDQD) [29]. Relevant datasets available for the querying procedure come
from the roadside unit (RSU). Effective codes for the authentication process are given by the planned
EPDQD system. In another work, for the SIoV, Lai et al. built a trust-based privacy-preserving friend-
matching system [30]. The system filters the required hostile cars using Bloom filters. The relevant
datasets for the privacy-preserving process are examined using a theoretical analytical approach. The
proposed system maximizes the accuracy in a matching process thereby improving SIoV’s efficiency
level. For vehicle ad-hoc networks (VANET), Ren et al. presented an effective distance-based privacy-
preserving authentication (EDPPA) system [31]. For third-party users, the EDPPA optimizes the
safety and security spectrum of users. The suggested EDPPA lowers the complexity and latency in
the authentication procedure.

Privacy-preserving in IoV requires dynamic mobility support and sustainable security implications
across heterogeneous application demands. Based on the available data, the augmenting privacy
demands will be classified under differential security. This augmentation is satisfied by the limited
methods proposed above such that the processing increases the complexity without instigating
the recommendations. Considering this feature across various information exchange intervals, the
proposed model mitigates the above issues. Hence, this paper proposes the Privacy Recommending
Data Processing Model (PRDPM) for Internet Vehicles to improve service sustainability under secure
application conditions.

Table 1 discusses the works related to the proposed model by referencing the techniques and their
results.

Table 1: Related works with techniques and results

Work Method Key area Technique used Results Limitations

Aman et al. [19] Privacy-preserving
and scalable
authentication

Effective services to
IoV users

Physical unclonable
functions

Increases the security
level

Limited scalability

Huang et al. [20] A location-based
service in IoVs

Optimization of
services

LBS identifies the
exact location of the
vehicles

Maximizes the
privacy and safety
range of IoVs

Delays in real-time
response

Benarous et al. [21] Concerted
silence-based location
privacy-preserving
scheme

Detection of
unlinkable attacks

CSLPPS to
minimizes the latency

Improved
authentication
process.

Limited to specific
attack types; may
miss others

Xia et al. [22] Privacy-preserving
data scheduling

An effective data
scheduling algorithm
for VN vehicles

Incentive mechanism Improved the security
level

High reliance on user
participation for
incentives

(Continued)
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Table 1 (continued)

Work Method Key area Technique used Results Limitations

Liu et al. [23] Safety and privacy Decentralized and
privacy-preserving
reputation

Blockchain
technology

Increases the
effectiveness and
performance

High computational
cost

Atmaca et al. [24] A privacy-preserving
route planning

It provides effective
routing plans to the
users

Graph-based
location-sharing

Maximizes the
privacy

Limited flexibility

Zhang et al. [25] A blockchain enabled
data access

Optimization of the
data for
privacy-preserving

Hidden attributes of
the encryption
process

Improves safety and
privacy ratio

Increased
computational load

Xing et al. [26] Privacy protection Location
entropy-based
privacy protection

Points of Interest
(POI) are detected,
producing necessary
data.

Increases privacy and
security level

May produce low
accuracy in
high-entropy areas

Benarous et al. [27] Privacy-preserving Location-based
privacy-preserving

Method for Internet
of Vehicles supported
by clouds

Maximizes
competence and
robustness

Limited scalability

Hu et al. [28] Privacy-preserving Masking technology Safe
privacy-preserving
data aggregation
(SLPDA)

Reduces the IoV
authentication
overload ratio

High computational
cost

Hu et al. [29] Privacy-preserving Effective
privacy-preserving
data query and
dissemination
technique (EPDQD)

Relevant datasets
available for the
querying procedure

Effective codes for
the authentication
process

Limited scalability

Lai et al. [30] Privacy-preserving Trust-based
privacy-preserving
friend-matching
system

The system filters the
required hostile cars
using Bloom filters

Maximizes the
accuracy in a
matching process

High computational
cost

Ren et al. [31] Privacy-preserving
authentication

An effective
distance-based
privacy-preserving
authentication
(EDPPA) system

For vehicle ad-hoc
For third-party users,
the EDPPA optimizes
the safety and
security spectrum of
users

