
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.059050

REVIEW

A Survey of Link Failure Detection and Recovery in Software-Defined
Networks

Suheib Alhiyari, Siti Hafizah AB Hamid* and Nur Nasuha Daud

Department of Software Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
*Corresponding Author: Siti Hafizah AB Hamid. Email: sitihafizah@um.edu.my
Received: 27 September 2024 Accepted: 15 November 2024 Published: 03 January 2025

ABSTRACT

Software-defined networking (SDN) is an innovative paradigm that separates the control and data planes,
introducing centralized network control. SDN is increasingly being adopted by Carrier Grade networks, offering
enhanced network management capabilities than those of traditional networks. However, because SDN is designed
to ensure high-level service availability, it faces additional challenges. One of the most critical challenges is ensuring
efficient detection and recovery from link failures in the data plane. Such failures can significantly impact network
performance and lead to service outages, making resiliency a key concern for the effective adoption of SDN. Since
the recovery process is intrinsically dependent on timely failure detection, this research surveys and analyzes
the current literature on both failure detection and recovery approaches in SDN. The survey provides a critical
comparison of existing failure detection techniques, highlighting their advantages and disadvantages. Additionally,
it examines the current failure recovery methods, categorized as either restoration-based or protection-based,
and offers a comprehensive comparison of their strengths and limitations. Lastly, future research challenges and
directions are discussed to address the shortcomings of existing failure recovery methods.

KEYWORDS
Software defined networking; failure detection; failure recovery; restoration; protection

1 Introduction

Traditional computer networks are inherently dynamic and complex, making their configuration
and management a persistent challenge. These networks generally comprise numerous switches,
routers, firewalls, and various types of middleboxes, all of which can experience multiple events
simultaneously. Network operators are tasked with configuring the network to enforce various high-
level policies and to respond to a diverse range of network events, such as link failures, traffic shifts, and
security intrusions [1]. Therefore, Software Defined Networking (SDN) has been seen as a promising
solution to address the challenges inherent in traditional computer networks [2]. SDN provides
centralized control, global network visibility, and programmability, which are crucial for managing
complex and large-scale networks [3]. Consequently, Carrier Grade Networks (CGNs) are turning to
SDN technology in order to enhance their network management capabilities beyond those offered by
traditional networks.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.059050
https://www.techscience.com/doi/10.32604/cmc.2024.059050
mailto:sitihafizah@um.edu.my

104 CMC, 2025, vol.82, no.1

Despite the promise of enhanced network management offered by SDN technology, a range of
new challenges have been introduced. One of the key challenges that SDN must address is ensuring
efficient recovery from link failures [4]. Since a failure can significantly impact network performance
and make services unavailable, reliability issues are crucial for the effective adoption of SDN. Failures
in the network connections between forwarding devices in the data plane are the most frequent causes
of link failures [5], with one link going down every 30 min [6]. Unexpected failures account for 80% of
these occurrences, while only 20% are the result of scheduled maintenance [7]. A study conducted on
Google’s data centers and a set of wide area networks found that 80% of network component failures
persisted for 10 to 100 min, leading to substantial packet loss [8]. Business sectors expect to lose more
than $107,000 per hour due to data center down-time costs, and IT (Information Technology) outages
result in a revenue loss of about $26.5 billion per year [9]. A network must return to service after a
failure in a matter of a few tens of milliseconds to meet the requirements of a carrier grade network
(i.e., a recovery time of under 50 ms) [10]. As an example, transport networks highly require reduced
latency for voice and video conversations because voice echo occurs at a delay of 50 ms to avoid the
inconvenience that these echoes cause during conversations [11].

In the SDN architecture, the control logic is moved from network devices into a centralized
and separate control plane as depicted in Fig. 1 [12–14]. This architecture offers complete visibility
of network entities, which in turn introduces new opportunities for efficient link failure recovery
applications [15–17]. The enhanced visibility and centralization enable to improve network resiliency
and ensure the effective implementation of SDN.

Figure 1: SDN architecture [18]

SDN-based link failure recovery mechanisms generally fall into two main categories: restoration
and protection. In restoration, the controller plays an active role in the recovery process, whereas
in protection, the data plane is capable of recovering from a failure independently, without the

CMC, 2025, vol.82, no.1 105

controller’s intervention [5,19,20]. During restoration, the controller reactively addresses the link
failure by calculating a new backup path and updating the necessary flow entries in the affected
switches after receiving a failure notification from the data plane elements. The communication
between the impacted switches and the controller, combined with the process of calculating a new
route and reconfiguring the data plane, adds extra load on the controller and introduces delays in
failure recovery. Consequently, the recovery time is heavily influenced by the scale of the network,
often failing to meet CGN requirements for recovery time, which should be under 50 ms.

However, in the protection method, the flow entries of the backup paths are proactively installed
at the data plane [21–23]. As a result, the performance of the protection approach is not affected by
the number of disrupted flows. Additionally, it autonomously reroutes the affected flows without the
controller intervention which enables the network to meet the recovery time requirement of CGNs. On
the other hand, the protection mechanism consumes a much larger amount of the switches’ Ternary
Content Addressable Memory (TCAM), which is already limited, of the switches compared to the
restoration. The majority of commercial OpenFlow switches, according to [24,25], have an on-chip
TCAM with a size of between 750 and 2000 OpenFlow rules. But according to recent studies, modern
data centers can have up to 10,000 network flows per second for each server rack [26]. Existing DCNs
(Data Center Networks) provide a variety of critical and real-time services on a large scale [27]. A
memory-aware and quick recovery of link failures between forwarding devices in the data plane, is a
vital task and a fundamental requirement for increasing the reliability and robustness of these DCNs.

Although ensuring the reliability of SDN networks that host critical and sensitive services is a
fundamental requirement for SDN adoption [28], the prevailing models for link failure recovery fre-
quently struggle with one or both of these issues: extended recovery times for failures and considerable
memory consumption in switches. On the one hand, restoration-based recovery adopts centralization
of the recovery process at the controller. It uses switch memory efficiently; however, it requires a
relatively long time to recover from failures which increases with large scaled networks because it
requires communication with the controller to recover from the failure. Conversely, protection-based
recovery decentralizes the recovery process and moves the recovery logic to the switches in the data
plane. This approach ensures a small recovery time because it doesn’t depend on the controller for
the recovery process, but it significantly consumes the memory of the switches in the data plane
because backup paths are installed proactively. Consequently, current recovery models demonstrate
inefficiencies in performance and resource consumption under link failures. This paper provides
insights into the ongoing research developments on fault management challenges in SDN networks,
along with approaches aimed at detecting and ensuring the reliability of these networks.

The unique contributions of this survey are summarized as follows:

1. It provides a detailed comparison of existing failure detection techniques based on various
criteria, including scalability, detection time dependency on network size, and compatibility
with protection techniques.

2. It conducts a comprehensive analysis of restoration and protection-based recovery methods,
highlighting their strengths and limitations, and compares them based on recovery time,
scalability, processing overhead, and ability to meet CGN requirements.

3. It discusses key research challenges, such as scalability, latency, and resource constraints, and
proposes future directions, including the integration of AI (Artificial Intelligence) and machine
learning.

In this survey, we have carefully selected papers based on their relevance, recency, and contribution
to the field of link failure detection and recovery in SDN. We focused on studies published between

106 CMC, 2025, vol.82, no.1

2010 and 2024, ensuring that we included both foundational works and the latest advancements. The
criteria for selecting suitable papers include:

• Relevance to link failure detection and recovery mechanisms in SDN.
• Publication in reputable journals and conferences, indicating quality and impact.
• Inclusion of both theoretical and practical contributions, covering various methodologies and

technologies.
• Diversity in approaches, including both restoration and protection mechanisms, as well as

hybrid methods.

The rest of the paper is organized as follows. In Section 2, we introduce the surveys that explored
the failure detection and recovery in SDN and their contributions and limitations alongside highlight-
ing how this survey differs from the existing surveys. In Section 3, we discuss the various link failure
detection techniques and introduce a comprehensive comparison between them. In Section 4, the two
most common approaches to recover from link failures, i.e., restoration and protection, are presented,
and the restoration and protection-based studies are surveyed and compared. A comprehensive and
critical comparison is conducted between restoration methodology and protection methodology to
highlight each one’s pros and cons. In Section 5, we first discuss the research challenges in the area
of efficient failure recovery and then propose future directions to resolve these challenges, including
emerging trends and technologies. Finally, in Section 6, we conclude the paper and highlight the main
points of the survey, emphasizing the potential implications for network performance and real-world
applications.

2 Existing Surveys on SDN Failure Recovery

Several surveys have explored fault management and failure recovery mechanisms in Software-
Defined Networking (SDN), advancing our understanding while also revealing gaps that need further
investigation. In this section, we critically review key surveys, discussing their contributions and
limitations, and positioning our work within the field.

In [29], the authors conducted an early survey focused on fault tolerance in SDN, adapting
detection and recovery techniques from traditional networking. They primarily examined data plane
issues like link and switch failures, comparing restoration and protection methods. However, the
survey’s scope was limited, reflecting the early stages of SDN research. Moreover, the absence of the
root cause analysis prevented deeper insights into failure mechanisms. Reference [30] offered a broader
survey covering fault management across all SDN layers, from the data plane to the application plane.
They categorized fault detection, localization, and recovery methods across these planes. Despite the
extensive coverage, the lack of comparative analysis made it difficult to assess the effectiveness of
various approaches.

Reference [31] provided a detailed survey structured around SDN’s layered architecture, discussing
fault tolerance across the data, control, and application planes. Their work highlighted contemporary
challenges but missed several key aspects, such as incomplete coverage of hybrid techniques, and a lack
of root cause analysis, limiting its potential to propose robust solutions. Reference [1] focused on link
failure recovery, exploring restoration, protection, hybrid, and machine learning techniques. Although
their survey provided detailed insights, it did not analyze the root causes of failures. These omissions
limit the survey’s applicability to more complex fault recovery scenarios. Reference [5] conducted a
systematic review of data plane failure detection and recovery techniques in SDN. They classified
current approaches, compared traditional networking with SDN, and discussed the root causes of

CMC, 2025, vol.82, no.1 107

failures. Additionally, the survey lacked a broader comparative analysis using newer performance
metrics.

Despite the existing surveys on failure detection and recovery in SDN, there is still a need for
a comprehensive and up-to-date analysis focusing specifically on the data plane mechanisms. Most
existing surveys either focus on broader fault management aspects, security, or lack the inclusion of
the latest research advancements up to 2024. Therefore, this survey aims to fill this gap by providing an
in-depth investigation of node and link failure detection and recovery at the data plane, incorporating
recent studies, and critically analyzing the shortcomings of existing approaches.