Minimizes the
complexity and
latency in the
authentication
procedure

High computational
cost

3 SVM-Based Privacy Recommending Big Data Processing Model

Big data is the information that comprises a significant amount of data about the input pro-
vided by the user, which is then processed to achieve better results through the improvement of
data collection. A support vector machine (SVM) is a regulated machine learning algorithm that
accomplishes categorization or relapse processes by executing a boundary that separates data into
two categories. Cloud services in this privacy-preserving process promote the flow of user data
from the service providers and then based on this the support vector machine algorithm takes
place through the internet, to the provider’s requirements, and back. The IoV network necessitates
the implementation of applications for neighbors and service providers. Based on the prior service
response, two application demands have been identified: privacy and service response. To determine the
existence and sustainability, these outputs are sent into the support vector machine algorithm. Cloud
and IoT services also reveal similar persistence and longevity. The support vector algorithm consists
of two planes which are the operation plane and the data plane. And for differentiation, the data plane
and the operational plane, the hyperplane engendered. These distinguished application demands are
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used for the determination of the min-max privacy conclusions for existence and sustainability. The
services are provided to the users according to the output of the support vector algorithm.

By segmenting sensitive information from non-sensitive data at the decision boundary of the
support vector machine (SVM) model, hyperplane differentiation is an essential privacy safeguard in
PRDPM. This method separates potentially sensitive information from ordinary data used for analysis
in vehicular communications by establishing discrete hyperplanes that categorize data according to
sensitivity levels. While less sensitive data may be accessed more readily for real-time applications,
PRDPM processes highly sensitive data with greater privacy protections. Even while data flows
constantly inside the IoV network, this differentiation layer limits the visibility of sensitive data across
connection intervals, thus reducing privacy leakage. To improve privacy without sacrificing real-time
processing, hyperplane differentiation allows quicker data segregation and prioritization. The SVM
model efficiently sorts incoming data according to privacy needs and routes it accordingly, allowing
real-time operations to analyze the most important data without latency. In dense IoV networks,
this efficiency is especially useful because of the high speed of vehicle communication and the need
for strong privacy protections and quick data access. To maintain high performance in congested
IoV settings, PRDPM streamlines data processing by targeted categorization at the hyperplane level,
balancing real-time processing demands with privacy protection.

The applications are demanded by the users through the IoV for the accomplishment of the
service according to the requirements. These vehicles help in the enhancement of the safety of the
information and the fastest response though. The service provider considers the demand of the users
before processing the privacy-preserving procedure.

The application demand by the user is the foremost step in the service accomplishment operation
and then the process is initiated based on the demand and it checks the authentication for further
processes. The service response and the privacy of the previous response are the vital application
demand the demand must be validated based on these characteristics. Then the support vector
machine algorithm helps in determining the services for the users depending on the demands with the
high privacy which helps in protecting the data from malfunctions. Depending on these application
demands, further processes take place and then the services are provided for the users with high privacy
preserving data. The following Eq. (1) shows how to get users to request an application demand
through the IoV [2].

〈a, b〉 x2 = 〈ax, bx〉 x + 〈ax1 , bx2〉 x
〈a, b〉 x = 〈ax, bx〉 x + 〈ax1 , bx2〉 x + 1 (〈ax, bx1〉 x − 〈ax1 , bx〉 x)

a = ax + x1a1

b = bx + x1b1

x1 〈a, b〉 =

⎡⎢⎢⎢⎣
x1a x1b . . . x1ab
x1a1 x1b1 . . . x1 (a1b1)

...
xnan

...
xnbn

. . .
· · ·

...
xn(anbn)

⎤⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (1)

The a represents application demands generated by the users while b is represents the procedure
of the IoV in this application, x is represent the classification of the demands a. Now the application
demand is classified into two namely: service response and then the privacy. The service response is the
one which checks whether the service is accomplished on time to the users or not. Based on the previous
service production processes, the taken for the execution of the service is consolidated in this service
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response category in the application demand. By associating the service response from the previous
processes, the further procedure takes place by preserving the privacy of the users’ personation details.
The process of service response in the application demand can be shown by the Eq. (2) below [2]:

ϕC (Z) = ϕC(a + b)

= ϕC(a, b)

= ϕC1
(a, b) + xϕC(a + b)

ϕC (a + b) = x1 (· (a, b))

C = a + x1b〈
ϕx (C) , ϕx1

(C ′)
〉
x = 〈

ϕC (a + b) , ϕx1
(a′, b′)

〉
x

= ϕC ((a′, b′) · (a, b))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (2)