Unlike aforementioned surveys, this survey in deep investigate the node and link failure detection
and recovery at the data plane. Fig. 2 shows the scope of this survey using the highlighted parts.
Also, this survey critically highlights the shortcomings of existing detection and recovery approaches
in order to enable researchers to address these shortcomings. In this survey, the approaches for
detecting and recovering from link failures in Software-Defined Networking (SDN) are investigated.
We compare existing failure detection techniques based on path failure detection, dependability of
detection time on network size, scalability, ability to handle multiple failure locations, necessity for
extra flow entries, capability to achieve link recovery time of less than 50 ms, compatibility with link
protection techniques, and active or passive monitoring. The survey also demonstrates SDN-based
link failure recovery using restoration and protection approaches. Additionally, we conduct a compre-
hensive comparison of restoration-based studies and protection-based approaches. Finally, a detailed
comparison is conducted between protection-based approaches and restoration-based approaches
in terms of recovery time delay, scalability, processing overheads at the controller and the switches,
flexibility, congestion awareness, Ternary Content Addressable Memory (TCAM) consumption, and
the ability to meet Carrier Grade Networks (CGN) requirements.

Figure 2: Scope of the survey

108 CMC, 2025, vol.82, no.1

3 Link Failure Detection Techniques in SDN

The first step to recovery from failures is to detect that there is a failure. Thus, the speed at which a
failure is detected will directly influence the overall recovery speed. Several kinds of failures can affect
a network state. Nodes can crash, links can break, either as a result of a physical issue (e.g., submarine
cable disruption) or of a logical issue (e.g., bringing an interface down on a router’s administrative
interface), resulting in flows that are no longer behaving properly and are losing packets. Fig. 3 depicts
the classification of detection mechanisms that have been used in SDN networks.

Figure 3: Detection techniques in SDN

3.1 OpenFlow Discovery Protocol (OFDP)

Although there is no standard protocol in SDN to discover the links between switches in the data
plane, most SDN controllers use OFDP protocol for link discovery [32–34]. SDN controllers such as
OpenDaylight [35], Floodlight [36], POX [37], Ryu [38], Beacon [39], Cisco Open SDN Controller [40]
and Open Network Operating System (ONOS) [41,42] utilize OFDP for link discovery.

To discover links between switches, the OFDP protocol uses a modified version of the LLDP
(Link Layer Discovery Protocol) frame format [43]. In traditional networks, the LLDP protocol is
commonly used to discover links between switches. However, unlike OFDP, LLDP does not rely on
centralized control, with switches sending and receiving LLDP advertisements independently. Despite
this difference, OFDP uses the structure of LLDP frames with a few changes, but it operates differently
in order to conform to the SDN architecture, which centralizes control logic at the controller. As a
result, in OFDP, switches do not initiate LLDP advertisements; rather, the controller manages the
entire link discovery process.

Fig. 4 shows that when Switch 1 receives a Packet_Out OpenFlow messages, it decapsulates the
LLDP packet from the Packet_Out message, and forwards only the LLDP packet through each
corresponding port. When Switch 2 receives an LLDP packet, it parses the packet and records the
chassis ID (Identifier) and ingress port ID. Switch 2 then encapsulates the LLDP packet in a Packet_In
message and sends it to the controller, using a pre-installed flow entry from its flow table. The
controller then parses the Packet_In message to identify the discovered link, which is expressed by the
mapping between (Switch 1 chassis ID, port ID) and (Switch 2 chassis ID, port ID) [44]. This process
identifies the link in one direction. To discover the reverse direction of the link, the same procedure
must be followed [32].

CMC, 2025, vol.82, no.1 109

Figure 4: OFDP protocol methodology [32]

As previously stated, the controller uses OFDP for topology discovery and will send an LLDP
packet that is encapsulated in a Packet_Out message to all active ports in the network at regular
intervals (10 s). Such a discovery mechanism could have serious implications for the performance
and functionality of SDN networks, particularly large networks. These issues can be concluded as
follows [45]:

(1) Overhead on the controller and control channel

For large networks with many switches, the controller sends a large number of Packet_Out
messages during each discovery interval, which can put a significant overhead on the controller’s
CPU (Central Processing Unit) [32,42,46] and the control channel, particularly when in-band control
channels are used [32].

(2) Inefficient link failure detection

There are no mechanisms in the OpenFlow protocol to notify the controller of network failures.
The OpenFlow protocol implies a mechanism in the form of an OFPT_PORT_STATUS message,
which is sent to the controller when an OpenFlow switch port is administratively turned up or
down [34,47]. Thus, most controllers will learn about link failures in the next discovery round, which
takes about 10 s [34,42]) [48]. This is deemed too long for dynamic environments where topology
changes occur frequently at short intervals [1,34]. Such a delay significantly impacts the performance
of applications that depend on the topology information discovered by the controller for their
operations [49].

110 CMC, 2025, vol.82, no.1

3.2 Loss of Signal (LoS)

LoS is widely used in carrier-grade networks to detect link failures [50]. When the switch detects
Loss of signal for one of its ports, it will inform the controller using OFPT_PORT_STATUS
message with “down” state [51]. Likewise, when it detects a signal from one of its ports, it will send
OFPT_PORT_STATUS message with “UP” state. LoS can be used to detect local link failures but
not path failures. Because of that it may be used as a detection method for “per-link” based protection
[22].

LoS relies on the IEEE 802.3 standard, which outlines a PHY-level detection mechanism for
Ethernet PHY (Physical Layer). According to this standard, the transmitting device periodically sends
a simple heartbeat pulse, known as a Normal Link Pulse (NLP), typically every 16 ± 8 ms. If the
receiving device does not detect either a data packet or an NLP within a specified time window (usually
50–150 ms), the link is considered failed by the receiving device. Due to its slow detection rate, LoS is
unable to meet the delay requirements of Carrier Grade Networks (CGNs), which demand a response
time of less than 50 ms.

3.3 Bidirectional Forwarding Protocol (BFD)

BFD is a low-overhead protocol that is designed to monitor the liveness of links or paths on
contrary to LoS which is used only for local links liveness monitoring [52]. Furthermore, BFD detects
the link failures with adaptable and very low latencies for any media, at any protocol layer. Also, BFD
detects failures in any type of connection between systems such as direct physical links, virtual circuits,
tunnels, and unidirectional links.

BFD operates in two modes: asynchronous and demand. In asynchronous mode, which is the
primary mode, the BFD generator on each system periodically sends control messages to the opposite
end of the BFD session. If a specified number of control messages are missed, the BFD session is
marked as “down.” In demand mode, it is assumed that the system has another independent method
of confirming connectivity with the other system. Once a BFD session is established, the system may
request that the other system to stop sending BFD control packets, except when it needs to explicitly
verify connectivity. In such cases, a brief exchange of BFD control packets takes place, after which the
far system remains quiet.

The detection time of link events in BFD depends on the transmission interval of the control
packet (Ti) and the detection multiplier (M). Ti is the frequency of the control messages and M is the
number of control packets that should be lost before considering the neighbor end-point unreachable.
Failure detection time is given by Eq. (1):

Tdet = M ∗ Ti, (1)

The transmit interval Ti is lower-bounded by the Round-Trip Time (RTT) of the link [52]. In order
to achieve a detection time of 50 ms, the values of Ti = 16.7 ms and a detection multiplier of M = 3
are enough.

3.4 Circle Monitoring

In [53], the authors propose a path preplanning scheme that takes advantage of interface specific
forwarding (ISF) to resolve the problem. They cover all of the links of the networks with at least
one monitoring path. Every specific time, the probes during Path Alive Monitoring (PAM) traverse
through each monitoring path. These probes start and end to the controller. If the monitoring probe

CMC, 2025, vol.82, no.1 111

does not return to the controller through a predefined interval, then there is a failure occurred. The
Failure Location Identification (FLI) will start in this round, an FLI probe traverses through the path,
and the receiving node will send the FLI probe to the next hop and send at the same time a copy of
the probe to the controller. if there are the copy is not received by the controller, one of the adjacent
of the failed link is identified. The result of 50 ms monitoring period showed 100 ms for recovery in
the worst case.

To reduce the packet loss probability and the jitter, bandwidth is reserved for the monitoring round
to avoid drops of packets due to congestion or other conditions and then generating false alarms. They
use the QoS querying mechanism that is implemented in different OpenFlow switches to guarantee the
bandwidth. One of the most important objectives in the approach is to find the minimum number of
monitoring cycles that cover all links with minimum number of hops to minimize the delay and jitter.
Therefore, they find the path that covers all of the links based on the graph theory, and divide this path
to multiple sub-paths, with each path does not exceed more than h hops.

In [54], the proposed algorithm finds the minimum number of cycles that cover all the links in the
network. It uses three types of probes to detect, locate and find the type of failure (Node/link). After
detecting the failure by monitoring probes, two types of probes are sent through the cycle: failure
location probes to find the failure location, and the second is type detection probes to know the type
of failure: link or node. More than one controller is utilized: one of them is master in active mode, and
the others serve as secondary controllers in standby mode.

In [55], it proposes a new approach to notify the controller of any failures that occur outside
its designated region, in case multiple controllers are employed to manage large-scale networks and
packets can traverse arbitrary links. Similarly, new approach is proposed by [53]. However, a key
distinction is that upon detecting a fault, a binary search is utilized, progressively narrowing the search
area until the specific broken link is identified. Despite this, both approaches still require additional
flow table entries either to return packets to the controller or to reroute them.

3.5 Traditional Detection Mechanisms

For TCP/IP (Transmission Control Protocol/Internet Protocol) networks, the detection mecha-
nism can be defined based on the layer that is operating. For Datalink layer, some of the popular
protocols for link failure detection in Datalink layer are STP (Spanning Tree Protocol) and RSTP
(Rapid Spanning Tree Protocol) [56]. All of these protocols are classified as slow; the detection period
is in seconds and does not meet the delay requirements for most of the applications. While in Network
Layer, OSPF (Open Shortest Path First) is considered one of the most popular and efficient routing
protocol [57]. OSPF maintains the status of the shortest paths between forwarding devices in the
network and updates them in case of the occurrence of link or device failures. It uses hello packets
every relatively large interval which leads to exceeding the order of milliseconds and therefore OSPF
is not suitable for CGNs [52,58].

3.6 Comparison between Detection Mechanisms

When comparing different detection mechanisms, it can be found that only BFD and circle
monitoring can detect failures per path while the other only detect failures per links only. The detection
time in OFDP, circle monitoring and traditional detection, increases when the network size increases.
In LoS and BFD, the detection time does not depend on the network size, which makes LoS and BFD
more scalable than other mechanisms. Regarding the capability of detecting multiple failures, all of
the approaches can detect multiple failures except BFD and circle monitoring. Also, only LoS and

112 CMC, 2025, vol.82, no.1

BFD do not require extra flow entries to be installed in the forwarding devices in the data plane to
work properly. In addition, only BFD can be used as detection mechanism to achieve less than 50 ms
of overall recovery time which is not possible with other mechanisms. Also, it is found that LoS and
BFD are the only detection methods that have been used in the protection mechanisms to monitor
the watch ports in the group buckets. Finally, LoS is the only passive detection mechanism meaning
that it does not send any probes to check the status of links. Table 1 introduces a detailed comparison
between the different link failure detection mechanisms.

Table 1: Comparison between different detection mechanisms

OFDP LoS BFD Circle
monitoring

Traditional
detection

Path failure
detection

No No Yes Yes No

Dependability of
the detection time
on the network
size

Dependent Independent Independent Dependent Dependent

Scalability Not scalable Scalable Scalable Not scalable Not scalable
Multiple failure
location

Yes Yes No No Yes

Need extra flow
entries

Yes No No Yes Yes

Ability to achieve
less than 50 ms of
link recovery time

Not able Not able Able Not able Not able

Have been used
with link
protection
techniques?

No Yes Yes No No

Active or passive
monitoring

Active Passive Active Active Active

4 Link Failure Recovery Mechanisms in SDN

Once a failure has been detected, the network has to react and recover from this failure and ensure
the connectivity between all hosts. There are two types of reactions that are possible, depending on the
timescale at which the recovery process occurs. Generally, the controller can do link failure recovery
in two general approaches: protection and restoration. In protection, backup routes are configured in
advance of a failure. It calculates the backup paths and configures the flow tables of the corresponding
switches with the required flow entries. Conversely, in restoration, backup paths are computed only
after the failures occur by calculating a new path to restore the disrupted flows and install the required
flow entries. In the following subsections, we will discuss the two approaches in detail, introduce the
studies that adopt them and present a comprehensive comparison between the approaches.

CMC, 2025, vol.82, no.1 113

4.1 Restoration Methodology

The process of restoration passes into three steps: first, the affected switches of the link failure
inform the controller about the change in a port’s status. Then, the controller calculates an alternate
path to recover the affected flows that use the failed link. At last, the controller sequentially installs
new flow entries, modifies or removes flow entries from the corresponding OpenFlow switches.

Fig. 5 presents an example of the restoration methodology. When the link between SW2 and SW3
fails (1), SW2 and SW3 will inform the controller about the failed link (2). After that, the controller
will compute another path to reroute the traffic between SW2 and SW3 and update the flow tables of
them (3). The network will use the new path and recover from failure (4).

Figure 5: The methodology of restoration approach

Restoration-based studies

In this subsection, the approaches that adopt the restoration are introduced and discussed
focusing on their aims, detection methods, performance metrics, and limitations. Table 2 introduces a
comprehensive comparison between restoration-based approaches.

Reference [19] proposed a restoration approach using Loss of Signal (LoS) as detection technique
to recover from link failures in OpenFlow networks. Upon receiving a port down notification, the
controller recomputes new paths for affected flows. While the proposed approach is effective in small-
scale networks, there are still key concerns about scalability and recovery time in larger networks.
Similarly, Reference [59] proposed a recovery approach based on cycle structure. This approach first
computes a tree for the topology. For each link that is not included in the tree, the approach assigns
a tie-set (i.e., actually a circle) for such links. Hence, if a link fails, the algorithm can find and use the
assigned tie-set to recover from the failure.

In contrast, Reference [60] introduced a scalable failover method for large-scale data center
networks. The proposed method focused on choosing specific switches from different network layers
in order update their flow tables to recover from the failures. The results show reducing the recovery
time and improving the scalability.

Furthermore, in [61], the researchers proposed a method to decrease the restoration time of multi-
link failures by minimizing the cost of flow operations and reducing the number of flow table updates.
This method employs a Dijkstra-like algorithm to identify the shortest path with minimal operational
costs, focusing on metrics such as operation cost and path cost. However, the study did not conduct
an evaluation of the recovery time, leaving this aspect unexplored. Similarly, Reference [20] proposed
a restoration-based approach that uses the shortest path first algorithm. The approach ensures the

114 CMC, 2025, vol.82, no.1

QoS for high-priority traffic by ensuring minimum delay. However, the approach is not feasible for
large-scale SDNs due to the complexity of the algorithm used to discriminate traffic significance.

Reference [62] proposed a method that depends on minimizing the number of flow entries that
need modification during restoration. The proposed method precomputes multiple shortest paths and
chooses the routes that require minimal flow updates, which reduces the operational costs associated
with flow entry modifications. However, the use of longer alternate paths may increase communication
delays.

In a related manner, Reference [63] proposed the Local Fast Reroute (LFR) technique, which
utilizes the VLAN (Virtual Local Area Network) tagging method to aggregate multiple flows into a
single large flow. While LFR reduces the number of flow entries and updates required for recovery,
it may decrease the granularity of flow control. In another approach, Reference [64] aimed to reduce
the computational overhead of path recalculation on the controller by adopting pruned searching
algorithms from graph theory. This enhances scalability and reduces recovery time in large-scale
networks, despite the impact on operational costs of flow modifications which requires further
evaluation.

In [65], the proposed approach addressed the challenge of recovering from nested failures in
scenarios where group-based protection by VLAN ID is used. They proposed the use of Bidirectional
Forwarding Detection (BFD) and adopted pruned searching from graph theory to calculate the
shortest path for recovery. The evaluation focused on three key metrics: recovery time, the number
of flow entry updates, and the number of flows successfully restored. Although the proposed method
demonstrated effectiveness, the evaluation was conducted using a small testbed, which may limit the
generalizability of the results.

Finally, Reference [24] enhanced failure recovery in SDNs by introducing a system that leverages
flow table awareness and advanced flow classification. It employs modules like Topology Discovery,
Flows Handler, Flow Table Capacity, and Path Computation and Recovery to ensure robust network
resilience. The proposed solution significantly reduces packet losses to less than 3%, decreases round
trip times, and increases throughput, outperforming traditional methods.

Table 2: Comparison between restoration-based approaches

Ref. Aim Detection Method Performance
metrics

Limitation

[19] To recover from
link failures in
openflow networks

LoS When receiving a
port_down
notification, the
controller
recalculates paths
for affected flows

Recovery time The testbed and
workload are too
small

[66] Develop a scalable,
efficient
fault-tolerant
system for SDN
that quickly
recovers from data
plane failures

LoS CORONET uses
topology discovery
for real-time status
and calculates
multiple
link-disjoint
shortest paths

Recovery time The recovery time
does not meet the
requirements of
50 ms in CGNs

(Continued)

CMC, 2025, vol.82, no.1 115

Table 2 (continued)

Ref. Aim Detection Method Performance
metrics

Limitation

[59] To implement a
quick failure
recovery approach
that minimizes
packet loss in large,
complex networks

N/A Computes a
topology tree and
assigns tie-sets to
non-tree links for
failure recovery

Recovery time Increase using of
flow tables of all
switches

[60] Recover from link
failures in a locally
efficient way

LoS Relocate the
impacted flows
based on
connectivity matrix
tables and traffic
data

Recovery time The detection time
is too long

[61] Reduce multi-link
failure restoration
time by minimizing
flow operations and
flow table updates

LoS The method
introduces a
Dijkstra-like
algorithm to find
the shortest path
with minimal costs

1. Operation
cost
2. Path cost

No evaluation
conducted for
recovery time

[20] To calculate paths
that introduce
minimum delay for
high priority
packets

LoS Shortest Path First
Calculation and
QoS for high
priority traffic

Recovery time The algorithm that
is used for path
calculation is not
scalable

[63] To recover quickly
with a smaller
number of flow
entries and flow
updates

LoS The proposed Local
Fast Reroute (LFR)
to quick recover
from link failures
by aggregating the
flows in a one big
flow by Vlan
tagging

1. Recovery time
2. No. of
updated flow
entries
3. No. of total
flow entries

Aggregation of
flows reduce the
granularity of flow
control

[62] To reduce the
number of flow
updates

LoS A graph
theory-based
reactive recovery
for single link
failures using the
longest shortest
path to minimize
costs

1. Recovery time
2. Number of
flow entries
installed
3. Operation
cost

High packet loss
because the
increased length of
the calculated path

(Continued)

116 CMC, 2025, vol.82, no.1

Table 2 (continued)

Ref. Aim Detection Method Performance
metrics

Limitation

[54] To detect link/node
failures in for
out-band or
in-band control
channels networks
and recover the
network from
failures within less
than 50 ms

Circle
monitoring

The proposed
algorithm finds the
least number of
cycles that covers
all the links in the
network

Recovery time 1. The experiments
do not reflect the
performance in
terms of the
recovery time for
large networks
2. The testbed used
is too small

[64] To increase the
recovery time by
accelerating the
recovery path
calculations

LoS Adopting pruned
searching from the
graph theory to
calculate the
shortest path

Recovery time Operation cost not
evaluated

[65] To recover from
nested failure when
group-based
protection by vlan
ID is used

BFD Adopting pruned
searching from the
graph theory to
calculate the
shortest path

1. Recovery time
2. Number of
flow entries
updates
3. Number of
flows that are
successfully
restored

Small testbed used
for evaluation

[67] To develop
SafeGuard to
enhance SD-WAN
(software-defined
networking in a
wide area network)
recovery by
optimizing
bandwidth and
switch memory to
reduce congestion
and boost efficiency

LoS Use OpenFlow Fast
Failover Groups to
instantly detect link
failures and reroute
traffic via
pre-installed
backups, without
controller
intervention

1. Number of
congested links
2. Length of
backup routes
3. Overall link
utilization in the
network

1. Potential
challenges in
scaling the
heuristic for very
large networks due
to its NP
(Non-deterministic
Polynomial)-hard
nature.
2. The need for
empirical tuning of
the optimization
model’s parameters
to balance multiple
objectives

(Continued)

CMC, 2025, vol.82, no.1 117

Table 2 (continued)

Ref. Aim Detection Method Performance
metrics

Limitation

[24] To reduce the size
of TCAM memory
used for link failure
protection and the
link recovery time

LoS Emphasize flow
table awareness and
classification by
integrating
topology discovery,
flow management,
capacity
monitoring, and
path computation

1. Percentage of
Packet Losses
2.Round Trip
Time (RTT)
3. Throughput

Needs too much
processing at the
controller

4.2 Protection Approach

In the protection approach, the backup paths alongside with working paths are preconfigured
before any occurrences of network failures. Hence, if a link failed, the disrupted flows are recovered
using backup paths immediately without involving the controller. Fig. 6 explains the methodology of
protection. When the link between SW2 and SW3 fails (Step 1), SW2 without involving the controller
will switch to the pre-installed backup path (BP) (Step 2). Thus, the network will use the backup path
and recover from failure (Step 3).