The ϕ is the service response while C is represents previous processes, and Z is the response of the
service in the previous process. Based on the service response and privacy, the substantiating process of
the acquired demands takes place for the enhancement of the privacy-preserving operation. An Eq. (3)
below shows how the user’s authentication of the application is demanded by the application 2.

bT
c (Z, Z′) = bT

c (Z′, Z)

bx
c (Z, Z′) = bx

c(Z
′, Z)∑n

n,x=1 CnCxbT
c (Zn, Zx) = 0

where,

n > 0, C1 . . . . . . Cn ∈ C

Z1 . . . ..Zn ∈ X

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3)

The T in Eq. (3) represents the authentication procedure. The procedure’s privacy has now been
validated in preparation for the next steps. The privacy production for the prior service execution is
determined by the application requirements.

The authentication for privacy is led using registration to validated phases. First the session, the
request relies on C for the existing vehicle whereas the new vehicles Z from any a. Therefore, the
authentication process requires Z1 to Zn ∈ X satisfaction for maximizing ψ . Those outcomes are
associated with enhancements in the privacy-preserving process in the existing service production
procedures. Based on the previous service response, the privacy level of the present method is validated
in the application demands. Then this output is given as the input to the support vector machine
algorithm to estimate the existence and sustainability. The process of determining the privacy of the
previous response is explained by the following Eq. (4) given below [2]:∑n

n,x=1 ZnZxbT
c (xn, xc) = −∑n

n,x=1 cncxbT
c (Zn, Zx)

= −∑n

n,x=1 cncxbT
c (Zx, Zn)∑n

n,x=1 cncxbT
c (Zn, Zx) = 0

⎫⎪⎬⎪⎭, (4)

where Z is represented as the privacy of the previous response of the service providers. The validation
process takes place depending on the outcome of the service providers and the privacy of the previous
response. Now based on the determined previous response, the present privacy level of the process
is acquired then these outcomes are given to the algorithm for the determination of the planes fand
the hyperplane boundary between the existence and the sustainability. The process of determining the
present privacy level of the method based on the previous response is explained by the following Eq. (5)
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given below [2]:

LT
c =

((
x
y

)
,
(

x′

y′

))
= ∑

n=1 (bc (Z, Z′))

= ∑x

n=1

[(
b1

b2

)
×

(
Z1

Z2

)]
Z = x + Ty

Z′ = x′ + Ty′

n > 0, b1 . . . . . . bn ∈ T
Z1 . . . . . . Zn ∈ X

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (5)

where L is denoted as the present privacy level based on the previous service response. Then these
outcomes are given as the input to the support vector machine algorithm for the determination of the
existence and sustainability. The privacy level-based recommendations assessment for improvement is
illustrated in Fig. 1.

Figure 1: Privacy level improvement

In the above representation, the 4 stars represent (verification, authentication, approval, and
response), respectively. If the levels are exhibiting multiple variations, then improvements are high.
This level determination is performed using ψ from C such that c/Z is to be high. If the variations
are suppressed, then authentication is provided for frequency response and therefore the Z levels
are improved. Considering the changes in the level the SVM classification is performed (Fig. 1).
Here in this support vector algorithm, two planes take place, the data plane, and the operational
plane. The conceptual big data is exploited from this part based on the information aggregated from
multiple intervals, travel time, and the communication established between the vehicles. Initially the
vehicle information occupies the fundamental role for introducing and verifying a vehicle before
communication. Besides the communication related information, the privacy levels, and agreements
form the second level of big data. The accumulated data contains both necessary and trivial utilization
that is handled using support vectors. The hyperplane is the divider that differentiates the two planes
from the boundary. The existence and sustainability are identified with the help of the support vector
machines in the operational planes for further processes. The existence and the sustainability are the
data planes where the operation plane is helping in making the decisions based on the data plane. The
process of support vector machine in the identification and the authentication operation is explained
by the following Eq. (6) given below:
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W T
c =

((
a
b

)
,
(

a′

b′

))
= ∑n

x=1(XC (Z, Z′)∑n

n,x=1 WnWxWC(Zn, Zx) ≥ 0∑n

n,x=1 WnWxWC (Zn, Zx) = ∑n

n,x=1 WnWxW T
c (Zn, Zx)