Figure 6: The methodology of protection approach

4.2.1 Level of Protection

The protection approaches can be divided based on the portion of the network that is protected
into the following three levels of protection [17]:

(A) Path-based recovery

In this type, the controller will use the updated topology information and compute a disjoint
backup path between each two hosts. The problem is that no full backup path will be configured at
the data plane, when it is impossible to find a disjoint path.

118 CMC, 2025, vol.82, no.1

(B) Link-based recovery

In this level of protection, a sub-path for backup is computed for each link alongside the working
path. The sub-path is defined as a path between the switches located at the two ends of the link.

(C) Segment-based recovery

A backup sub-path is computed for each segment of the working path. A segment is defined
as a series of consecutive links alongside the working path. It begins and ends at nodes that have
backup paths that are fully disjointed from the remainder of the segment. Fig. 7 depicts the protection
approaches based on the level of protection.

Protection-based recovery

Path-based recovery Segment-based recovery Link-based recovery

Figure 7: Classification of protection approaches based on the protected portion

Different levels of protection: per-path, per-segment, and per-link, perform differently based on
the following metrics [17]:

(1) Failure recovery time

Path-based recovery necessitates communication of the failure between the controller and the
source nodes of the paths in order to switch over to backup paths. In contrast, link-based recovery
eliminates the need for signaling upon failure, because nodes can autonomously detect the failure
and then recover from it. This makes it the fastest approach to recovering from failures. Meanwhile,
segment-based recovery reduces signaling requirements but it still needs to notify the first node in the
segment to reroute the flows to the backup path.

(2) Dependency on cranckback routing

In the context of path protection, the initial node where the working path connects with the backup
path is the source node. However, in link- and segment-based protection, this node may be located
closer to the destination. Crankback routing causes the links to be used twice during a failure, which
can lead to congestion and packet loss. In contrast, link-based protection can reduce the need for
crankback routing during TF , thereby preventing congestion and excessive link utilization during the
failure period.

(3) Number of paths

For 1:1 path-based protection, each flow requires two paths to be computed. One limitation
of link-based protection is the need to compute many paths. Paths must be computed for each link
alongside the working path between the source and destination when using 1:1 link-based protection.
The total number of path computations required is 2 + (P − 2) = P, where P is the working path length.
Table 3 presents comparison between different protection levels.

4.2.2 Protection-Based Studies

Overall, the aim of the protection-based approaches is to achieve fast link failure recovery in
SDN networks by proactively installing backup paths prior to link failure. This survey classifies

CMC, 2025, vol.82, no.1 119

the approaches according to the methodology used, as it is depicted in Fig. 8. A comprehensive
comparison between protection-based approaches in Table 4.

Table 3: Comparison between different Protection levels

Recovery time Dependency on
cranckback routing

Number of paths

Path-based recovery Large Highly dependent Little
Segment-based recovery Moderate Moderately dependent Moderate
Link-based recovery Little Independent High

Figure 8: Classification of the protection approaches based on the methodology

Fast Failover group

Beginning with OpenFlow version 1.1, group table functionality was introduced to overcome the
limitations of the functionality of flow entries, allowing to execution of various operations on the
packets that were previously impossible with flow entries [68]. There are four types of group entries
in OpenFlow 1.1 and afterward: ALL, SELECT, INDIRECT, and FAST FAILOVER (FF) [51]. The
FF type is particularly designed to monitor the status of links and facilitate failover to a backup path.
Fig. 9 shows the components of Fast Failover groups.

Fig. 9 depicts how the group table is configured with multiple action buckets, each linked to a
switch port [51]. Every action bucket is assigned a priority, which distinguishes between working and
backup paths. If no priority is assigned, the buckets’ input order determines the priority. The status
of the link or path associated with each output port is continuously monitored, either passively using
OpenFlow’s Loss-of-Signal (LoS) detection or actively via Bidirectional Forwarding Detection (BFD).
If a link is down, the associated action bucket is considered down, causing the Fast Failover group
table to switch to the next active action bucket, which contains the actions to recover the disrupted
flows. OpenFlow switches configured with FF group tables that include protection paths can perform
failover autonomously without requiring interaction with the controller.

References [69,70] and [22] leveraged the Fast Failover (FF) group tables in OpenFlow switches for
autonomous and fast recovery alongside BFD for rapid link failure detection. By proactively installing
backup paths in switches, the proposed approach achieves recovery times within the CGN requirement
of less than 50 ms. However, the increased TCAM usage due to additional flow entries is a concern
for limited-size switch memory resources.

120 CMC, 2025, vol.82, no.1

Figure 9: Structure of the group entry

Moreover, Reference [17] aimed to meet provider networks’ requirements of 50 ms link failure
recovery time, which failure restoration failed to accomplish. Failure restoration needs not less than
100 ms to restore from failures. They use per-link BFD for link failure detection and preconfigured
working and backup paths by the controller. One limitation of link-based protection is the need
to compute multiple paths. Paths must be computed for all of the nodes between the source and
destination when using 1:1 link-based protection.

Continuing with proactive measures, Reference [71] proposed a method in which the controller
gathers global topology information on a regular basis (via a topology discovery tool). Using this
information and Dijkstra’s algorithm, the controller proactively configures both an active and backup
path by installing flow entries and a Fast Failover group entry in the OpenFlow (OF) switches along
the source-destination route. The group entry of the OF switches on an active path defines two action
buckets: the first bucket specifies the active path’s output port, and the second bucket specifies the
backup path’s output port. According to the emulation results, the Fast Failover mechanism has
an average recovery time of less than 40 ms, which is significantly faster than the fast restoration
mechanism, which requires hundreds of milliseconds.

In another approach, Reference [23] concentrated on shortening the link failure recovery time
by reducing the link failure detection time. They used active probing to reduce the detection time.
Furthermore, to improve scalability and speed up failure recovery, the central controller is removed
from the proposed recovery scheme, with group modifications handled locally by probe stations on
ToR switches. Each Top of Rack (ToR) switch in the cluster includes a probe station. This probe station
transmits a probe to the aggregation switch, which distributes it to all other ToR switches. Upon failure,
all remote ToR switches will not receive probe packets related to the failed link (during a predefined
monitoring interval) and will modify the group used to communicate with transmitting ToR. The
transmitting ToR, on the other hand, does not receive the probe packets flooded by aggregation switch
and modifies all of the groups used to communicate with the cluster’s other ToR switches.

CMC, 2025, vol.82, no.1 121

In a different approach, Reference [72] proposed SPIDER (Stateful Programmable Failure
Detection and Recovery). In SPIDER, bidirectional heartbeat packets are used to detect link failures.
It is based on Openstate [73], in which each switch has a state table that precedes the flow table, and all
flow states are stored in it. SPIDER exploited the feature of FF group, besides using MPLS (Multi-
Protocol Label Switching) tags to control the forwarding behaviors. In SPIDER, backup paths are
pre-installed in the data plane, enabling the network to recover from link failures without involving
the controller.

Further exploring failure recovery, Reference [67] proposed SafeGuard for improving failure
recovery in SD-WANs by addressing congestion and switch memory utilization issues. It formulates
failure recovery as a multi-objective MILP (Mixed-integer linear programming) optimization problem
to efficiently allocate bandwidth and switch memory across any network topology. The solution
employs a heuristic for practical computation of backup routes, ensuring network resilience without
the need for controller intervention during failures.

In [74], the authors introduced an innovative Fast Failover-Fault Recovery Mechanism in Software
Defined Networks (FF-FRM-SDN), designed to enhance network resilience by proactively detecting
and recovering from failures through a centralized control mechanism. Employing an Advanced
Fast Failover Fault Detection Method (FF_FDM), the system dynamically configures OpenFlow
switches and establishes backup paths for rapid failover, significantly reducing recovery times and
packet loss. The methodology leverages group entries and flow tables to manage traffic rerouting
automatically, optimizing network performance in response to node and link failures. This approach is
tested against key performance metrics such as packet loss ratio, end-to-end delay, and failure recovery
time, demonstrating substantial improvements over traditional fault management techniques.

Fast Failover Group with flow aggregation

Managing memory resources is a significant challenge in failover protection because additional
rules need to be deployed in switches. However, memory in switches, particularly in in those that are
TCAM-based switches, is often both limited and costly. To tackle this issue, Reference [75] focused on
the size limitation of TCAM memory by introducing a flow table compression algorithm. This method
reduces the number of flow entries required for backup paths by aggregating flows that share the same
action in of the flow entry, optimizing memory usage without affecting recovery speed. To improve
the compression ratio, the authors combined this approach with Plinko [76], a forwarding model that
allows the same action to be applied to every packet.

In a related study, Reference [77] proposed a strategy called DFRS (A declarative failure recovery
system) to find alternate paths satisfying the flow-specific goals for protection against single link fail-
ure. The main goal is to achieve the flow requirement regarding delay and the network’s requirement
regarding the capacity of the switches’memory. They proposed two algorithms to find the set of backup
rules that achieve both requirements. The results indicate that, on average, DFRS requires significantly
less memory space, often by an order of magnitude or more, compared to traditional failure protection
methods. They used 1) the number of flow entries required and 2) the number of flow entries required
for each switch as metrics.

Reference [78] proposed two proactive solutions: one independent on the controller (CIP) and the
other is dependent (CDP). The difference between them is that the first one leverages FF group tables
and the other depends on Indirect group tables. FF grouping is optional in OpenFlow which causes
some vendor switches do not implement this feature in their switches while the Indirect grouping is
mandatory in OpenFlow and it is compulsory for vendors to implement this feature in their switches.
For flow aggregation they used VLAN tagging to group alternate flows in one flow.

122 CMC, 2025, vol.82, no.1

Finally, Reference [21] introduced a novel failure recovery mechanism for software-defined
networks (SDNs), utilizing VLAN IDs to expedite the rerouting process during link failures. This
approach leverages the Fast Failover group feature in OpenFlow switches, allowing for immediate
traffic redirection without controller intervention. The mechanism significantly outperforms tradi-
tional recovery methods, achieving recovery times as low as 1.02–1.26 ms and maintaining packet loss
rates below 0.28%.

Source routing

Reference [79] proposed a source routing approach in which the controller only installs flow entries
at the ingress switches, which reduces the number of flow entries required. The ingress switches encoded
the path, expressed by the sequence of egress interfaces at the nodes, in the header of packets using
tags. For link failure recovery, the controller can install flow rules to change the tag when a link fails.
They used the percentage of flow entries reduction as a metric.

In [80], aimed to efficiently utilize the switches’ TCAM usage. It adopts source routing to reduce
the number of flow entries in intermediate switches. By encoding the entire path in the packet header,
only the ingress switches require flow entries to be installed. In the event of a failure, ingress switches
manipulate the path encoding to reroute traffic. Although this method efficiently uses TCAM, it may
encounter scalability issues because of the increased header overhead.

Similarly, Reference [81] adopted the concept of source routing. Due to a failure, the ingress
switches will write the backup route information to the header of packets, considering avoiding the
congestion of links. In another approach, Reference [82] proposed a smart routing approach as a failure
recovery framework. Smart routing depends on the historical data of forewarning messages that the
controller will exploit to configure backup paths that protect the network from expected failures.

Multiple flow entries with different priorities

Reference [83] utilized different flow entries with different priorities to recover from failures
without needing to return to the controller and without requiring the controller to be stateful for
OpenFlow ethernet networks. They proposed a new auto-rejection mechanism to evict any flow related
to the egress or ingress ports of the switches associated with the failed link. In addition to the auto-
rejection mechanism, a set of backup entries should be installed to recover from failure in the least
time. They also propose a backup flow entries renewal mechanism by periodically sending a renewal
packet to avoid removing backup flow entries. When the network is recovered from the failure, the
switches request the working paths that were removed to efficiently utilize resources. They extend the
OpenFlow protocol, OpenFlow switch, and OpenFlow controller. They measured performance using
1) the number of flows and 2) switchover time (recovery time) as metrics. The results show that the
recovery time is within 64 ms with a high number of entries.

In a similar approach, the main idea in [84] is to install main and backup paths for each flow
with different priorities. If the link goes down, the affected switch will inform the controller about the
failure, and the affected switch will switch the traffic locally to the backup path after the controller
removes all the flow entries related to the failed main path. After the controller removes the affected
flow entries related to the failed link, the flow of packets takes the backup path stored in the network.
During that, the controller will recompute, using the shortest path algorithm, new best main and
backup paths and install them to switches. The packets are then forwarded by the new main path.

Similarly, Reference [85] proposed an approach that installs two paths for each flow in the network
by installing two flow entries in each switch along the path. One is the main path, and the other is a
backup. When a link failure occurs, the packets related to the affected flows are redirected to the

CMC, 2025, vol.82, no.1 123

backup path. It is clear that this approach is not suitable for large-scale SDN networks because of the
limitations in TCAM memory at switches.

Table 4: Comparison between Protection-based algorithms

Ref. Aim Detection Methodology Performance
metrics

Limitations

[70] Address scalability
and efficiency issues
in OFDP to achieve
the 50 ms recovery
time required by
transport networks.

BFD FF group 1. Recovery time
2. Overhead of
using OFDP

1.The testbed is
somewhat small.
2. The proposed
approach
doesn’t comply
to Openflow
protocol.

[79] To protect flows with
efficiently using
TCAM of the
switches.

LoS Source routing Percentage of flow
entries reduction

The proposed
method adds
extra load to
packet headers
and thus
scalability issues
in large
networks.

[83] To reduce the
recovery time using
protection.

LoS Multiple flow
entries with
different
priorities

1. Recovery time
2. Number of flow
entries

Overwhelms the
memory of
switches which
reduce the
scalability.

[22] Integrate large-scale
carrier-grade
networks with
OpenFlow protocol
to ensure link failure
recovery in under
50 ms.

BFD FF group 1. Flow-mod
transmission
capacity
2. Transmitted
traffic
3. Flow-mod
traffic
4. Recovery time

1. The approach
doesn’t work for
in-band
networks.
2. It doesn’t
consider control
channel failures.

[17] To meet provider
50 ms link failure
recovery time.

BFD FF group 1. Recovery time
2. Number of flow
entries

Overwhelms the
memory of
switches.

[80] To protect flows with
efficiently using
TCAM of the
switches.

LoS Source routing 1. Recovery time
2. Number of flow
entries

The proposed
method adds
extra load to
packet headers
and thus
scalability issues
in large
networks.

(Continued)

124 CMC, 2025, vol.82, no.1

Table 4 (continued)

Ref. Aim Detection Methodology Performance
metrics

Limitations

[85] To meet provider
networks
requirements of
50 ms link failure
recovery time.

LoS Multiple flow
entries with
different
priorities

Recovery time Overwhelms the
memory of
switches which
reduce the
scalability.

[71] To reduce detection
and recovery time

LoS FF group 1. Number of flow
entries required
2. Number of flow
entries required
per switch

Depending on
continuous
monitoring of
the data plane
should
introduce a
considerable
load on the
controller.

[75] To recover from
multiple failures by
installing multiple
backup paths.

LoS FF Group with
flow aggregation

Recovery time Increasing the
processing load
on the controller
and overwhelms
the memory of
switches.

[86] To protect flows with
efficiently using
TCAM of the
switches.

LoS Segment routing
with flow
aggregation

1. Number of flow
entries
2. Length of the
backup path

Could introduce
congestion after
recovery.

[72] To reduce the
detection and
recovery time.

BFD FF group 3. Recovery time Overwhelms the
memory of
switches and
could introduce
congestion to
the dataplane.

[81] To develop a
low-overhead,
congestion-aware,
rapid link failure
recovery method in
SDNs.

LoS Source routing 1. Recovery time
2. Number of flow
entries

1. Extra load to
packet headers
and thus
scalability issues
in large
networks.
2. Inaccuracies
because of stale
topology in
planning and
selecting backup
paths.

(Continued)

CMC, 2025, vol.82, no.1 125

Table 4 (continued)

Ref. Aim Detection Methodology Performance
metrics

Limitations

[82] Enhances the
availability time of
services.

LoS Source routing 1. Recovery time
2. Number of flow
entries

Introduce
congestion after
recovery.

[67] To develop a system
that enhances failure
recovery in
SD-WANs by
optimizing
bandwidth allocation
and switch-memory
efficiency.

LoS FF group 1. Number of
congested links
2. Length of
backup routes
3. Overall link
utilization in the
network

1. Potential
challenges in
scaling the
heuristic for
very large
networks due to
its NP-hard
nature.
2. The need for
empirical tuning
of the
optimization
model’s
parameters.

[21] To protect flows with
efficiently using
TCAM of the
switches.

LoS FF group and
flow aggregation

1. Recovery time
2. Packet loss rate

1. No evaluation
is introduced for
Flow entry
reduction.
2. The scale of
experiments is
too small.

Segment routing with flow aggregation

Reference [86] introduced a routing approach designed to minimize TCAM usage. They imple-
mented two routing strategies: Backward Local Rerouting (BLR) and Forward Local Rerouting
(FLR). In BLR, for each established flow, a node-disjoint path is calculated, and in the event of
a failure along the working path, packets are sent back to their source and rerouted through the
backup path. FLR uses a two-phase algorithm. Initially, FLR identifies the backup path for each
link in the working path that requires the fewest additional nodes. Next, it resolves rule conflicts
(such as different match fields with the same output port) by selecting the rule that is compatible
with both paths and discarding the others. To further reduce TCAM consumption, instead of using
a Fast Failover group type, the OpenFlow protocol was modified to include a smaller entry in the
action set called BACKUP_OUTPUT, which specifies an output port for failures. This modification
reduces the number of additional flow entries and switches needed for the backup path compared to
the working path.

Similarly, Reference [87] proposed a segment routing model utilizing MPLS labels to manage
backup paths efficiently. The method adopts the segmenting of the paths and aggregating affected
flows in order to reduce the number of backup paths and address hardware limitations like the

126 CMC, 2025, vol.82, no.1

Maximum SID (Segment Identifiers) Depth (MSD). This approach optimizes TCAM usage while
maintaining rapid recovery from failures.

Cranckback routing with MPLS tagging

References [88] and [89] presented a protection scheme that relies significantly on MPLS
crankback routing. This approach involves using the same data packets, which are initially tagged
(for instance, with an MPLS label that carries information about the failure event) and then sent back
along the working path. Notably, only the initial packets of the flow are returned from the node that
detects the failure. Once the first tagged packet is handled by the reroute node, a state transition occurs
in the OpenState switch, and all subsequent packets from the source node are redirected by the reroute
node onto the detour.

4.3 Hybrid Methodology

Many of the studies in the literature adopt both restoration and protection methodologies in
their proposed approaches. Table 5 presents comparison between hybrid approaches. Indeed, hybrid
approaches try to leverage the strengths of both: restoration and protection methodologies in terms
of fast failure recovery and efficient TCAM usage. Reference [90] classified the flows into bronze,
silver, and gold classes based on their significance. The mechanism to recover from failures could be
protection or restoration based on the class. The results show an average recovery time of 30, 40, and
50 ms for bronze, silver, and gold classes, respectively.

In another study, Reference [91] also explored methods to reduce the size of TCAM memory
used for link failure protection and minimize link recovery time. Their approach involved using
precomputed backup paths, where the entrance switch labels affected packets for forwarding through
action buckets in the Fast Failover (FF) group table. This method addresses two main challenges: the
number of flow table updates and the number of flow entries required for failure recovery. However,
this solution has some drawbacks, including the need for extensive processing at the controller and the
frequent installation, deletion, or modification of flow entries.

Similarly, Reference [92] proposed a proactive restoration technique aimed at minimizing service
disruptions caused by network failures. Unlike traditional fault management strategies that react
to failures after they occur, this approach leverages the predictive capabilities inherent in SDN to
pre-emptively reconfigure network routes, thereby preserving service continuity. Experimental results
across both real-world and synthetic topologies demonstrate the method’s efficacy, achieving service
availability improvements of up to 97%.