T
∑n

n,x=1 WnWxW x
c (xn, xT) = ∑n

n,x=1 WnWxW x
c (xn, xT)∑n

n,x=1 ZnWxX T
c (Zn, Zx) > 0∑n

n,x=1 ZnXTCn

((
an

bn

)
,

(
ax

bx

))
≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6)

where W is denoted as the operation of the support vector machine algorithm in the identification
procedure. The existence and sustainability are determined by using the support vector machine
with the help of the outcome of the previous service response and then the privacy of the previous
service response. Here the min-max recommendation is determined by validating the above-mentioned
features in the operational plane. The recommendations are extracted from the characteristics of the
support vector machine algorithm, and it is explained by the following Eq. (7) given below:

G = 1
2
| |W | |2 + 1

2
| |W | |2 + C

X

∑G

n=1 (x1x2 + c1c2)

= ∑
n=1

[
Ŵn

(
an

bn

)
, Wx

(
a1

b1

)
+ X̂n

(
an

bn

)
, Xc

(
ac

bc

)]
= ∑

x=1

[
X̂n

(
a1

b1

)
, Xc

(
ac

bc

)
+ Ŵn

(
an

bn

)
, Wx

(
a1

b1

)]
= ∑

n=1

[
bn

(
an

bn

)
+ Zn

(
a1

b1

)
∗Zn

(
an

bn

)
+ bn

(
a1

b1

)]
= ∑n

x=1 G (x1, Z1) + ∑x

n=1 C(y1, Z1) + ∑T

x=1 W(a1, b1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (7)

where G is represented as the recommendations extracted from the vector machine algorithm. Now
the existence and the sustainability are identified for the service accomplishment process without any
lags and issues. The SVM operation of privacy existence verification is presented in Fig. 2.

Figure 2: SVM process for privacy existence verification

The variations between W and (Z, ψ) for three outcomes: optimal, improved, and recommenda-
tion based. The ax, bx ≥ 0 identifies the optimal condition for Z maximization from ψ . This condition
is retained ∀Wn toWc indicating the L improvement. Any variation in Wn or Wc across W surpassing
ax, bx ≥ 0 is induced for a recommendation. In the recommendation for L, the G variation across x1x2
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and c1, c2 are validated such that ψ is less compared to the previous C. Therefore, the improvements are
pursued in the recommended L as presented in Fig. 2. The existence is the one in the support vector
machine, used in the estimation of the privacy whether it is in the data or not before executing the
services to the users according to their requirements. The privacy level of the present data execution
process is determined in this existence identification process. As mentioned earlier, the aggregated data
is filtered for its non-trivial utilization based on control plane operations. The accumulated voluptuous
data is split for its non-trivial validation for privacy check preventing anonymous communication.
The major big data is filtered for the privacy related information; the existence of this data is the
travel/communication time. In the consecutive interval, the privacy levels are validated for preventing
sustainability failures. The process of determining the existence is explained by the following Eq. (8)
given below:

∂G
∂W

= 1
2

W + 1
2

∑
n=1 αϕc (Zn) − 1

2

∑x

n=1 ϕc (a, b)

= T
1
2

∑x

n=1 bnϕc (Zn) + 1
2

∑n

x=1 b̂nϕc (Zn)

∂G
∂W ∗ = 1

2
+ 1

2

∑
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where α is denoted as the existence determination operation, β is represented as the checking of
the privacy level in the existing method. Based on the existence and sustainability, the services are
accomplished to the users depending on their requirements expressed in Eq. (9).
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. (9)

This existence of privacy helps in the data’s privacy preservation and then the outputs of the
previous privacy of the service providers help in the enhancement of the privacy-preserving processes.
The existence of privacy-preserving of the given data is explained by the equation mentioned above.
The privacy existence for different levels is presented in Fig. 3.

Support vector machines (SVMs) can handle smaller, heterogeneous data samples with excellent
classification accuracy, unlike deep learning methods that normally need massive datasets and
substantial processing resources. Regarding IoV settings, this efficiency is valuable since real-time data
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processing is crucial, and deep learning models might cause delays or require more complicated gear to
accomplish the same results. In addition, SVM provides more interpretability and transparency than
deep learning models, which makes it simpler to include explicit privacy-preserving measures. Reaction
times are essential for processing heterogeneous IoV data under rigorous privacy rules; SVM’s
emphasis on data separation via optimal hyperplane differentiation allows PRDPM to emphasize
privacy without sacrificing response times. Compared to other deep learning approaches, SVM
achieves a better mix of efficiency, interpretability, and accuracy, making it an ideal fit for the privacy-
focused, resource-constrained environment of IoV.

Figure 3: Privacy existence for different levels

The derivatives in Eq. (9) are used for handling privacy proposed levels based on β. The β

operations are optimal for highly successful (S) T status. The possible conditions ax ≥ 0 and bx ≥ 0
based on the derivatives increases the existence of privacy. Therefore, the levels are computed from
the available steps for improving the existence. Considering the swapping states of W and ψ∀Z, the
new T is determined. This forms the optimal c for the supporting Z with high L. The ceasing L is
estimated from the ax < 0 or bx < 0 or both conditions for β improvements (Refer to Fig. 3). Now
the sustainability is determined from the support vector machine to identify the prolonged time of
the privacy in the data. Depending on this, the service is executed for the users, and improvements
are happening in the privacy-preserving process. The existence and the sustainability are identified
by the support vector machine and the data plane, and the operational planes are determined by the
algorithm.

Indeed, federated learning approaches are useful for privacy protection and have proven successful
in comparable IoV scenarios. These techniques enable decentralized data processing across numerous
nodes without exchanging raw data. When it comes to IoV systems, with their complex and dense
data flows, a more streamlined processing and quick reaction capability is required. This is why an
SVM-based, cloud-oriented solution was chosen for PRDPM. The need for frequent model updates
and synchronization and the substantial processing resources required by each node in federated
learning might introduce delay and restrict its real-time usefulness in IoV systems. Critical in high-
traffic IoV networks where split-second processing is required for operational efficiency and safety,
PRDPM provides quick threat detection and unified privacy-preserving solutions by centralizing data
analysis in a cloud-based architecture. By avoiding the latency issues that federated learning may bring,
PRDPM can control privacy and performance better, which is especially important in IoV contexts.
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4 Results and Discussion

The proposed model is validated using NS3 experiments that include an OpenSource map in
SUMO. The simulation scenario includes a 3 km-long roadway with four crossings and two parallel
routes. The vehicle density ranges from 10 to 120 at an average speed of 45 km/h. The vehicles
are calibrated to communicate information at 15-min intervals for a maximum of 30 min within
their 250-m communication range. With this simulation setup, the metrics of privacy leaks, service
failure, privacy recommendations, recommendation time, and data processing rates are validated.
The proposed model reduces service failure by distributing data processing across cloud-edge nodes,
improving fault tolerance in a distributed IoV network. Recommendation time in our SVM model is
improved by leveraging edge processing to deliver fast, localized privacy recommendations without
requiring central data transmission. The proposed model’s data processing rate is optimized by
distributing computations, making it proportional to the combined processing rates of both edge
and cloud nodes. The most critical metrics demonstrating our model’s efficacy are service failure
rate and recommendation time. Lower failure rates improve reliability and user trust, essential in
IoV environments, while shorter recommendation times provide rapid responses, enhancing user
experience. The collected data is validated using the WEKA 3.0 tool for validation. The levels
of data filtering outlined in the preceding sections are achievable with this tool-based approach.
This simulation setup validates parameters such as service failures, recommendation time, and data
processing speeds. The proposed model uses benchmarks form from the results available in EPDQD
[29], EDPPA [31], and PPDS [22] when comparing metrics. Such metrics are exploited in the discussion
and proposed contributions above. This is slightly different from the previous metrics provided in the
related works. However, these features are closely related to the actual metrics discussed in those works.
The privacy, efficiency, and resilience-focused validation criteria allow our SVM model to provide
privacy-preserving procedures in IoV contexts. The integrity of federated model updates is tested to
ensure that only model parameters, and not raw data, are exchanged, which preserves decentralized
privacy, and compliance with differential privacy metrics is maintained to prevent individual data
from being reconstructed. To ensure data processing is efficient as IoV devices grow, measurements for
scalability and latency are run across networks at the edge of the cloud. To ensure reliable performance
in various environments, cross-validation tests compare the model’s accuracy with different kinds of
heterogeneous IoV data. Lastly, to ensure that the system’s privacy-preserving policies will withstand
the test of time, adaptive security audits are conducted regularly to identify and resolve new risks.
These criteria strengthen our model by fixing major issues with competing privacy-preserving methods
for IoV settings. Compared to other state-of-the-art approaches, PRDPM is more resilient thanks to
these validation criteria, which provide ongoing, context-specific privacy guarantees designed for IoV
contexts. In the ever-changing IoV environment, where data kinds, sources, and volumes may fluctuate
greatly, PRDPM constantly adjusts by emphasizing sensitivity and accuracy. A component absent
from many models is the ability to detect and reduce threats proactively; PRDPM’s incorporation of
privacy leak evaluations add to this strength. These updates work together to make PRDPM the most
reliable and long-lasting IoV solution, protecting user privacy while keeping performance consistent
across various real-world scenarios.