Table 5: Comparison between hybrid approaches

Reference Aim Detection Method Performance
metrics

Limitation

[92] To efficiently use the
resources in terms of
TCAM memory at
switches and to
recover in a timely
manner for time-
sensitive traffic

LoS Classifying the
flows based on
significance and
using protection
or restoration
based on the
significance of the
flow

1. Recovery time 1. Needs too much
processing at the
controller
2. Classification of
traffic may be
inaccurate

(Continued)

CMC, 2025, vol.82, no.1 127

Table 5 (continued)

Reference Aim Detection Method Performance
metrics

Limitation

[91] To reduce the size of
TCAM memory used
for link failure
protection and the
link recovery time

LoS Using
precomputed
backup path, with
the entrance
switch labeling
affected packets
for forwarding
through action
buckets in the FF
group table

1. Number of
flow table
updates
2. Number of
Flow entries for
failure recovery

1. Needs too much
processing at the
controller
2. Too many flow
entry
installation/deletion
or modifications

[93] To reduce the size of
TCAM memory used
for link failure
protection and the
link recovery time

LoS The FFRLI
scheme employs a
hierarchical
approach to fault
recovery in SDNs
by categorizing
network links
based on their
importance, and
tailoring
proactive, reactive,
and hybrid
recovery strategies
to optimize
resource use and
minimize recovery
times

1. Recovery time
2. TCAM usage
3. Bandwidth
utilization

1. Needs too much
processing at the
controller
2. Classification of
links may be
inaccurate

In a different approach, Reference [93] presented the Fast Fault Recovery Scheme Based on Link
Importance (FFRLI) for SDNs. The method uses a two-stage process that classifies network links by
importance, enabling tailored recovery strategies that optimize resource usage and minimize recovery
times. By categorizing links as main, minor, or edge, FFRLI prioritizes recovery efforts for critical
links while conserving resources for less crucial ones. Simulations in Internet2 and Abilene networks
show that FFRLI outperforms traditional recovery methods, significantly reducing recovery times and
improving resource efficiency.

4.4 Comparison between Restoration and Protection Mechanisms

Both of restoration and protection have own advantages and drawbacks. In this subsection, we
will highlight them and compare between the restoration and protection mechanisms based on the
following points (as shown in Table 6):

128 CMC, 2025, vol.82, no.1

Table 6: Comparison between restoration and protection approaches

Restoration Protection

TCAM consumption Low High
Processing overhead the
controller

High Low

Processing overhead at the
switches

Low (No flow entries used for
recovery)

High (Many flow entries
used for recovery)

Recovery time delay Large Small
Flexibility Flexible with topology changes Static
Congestion awareness Aware about congestion

because its flexibility
Not aware about
congestion because of the
static configuration

Scalability Scalable for large networks Not scalable for large
networks particularly for
fine-grained flow recovery

CGN requirements Does not meet the CGN
requirements of less than 50 ms
of recovery time

Meet the CGN
requirements of less than
50 ms of recovery time

1) TCAM size of the switches

Flow entries in SDN switches are stored in Ternary Content Addressable Memory (TCAM), which
is small in size, expensive, and energy intensive. Thus, TCAM can only hold a few thousand entries.
According to [94], to scale up with demand, servers have to handle hundreds of thousands of clients
simultaneously. In the protection approach, a backup path for the failed link must be configured for
each flow that traverses the failed link, the matter that introduces scalability issues because of the large
number of flow entries that are required to be proactively installed. While in restoration, no backup
flow entries are installed prior to the occurrence of link failure. As a result, restoration is more scalable
than protection in terms of TCAM size in switches.

2) Processing overhead the controller

In protection, for every new flow, the controller should calculate a backup path and install the
required flow rules in the switches along the path. This is impractical in large SDN networks and
can cause the controller to be overwhelmed with such computation. Further, the controller should
maintain the state of huge number of flows which is also add a considerable burden to the controller
processing resources. Restoration also can introduce a considerable overload to the controller, dynamic
detouring a large number of the disrupted flows in a short time may overburden the controller and
cause performance degradation.

3) Processing overhead at the switches

The protection will induce additional processing for matching the additional flows for the
alternate paths.

CMC, 2025, vol.82, no.1 129

4) Recovery time delay

In the restoration scheme, the number of flow setup messages exchanged between OpenFlow
switches and a controller usually influences the recovery time. The underlying idea behind link failure
recovery is to migrate affected flow entries from a failed port to another active port. This migration can
be carried out by changing the output port number of the affected flow entries to another port number.
In OpenFlow networks, port number changes are typically accomplished by sequentially sending flow
setup messages from a controller to a switch. Because message transport is performed sequentially,
a larger number of messages requires more recovery time. Moreover, failure restoration may extend
recovery time; additionally, the time spent transmitting the flow modification message for per-flow
detouring increases as the number of flows to recover grows. Higher recovery times also cause traffic
delays and packet loss. As a result, this approach could fail to meet the CGN’s delay bounds of 50
ms. While in protection, the backup paths are preconfigured, so if a link fails, the switch can locally
redirect the disrupted flows without consulting the controller, reducing recovery time and potentially
meeting the CGN’s needs.

5) Flexibility

Restoration is considered to be dynamic and flexible by allocating backup paths dynamically
because it depends on a consistent network topology. This has a considerable effect on the overall
SDN efficiency. For example, how flexibility could affect the SDN networks is link congestion. The
configuration of backup paths in protection is static and this may lead to congestion in other links after
the failure. While in restoration the controller will consider the utilization of the links while computing
the backup path to avoid link congestion.

6) Compatibility

The restoration technique uses the fundamental features in OpenFlow, while protection could use
advanced features that are not supported in all OpenFlow versions that are implemented in commodity
switches.

7) Scalability

Regarding recovery time, restoration may be suitable in small-scale networks and services that
can tolerate with relatively longer delay in case of link failure, but it may not be suitable for real-time
services. On the other hand, protection is not appropriate for large-scale networks when considering
the overhead on TCAM, as it involves configuring a significant number of flow entries for backup
paths for each working path.

5 Research Challenges and Future Directions

This section discusses the challenges in the research area of the link failure recovery that are still
unaddressed and proposes future research directions to solve them.

5.1 Research Challenges

Despite existing studies proposing solutions for various problems, there are still several unad-
dressed issues:

1. Scalability

As networks grow in size and complexity, scalability becomes a critical challenge for both
controller and switches resources. In large-scale SDN networks, the number of flow entries required
can exceed the capacity of TCAM, leading to a reduction in the number of entries that can be stored

130 CMC, 2025, vol.82, no.1

or an increase in the number of packets that must be forwarded to the controller for processing. This
can result in increased latency, packet loss, and reduced network performance. In restoration-based
techniques, frequent path computation can put an additional processing overhead on the controller,
and frequently updating the flow entries at the switches can cause bottlenecks.

2. Latency

Meeting the carrier-grade network requirement of less than 50 ms recovery time is challenging
especially for large-scale networks. Restoration methods may introduce delays due to the time needed
for the controller to detect, compute and install new paths.

3. Security

SDN introduces new security vulnerabilities due to its centralized control architecture. Attackers
may exploit these weaknesses in falsifying the controller by causing false failure alarms or by fabricate
fake links between switches. The falsified topology at the controller will affect the recovery from link
failures.

4. Resource Constraints

Limited processing capacity in controllers and limited memory in switches introduce availability
and scalability challenges. Efficient utilization of these resources is fundamental to prevent bottlenecks
and ensure timely recovery. Restoration recovery techniques are often preferred for their flexibility
in dealing with frequent traffic changes. However, frequent path computation can add additional
processing overhead on the controller, and continuous updates to the flow entries at the switches
can cause bottlenecks. Conversely, the use of TCAM in SDN networks can be a significant challenge
due to its limited size and high cost. Protection-based mechanisms often require a large number of
pre-installed flow entries, consuming significant TCAM memory in switches, which is limited and
expensive.

5. Congestion Awareness

Post-failure traffic rerouting may lead to congestion on alternative paths. Existing recovery
mechanisms, particularly protection-based, may not consider the current network load, potentially
causing link congestion and then overall network performance degradation.

5.2 Future Directions

To address the above challenges, we propose the following future research directions:

1. Integration of AI and Machine Learning

Applying AI and machine learning techniques can enhance failure detection and recovery by
learning from historical data [95]. These models can predict failures and optimize resource allocation
by recommending the type of failure recovery method [96,97].

2. Development of Secure Detection Protocols

Implementing secure protocols for topology discovery and failure detection with authentication
and encryption can prevent malicious interference in failure detection and recovery processes by
securing the controller from falsified topology [98].

3. Hybrid Recovery Mechanisms

Designing adaptive mechanisms that combine restoration and protection methodology can
leverage the advantages of both approaches. Flows can be classified based on QoS requirements which
help apply the appropriate recovery method to achieve scalability and efficiency [99].

CMC, 2025, vol.82, no.1 131

4. Resource-Efficient Algorithms

Regarding the switches’ memory resources, it is recommended to utilize flow aggregation or com-
pression, dynamically managing flow tables, and using hybrid memory architectures. For controller
processing capacity, the computational path time, while others involve path selection methods that use
a fixed number of operations [100].

5. Congestion-Aware Recovery Strategies

Incorporating real-time traffic monitoring applications into recovery decisions can prevent con-
gestion and ensure smooth traffic flow after failures [101].

6 Conclusion

This survey explored the vital aspects of failure detection and recovery in Software-Defined
Networking (SDN), highlighting its promise as a paradigm for centralized control and improved
network management. As SDN becomes increasingly important to Carrier Grade networks, the chal-
lenge of sustaining high service availability, particularly in detecting and recovering from link failures
in the data plane, has become more dominant. A comprehensive survey of the literature exposes
a variety of approaches, each with both advantages and disadvantages in terms of efficiency and
performance. Restoration-based and protection-based approaches were critically evaluated, providing
insights into their respective trade-offs in terms of recovery speed, switches’ TCAM memory efficiency,
and implementation complexity.

Despite the existence of different significant approaches, the survey highlights persistent gaps that
are required to be addressed to realize the SDN in modern network infrastructures. Future research
must focus on developing more adaptive, scalable, and efficient failure recovery techniques that can
meet the requirements of next-generation networks. This includes refining detection algorithms for
faster response times, optimizing recovery methods to minimize the recovery time and efficiently
use limited resources such as the memory of the switches at the data plane, and exploring hybrid
approaches that utilize the strengths of both restoration and protection approaches. Additionally, inte-
grating AI and machine learning and enhancing security will be crucial. Considering and addressing
these challenges, will help to speed up the realization of SDN at the scale of modern networks, ensuring
service reliability. Moreover, improving link failure detection and recovery mechanisms has significant
implications for network performance, reducing downtime, enhancing reliability, and supporting real-
world applications such as cloud services, Internet of Things (IoT), and 5G networks.

Acknowledgement: The anonymous reviewers of Computers, Materials & Continua journal are highly
acknowledged for their valuable comments, which enhanced the quality of this paper.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: Suheib Alhiyari was responsible for ideation, research, development, and
writing of the initial draft. Siti Hafizah AB Hamid and Nur Nasuha Daud reviewed the manuscript
and provided comments to enhance the first version. They also contributed to leading, reviewing, and
removing grammatical problems. Each author participated sufficiently in the production to take public
responsibility for the relevant percentage of the content. All authors reviewed results and approved the
final version of the manuscript.