4.1 Service Failure

This process reduces the number of service failures by implementing the effective min-max
recommendations derived from the sustainability determination process’s results. The service accom-
plishment to the users based on their application demand is happening without the privacy leak and
improvised preserving data process. If there is no effective privacy in the data, then a new privacy
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method is to be added in the process for the elimination of the treacherous transaction of the services
to the users. This vitally avoids the failures of the services and enhances the privacy-preserving
procedures of the data within the given period. The efficacious services are provided for the users with
better privacy. The services are executed to the users from the cloud/IoT with efficacious decisions
and min-max recommendations. Based on the services provided to the users, the sustainability is
determined, and then based on the planes and hyperplane functions, the existence is also identified. The
support vector helps in the estimation of the privacy period in the services which are provided to the
users according to their application demand (Fig. 4). To be more precise, PRDPM’s SVM efficiently
distinguishes between sensitive and non-sensitive data, which greatly simplifies and speeds up privacy-
preserving processing while minimizing the likelihood of service failures. In contrast to EPDQD and
PPDS, which have greater failure rates due to their privacy methods’ slowness, PRDPM consistently
displays lower Service Failure Rate numbers. Service Failure Rate is the fraction of requests not
completed because of processing delays or failures.

Figure 4: Service failure

4.2 Recommendation Time

The recommendation is completed in a shorter amount of time; therefore, privacy preservation is
effective in achieving better outcomes for the services. Sustainability is determined from the support
vector machine to identify the prolonged time of privacy in the data. Depending on this, the service
is executed for the users, and improvements are happening in the privacy-preserving process. The two
planes from the support vector machine decide the decision to enhance privacy or not. The data plane
includes the existence and the sustainability where the privacy of the data is enhanced in the process and
then the operational or control plane distributes the decisions based on the data plane. These decide if
there is efficacious privacy represented in the service there are no issues and nothing to alter. If there
is no effective privacy in the data, then a new privacy method is to be added in the process for the
elimination of the treacherous transaction of the services to the users. Based on the sustainability and
the operational plane outcome, the recommendations are provided within a shorter period (Fig. 5).
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Figure 5: Recommendation time

4.3 Data Processing Rate

The rate of data processing is efficacious with the help of the support vector machine in the
PRDPM approach. The internet of vehicles demands the application for the following the neighbor
and the service providers. The service provider considers the demand of the users before processing
the privacy-preserving procedure. The data extracted from the user is considered for the further data
preserving process with high privacy. This also helps in the enhancement of the privacy of the data
and processing rate of the data. These different application demands are used for the determination
of the min-max privacy conclusions for existence and sustainability. The information from the
different acquired time intervals is used for authenticating the pre-mentioned characteristics in the
operational plane by distinguishing the hyperplane for min-max recommendations. By consolidating
these characteristics, the data processing rate is efficacious with the aid of the support vector machine
algorithm (Fig. 6). In the below Table 2, the comparative analysis summary with the improvements is
presented. Through edge processing and localized data partitioning, PRDPM facilitates the processing
of sensitive data nearer to its origin, hence diminishing the need for data transmission across networks,
which concurrently reduces privacy threats and bolsters data security. This decentralized methodology
corresponds with PRDPM’s privacy-preserving protocols, enabling local management of sensitive data
with targeted privacy safeguards and reducing susceptibility to centralized failures or breaches. Fur-
thermore, decentralized processing in PRDPM enhances bandwidth efficiency and elevates real-time
responsiveness since data pertinent to immediate vehicular encounters or environmental alterations
is handled expeditiously at the edge. The ability to manage local data while ensuring strong privacy
protections renders PRDPM especially appropriate for the decentralized and dynamic nature of IoV
ecosystems.

PRDPM’s cloud-based architecture greatly improves its capacity to manage real-time privacy
concerns in IoV systems by consolidating data processing, analysis, and threat detection across linked
cars and edge devices. Because the cloud constantly gathers data from many sources and uses SVM-
based classification to identify sensitive data segments in real time, PRDPM can quickly detect and
react to new privacy threats. Vehicles and IoT endpoints throughout the network can quickly adjust
to any identified risks because of the cloud’s centralized structure, which allows for instant upgrades
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to privacy-preserving protocols and speedy dissemination of threat notifications. Data privacy across
varied and ever-changing IoV settings depends on this proactive threat-handling capacity.

Figure 6: Data processing rate

Table 2: Comparative analysis summary

Metrics EPDQD [29] EDPPA [31] PPDS [22] PRDPM

Vehicles
Service failure (%) 15.16 12.79 9.36 6.556
Recommendation time (s) 0.628 0.505 0.301 0.1544
Data processing rate (/Vehicle) 0.6363 0.769 0.858 0.927

Data Intervals
Service failure (%) 15.31 11.67 7.94 6.428
Recommendation time (s) 0.619 0.468 0.348 0.2072
Data processing rate (/Vehicle) 0.6547 0.722 0.823 0.925

Adaptive machine learning methods, such as reinforcement learning, will be included in future
upgrades so the model may self-adjust its privacy safeguards in response to changing threat patterns
in IoV systems. Another area of interest is the integration of edge-level decentralized threat detection
modules. This would enable local devices and vehicles to autonomously detect and counteract threats
before transmitting their data to the cloud, improving reaction time and reducing latency. Further
improvements in federated learning might allow the model to learn from dispersed data sources while
protecting privacy. This would make it more adaptable and successful in handling privacy issues related
to the IoT.

PRDPM improves privacy protection by lowering privacy leakage risks as data moves over
the network using hyperplane differentiation inside its support vector machine model. This model
classifies data depending on sensitivity. With the help of effective data partitioning and feature
selection, which reduce computational overhead, it can handle the high-density data volumes in
IoV systems, thanks to its scalability. For responsive Internet of Vehicles (IoV) applications like
traffic management and vehicle-to-vehicle communications, PRDPM’s caching and edge processing
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algorithms provide real-time data handling. In contrast to many deep learning models, which may
be resource-intensive and complicated, this uses SVM, which adds interpretability and simplicity
while enabling transparent privacy-preserving processes. Nevertheless, there are a few drawbacks to
PRDPM. One is that SVM models may not be as flexible when dealing with complicated data patterns
as deep learning algorithms. Another issue is that it might be difficult to fine-tune the SVM kernel to
fit various IoVsituations, affecting its flexibility in handling multiple use cases.

In the context of IoV services, the suggested SVM model enhances the scalability and efficacy
of current privacy-preserving approaches. Using a cloud-edge integration architecture, our model
overcomes the challenges posed by the large amount and diversity of IoV data compared to con-
ventional methods. This configuration enables cloud-based processing of massive amounts of data,
with local processing handled by edge nodes; this reduces the need to transmit sensitive data, which
improves privacy. The model can easily accommodate additional cars and data sources because of
this distributed architecture, greatly enhancing scalability. The SVM model uses federated learning
to enable decentralized model training, greatly improving its efficacy. The central model in an IoV
architecture only needs model parameters, not raw data, so that each node may train autonomously on
its data. Using this method may protect privacy and lessen the likelihood of data sharing. Federated
learning guarantees the decentralization of sensitive IoV data while achieving high accuracy across
many dynamic data sources. As a result, our SVM model succeeds where other privacy-preserving
approaches have failed by providing strong privacy protection with high data value and efficient
scalability.

5 Conclusions

In the validation method, support vector learning is employed. This classification method inde-
pendently evaluates the aforementioned features to ensure reliable service across different intervals.
Maximum classification accuracy is implied using the minimum privacy leak and maximum recom-
mendation for security improvement. The proposed process is classified using the SVM hyperplane
based on its movement across the min-max variations. The adjustments are linear throughout the
vehicle’s travel intervals for which the plane differentiation for sustainability and existence is validated.
From the metric-based analysis, it is seen that the proposed model reduces service failures by 11.76%,
and recommendation time by 11.28% while the data processing rate has increased by 17.26% for
different vehicle densities. Similarly, the proposed model reduces service failures by 10.46%, and
recommendation time by 9.45% while the data processing rate has increased by 19.18% for different
data intervals.
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