132 CMC, 2025, vol.82, no.1

Availability of Data and Materials: This article does not involve data availability, and this section is
not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] J. Ali, G. Lee, B. Roh, D. K. Ryu, and G. Park, “Software-defined networking approaches for link failure

recovery: A survey,” Sustainability, vol. 12, no. 10, May 2020, Art. no. 4255. doi: 10.3390/su12104255.
[2] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool and W. Dou, “Complementing IoT services

through software defined networking and edge computing: A comprehensive survey,” IEEE Commun.
Surv. Tutorials., vol. 22, no. 3, pp. 1761–1804, 2020. doi: 10.1109/COMST.2020.2997475.

[3] D. Sanvito and A. Geraci, “Traffic management in networks with programmable data planes,” 2021.
Accessed: Nov. 15, 2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:226000493

[4] T. Semong et al., “A review on Software Defined Networking as a solution to link failures,” Sci. African,
vol. 21, Feb. 2023, Art. no. e01865. doi: 10.1016/j.sciaf.2023.e01865.

[5] N. Khan, R. Bin Salleh , A. Koubaa, Z. Khan, M. K. Khan and I. Ali, “Data plane failure and its recovery
techniques in SDN: A systematic literature review,” J. King Saud Univ.-Comput. Inf. Sci., vol. 35, no. 3,
pp. 176–201, 2023. doi: 10.1016/j.jksuci.2023.02.001.

[6] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California fault lines: Understanding the
causes and impact of network failures,” Comput. Commun. Rev., vol. 40, no. 4, pp. 315–326, 2010. doi:
10.1145/1851275.1851220.

[7] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. -N. Chuah, and C. Diot, “Characterization of
failures in an IP backbone,” in IEEE INFOCOM 2004, IEEE, 2004, pp. 2307–2317. doi: 10.1109/INF-
COM.2004.1354653.

[8] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve or die: High-availability design
principles drawn from Google’s network infrastructure,” in SIGCOMM 2016-Proc. 2016 ACM Conf. Spec.
Interes. Gr. Data Commun., 2016, pp. 58–72. doi: 10.1145/2934872.2934891.

[9] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “In-band control, queuing, and
failure recovery functionalities for openflow,” IEEE Netw., vol. 30, no. 1, pp. 106–112, 2016. doi:
10.1109/MNET.2016.7389839.

[10] P. Thorat, S. M. Raza, D. S. Kim, and H. Choo, “Rapid recovery from link failures in software-defined
networks,” J. Commun. Netw., vol. 19, no. 6, pp. 648–665, 2017. doi: 10.1109/JCN.2017.000105.

[11] ITU-T, “G.1010: End-user multimedia QoS categories,” Int. Telecommun. Union 1010, 2001.
Accessed: Nov. 15, 2024. [Online]. Available: http://scholar.google.com.au/scholar?hl=en&q=ITU-T+
Recommendation+G.1010&btnG=&as_sdt=1,5&as_sdtp=#7

[12] S. Ahmad and A. H. Mir, Scalability, Consistency, Reliability and Security in SDN Controllers: A Survey
of Diverse SDN Controllers. USA: Springer, 2021, vol. 29. doi: 10.1007/s10922-020-09575-4.

[13] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 2, pp. 87–98, Apr. 2014. doi: 10.1145/2602204.2602219.

[14] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and dependable software-defined net-
works,” in Proc. Second ACM SIGCOMM Workshop Hot Top. Softw. Defin. Netw.-HotSDN’13, New
York, NY, USA, ACM Press, 2013. doi: 10.1145/2491185.2491199.

[15] Z. A. Bhuiyan, S. Islam, M. M. Islam, A. B. M. A. Ullah, F. Naz and M. S. Rahman, “On the (in)security
of the control plane of SDN architecture: A survey,” IEEE Access, vol. 11, pp. 91550–91582, 2023. doi:
10.1109/ACCESS.2023.3307467.

https://doi.org/10.3390/su12104255
https://doi.org/10.1109/COMST.2020.2997475
https://api.semanticscholar.org/CorpusID:226000493
https://doi.org/10.1016/j.sciaf.2023.e01865
https://doi.org/10.1016/j.jksuci.2023.02.001
https://doi.org/10.1145/1851275.1851220
https://doi.org/10.1109/INFCOM.2004.1354653
https://doi.org/10.1145/2934872.2934891
https://doi.org/10.1109/MNET.2016.7389839
https://doi.org/10.1109/JCN.2017.000105
http://scholar.google.com.au/scholar?hl=en&q=ITU-T+Recommendation+G.1010&btnG=&as_sdt=1,5&as_sdtp=#7
http://scholar.google.com.au/scholar?hl=en&q=ITU-T+Recommendation+G.1010&btnG=&as_sdt=1,5&as_sdtp=#7
https://doi.org/10.1007/s10922-020-09575-4
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1109/ACCESS.2023.3307467

CMC, 2025, vol.82, no.1 133

[16] S. Shirali-Shahreza and Y. Ganjali, “Efficient implementation of security applications in openflow
controller with FleXam,” in 2013 IEEE 21st Ann. Symp. High-Perform. Interconn., IEEE, Aug. 2013, pp.
49–54. doi: 10.1109/HOTI.2013.17.

[17] N. L. M. Van Adrichem, B. J. Van Asten, and F. A. Kuipers, “Fast recovery in software-defined
networks,” in Proc. 2014 3rd Eur. Work. Software-Defined Networks, EWSDN 2014, 2014, pp. 61–66. doi:
10.1109/EWSDN.2014.13.

[18] Open Networking Foundation, “SDN architecture: Overview and principles.” Accessed: Jul. 1, 2023.
[Online]. Available: https://opennetworking.org.

[19] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “Enabling fast failure recovery in
OpenFlow networks,” in 2011 8th Int. Workshop Des. Reliable Commun. Netw. (DRCN), Krakow, Poland,
IEEE, 2011, pp. 164–171. doi: 10.1109/DRCN.2011.6076899.

[20] V. Muthumanikandan and C. Valliyammai, “Link failure recovery using shortest path fast rerouting tech-
nique in SDN,”Wirel. Pers. Commun., vol. 97, no. 2, pp. 2475–2495, 2017. doi: 10.1007/s11277-017-4618-0.

[21] H. Nurwarsito and G. Prasetyo, “Implementation failure recovery mechanism using VLAN ID in
software defined networks,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 1, pp. 709–714, 2023. doi:
10.14569/issn.2156-5570.

[22] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, “OpenFlow: Meeting
carrier-grade recovery requirements,” Comput. Commun., vol. 36, no. 6, pp. 656–665, 2013. doi:
10.1016/j.comcom.2012.09.011.

[23] B. Raeisi and A. Giorgetti, “Software-based fast failure recovery in load balanced SDN-based datacenter
networks,” in Proc. 6th Int. Conf. Inf. Commun. Manag. (ICICM), 2016, pp. 95–99. doi: 10.1109/INFO-
COMAN.2016.7784222.

[24] B. Isyaku, K. Bin Abu Bakar, M. N. Yusuf, and M. S. Mohd Zahid, “Software defined networking failure
recovery with flow table aware and flows classification,” in ISCAIE 2021-IEEE 11th Symp. Comput. Appl.
Ind. Electron., 2021, pp. 337–342. doi: 10.1109/ISCAIE51753.2021.9431786.

[25] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, “Effective switch memory management in
OpenFlow networks,” in DEBS 2014-Proc. 8th ACM Int. Conf. Distrib. Event-Based Syst., 2014, pp. 177–
188. doi: 10.1145/2611286.2611301.

[26] Z. Liu, M. Lian, J. Guo, and G. Wang, “An efficient flow detection and scheduling method in data
center networks,” in CONF-CDS 2021: The 2nd Int. Conf. Comput. Data Sci., pp. 1–7, 2021. doi:
10.1145/3448734.3450819.

[27] T. Zhang, Y. Lei, Q. Zhang, S. Zou, J. Huang and F. Li, “Fine-grained load balancing with traffic-aware
rerouting in datacenter networks,”J. Cloud Comput., vol. 10, no. 1, 2021. doi: 10.1186/s13677-021-00252-8.

[28] Y. Al Mtawa, A. Haque, and H. Lutfiyya, “Migrating from legacy to software defined networks: A
network reliability perspective,” IEEE Trans. Reliab., vol. 70, no. 4, pp. 1525–1541, Dec. 2021. doi:
10.1109/TR.2021.3066526.

[29] J. Chen, J. Chen, F. Xu, M. Yin, and W. Zhang, “When software defined networks meet fault tolerance: A
survey,” in Lecture Notes in Computer Science, Cham: Springer International Publishing, 2015, vol. 9530,
pp. 351–368, doi: 10.1007/978-3-319-27137-8_27.

[30] P. C. Fonseca and E. S. Mota, “A survey on fault management in software-defined networks,” IEEE
Commun. Surv. Tutori., vol. 19, no. 4, pp. 2284–2321, 2017. doi: 10.1109/COMST.2017.2719862.

[31] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, “Fault-tolerance in the scope of Software-Defined
Networking (SDN),” IEEE Access, vol. 7, pp. 124474–124490, 2019. doi: 10.1109/ACCESS.2019.2939115.

[32] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topology discovery in OpenFlow-
based Software Defined Networks,” Comput. Commun., vol. 77, no. Supplement C, pp. 52–61, 2016. doi:
10.1016/j.comcom.2015.09.013.

[33] S. Khan, A. Gani, A. W. A. Wahab, M. Guizani, and M. K. Khan, “Topology discovery in software
defined networks: Threats, taxonomy, and state-of-the-art,” IEEE Commun. Surv. Tutori., vol. 19, no. 1,
pp. 303–324, 2017. doi: 10.1109/COMST.2016.2597193.

https://doi.org/10.1109/HOTI.2013.17
https://doi.org/10.1109/EWSDN.2014.13
https://opennetworking.org
https://doi.org/10.1109/DRCN.2011.6076899
https://doi.org/10.1007/s11277-017-4618-0
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.1016/j.comcom.2012.09.011
https://doi.org/10.1109/INFOCOMAN.2016.7784222
https://doi.org/10.1109/ISCAIE51753.2021.9431786
https://doi.org/10.1145/2611286.2611301
https://doi.org/10.1145/3448734.3450819
https://doi.org/10.1186/s13677-021-00252-8
https://doi.org/10.1109/TR.2021.3066526
https://doi.org/10.1007/978-3-319-27137-8_27
https://doi.org/10.1109/COMST.2017.2719862
https://doi.org/10.1109/ACCESS.2019.2939115
https://doi.org/10.1016/j.comcom.2015.09.013
https://doi.org/10.1109/COMST.2016.2597193

134 CMC, 2025, vol.82, no.1

[34] A. Azzouni, R. Boutaba, N. T. M. Trang, and G. Pujolle, “sOFTDP: Secure and efficient OpenFlow
topology discovery protocol,” in NOMS 2018-2018 IEEE/IFIP Netw. Operat. Manag. Symp., IEEE, Apr.
2018, pp. 1–7. doi: 10.1109/NOMS.2018.8406229.

[35] Linux Foundation, “OpenDaylight,” 2019. Accessed: Nov. 15, 2023. [Online]. Available: https://www.
opendaylight.org/

[36] Project Floodlight Team, “Project Floodlight,” Accessed: Jan. 2, 2024. [Online]. Available: https://
floodlight.atlassian.net/wiki/display/floodlightcontroller/Supported+Topologies

[37] R. Jawaharan, P. M. Mohan, T. Das, and M. Gurusamy, “Empirical evaluation of SDN controllers
using mininet/wireshark and comparison with cbench,” in 2018 27th Int. Conf. Comput. Commun. Netw.
(ICCCN), IEEE, Jul. 2018, pp. 1–2. doi: 10.1109/ICCCN.2018.8487382.

[38] Ryu Development Team, “Ryu SDN controller,” Accessed: Jan. 2, 2024. [Online]. Available: https://ryu-
sdn.org/

[39] D. Erickson, “The beacon openflow controller,” in Proc. Second ACM SIGCOMM Workshop Hot
Top. Softw. Defin. Netw.-HotSDN’13, New York, New York, USA, ACM Press, 2013, p. 13. doi:
10.1145/2491185.2491189.

[40] “Cisco open SDN controller,” 2019. Accessed: Nov. 15, 2024. [Online]. Available: http://www.cisco.com/
c/en/us/products/cloud-systemsmanagement/opensdncontroller/index.html

[41] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in software-defined networks: New
attacks and countermeasures,” in Proc. 2015 Netw. Distrib. Syst. Secur. Symp., Reston, VA, Internet
Society, 2015. doi: 10.14722/ndss.2015.23283.

[42] X. Zhao, L. Yao, and G. Wu, “ESLD: An efficient and secure link discovery scheme for software-defined
networking,” Int. J. Commun. Syst., vol. 31, no. 10, Jul. 2018, Art. no. e3552. doi: 10.1002/dac.3552.

[43] GENI Project Team, “OpenFlow Discovery Protocol,” 2021. Accessed: Jan. 2, 2024. Available: http://
groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol

[44] A. Mayoral, R. Vilalta, R. Muñoz, R. Casellas, and R. Martínez, “SDN orchestration architectures and
their integration with Cloud Computing applications,” Opt. Switch. Netw., vol. 26, no. 10, pp. 2–13, 2017.
doi: 10.1016/j.osn.2015.09.007.

[45] Y. Jia, L. Xu, Y. Yang, and X. Zhang, “Lightweight automatic discovery protocol for openflow-
based software defined networking,” IEEE Commun. Lett., vol. 24, no. 2, pp. 312–315, Feb. 2020. doi:
10.1109/LCOMM.2019.2956033.

[46] L. Ochoa Aday, C. Cervelló Pastor, and A. ernández Fernández, “Current trends of topology discovery
in OpenFlow-based software defined networks,” 2015. doi: 10.13140/RG.2.2.12222.89929.

[47] L. Ochoa-Aday, C. Cervello-Pastor, A. Fernandez-Fernandez, “eTDP: Enhanced topology discovery
protocol for software-defined networks,” IEEE Access, vol. 7, pp. 23471–23487, 2019. doi: 10.1109/AC-
CESS.2019.2899653.

[48] M. T. BAH, A. Azzouni, M. T. Nguyen, and G. Pujolle, “Topology discovery performance evaluation of
opendaylight and ONOS controllers,” in 2019 22nd Conf. Innov. Clouds, Inter. Netw. Workshops (ICIN),
IEEE, Feb. 2019, pp. 285–291. doi: 10.1109/ICIN.2019.8685915.

[49] M. T. Bah, V. Del-Piccolo, M. Bourguiba, and K. Haddadou, “A centralized controller to improve fault
tolerance in TRILL-based fabric networks,” in 2016 3rd Smart Cloud Netw. Syst. (SCNS), IEEE, Dec.
2016, pp. 1–6. doi: 10.1109/SCNS.2016.7870564.

[50] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester, “Software defined networking: Meeting
carrier grade requirements,” in 2011 18th IEEE Workshop on Local Metropol. Area Netw. (LANMAN),
IEEE, 2011, pp. 1–6.

[51] Open Networking Foundation (ONF), “OpenFlow specification,” Version 1.5.1, Open Networking
Foundation, 2015. Accessed: Jan. 2, 2024. [Online]. Available: https://opennetworking.org/openflow/.

[52] D. W. D. Katz, “Bidirectional forwarding detection,” 2010. doi: 10.17487/rfc5880.
[53] S. S. W. Lee, K. Y. Li, K. Y. Chan, G. H. Lai, and Y. C. Chung, “Path layout planning and software based

fast failure detection in survivable OpenFlow networks,” in 10th Int. Conf. Des. Reliab. Commun. Netw.,
2014, pp. 1–8. doi: 10.1109/DRCN.2014.6816141.

https://doi.org/10.1109/NOMS.2018.8406229
https://www.opendaylight.org/
https://www.opendaylight.org/
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Supported+Topologies
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Supported+Topologies
https://doi.org/10.1109/ICCCN.2018.8487382
https://ryu-sdn.org/
https://ryu-sdn.org/
https://doi.org/10.1145/2491185.2491189
http://www.cisco.com/c/en/us/products/cloud-systemsmanagement/opensdncontroller/index.html
http://www.cisco.com/c/en/us/products/cloud-systemsmanagement/opensdncontroller/index.html
https://doi.org/10.14722/ndss.2015.23283
https://doi.org/10.1002/dac.3552
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
https://doi.org/10.1016/j.osn.2015.09.007
https://doi.org/10.1109/LCOMM.2019.2956033
https://doi.org/10.13140/RG.2.2.12222.89929
https://doi.org/10.1109/ACCESS.2019.2899653
https://doi.org/10.1109/ICIN.2019.8685915
https://doi.org/10.1109/SCNS.2016.7870564
https://opennetworking.org/openflow/
https://doi.org/10.17487/rfc5880
https://doi.org/10.1109/DRCN.2014.6816141

CMC, 2025, vol.82, no.1 135

[54] K. Y. Chan, C. H. Chen, Y. H. Chen, Y. J. Tsai, S. S. W. Lee and C. S. Wu, “Fast failure recovery for
in-band controlled multi-controller openflow networks,” in 9th Int. Conf. Inf. Commun. Technol. Converg.
ICT Converg. Pow. Smart Intell. ICTC 2018, 2018, pp. 396–401. doi: 10.1109/ICTC.2018.8539715.

[55] U. C. Kozat, G. Liang, and K. Kokten, “On diagnosis of forwarding plane via static forwarding rules
in Software Defined Networks,” in Proc. IEEE INFOCOM, 2014, pp. 1716–1724. doi: 10.1109/INFO-
COM.2014.6848109.

[56] D. Lopez-Pajares, G. Ibanez, J. M. Arco, B. N. Constantin, and E. Rojas, “Combined ARP-Path & RSTP
bridges for smooth migration to robust shortest path bridging,” in 2019 IEEE 44th Conf. Local Comput.
Netw. (LCN), IEEE, Oct. 2019, pp. 93–96. doi: 10.1109/LCN44214.2019.8990689.

[57] K. Gilbert and S. M. Musa, “Open shortest path first protocol with failure recovery in IP network
performance measurement,” in 2021 6th IEEE Int. Conf. Recent Adv. Innov. Eng. (ICRAIE), IEEE, Dec.
2021, pp. 1–4. doi: 10.1109/ICRAIE52900.2021.9703992.

[58] S. Sharma, D. Colle, and M. Pickavet, “Enabling fast failure recovery in OpenFlow networks using route-
Flow,” in IEEE Work. Local Metrop. Area Networks, vol. 2020, 2020. doi: 10.1109/LANMAN49260.2020.

[59] J. Nagano and N. Shinomiya, “A failure recovery method based on cycle structure and its verifi-
cation by OpenFlow,” in Proc. Int. Conf. Adv. Inf. Netw. Appl. (AINA), 2013, pp. 298–303. doi:
10.1109/AINA.2013.81.

[60] J. Li, J. Hyun, J. -H. Yoo, S. Baik, and J. W. -K. Hong, “Scalable failover method for Data Center Networks
using OpenFlow,” in 2014 IEEE Netw. Operat. Manag. Symp. (NOMS), IEEE, May 2014, pp. 1–6. doi:
10.1109/NOMS.2014.6838393.

[61] S. Astaneh and S. S. Heydari, “Multi-failure restoration with minimal flow operations in software defined
networks,” in 2015 11th Int. Conf. Des. Reliab. Commun. Networks, DRCN 2015, 2015, pp. 263–266. doi:
10.1109/DRCN.2015.7149024.

[62] A. Malik, B. Aziz, M. Adda, and C. H. Ke, “Optimisation methods for fast restoration of software-defined
networks,” IEEE Access, vol. 5, pp. 16111–16123, 2017. doi: 10.1109/ACCESS.2017.2736949.

[63] X. Zhang, Z. Cheng, R. Lin, L. He, S. Yu and H. Luo, “Local fast reroute with flow aggregation
in software defined networks,” IEEE Commun. Lett., vol. 21, no. 4, pp. 785–788, Apr. 2017. doi:
10.1109/LCOMM.2016.2638430.

[64] K. Qiu, J. Zhao, X. Wang, X. Fu, and S. Secci, “Efficient recovery path computation for fast reroute in
large-scale software-defined networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp. 1755–1768, 2019.
doi: 10.1109/JSAC.2019.2927098.

[65] D. B. Swarna and V. Muthumanikandan, “Nested failure detection and recovery in software defined
networks,” in Proc. 2019 3rd IEEE Int. Conf. Electr. Comput. Commun. Technol., ICECCT 2019, 2019,
pp. 1–6. doi: 10.1109/ICECCT.2019.8869085.

[66] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y. Turner and N. Feamster, “Coronet: Fault tolerance
for software defined networks,” in 2012 20th IEEE Int. Conf. on Netw. Proto. (ICNP), IEEE, 2012, pp.
1–2.

[67] M. Shojaee, M. Neves, and I. Haque, “SafeGuard: Congestion and memory-aware failure recovery
in SD-WAN,” in 2020 16th Int. Conf. Netw. Serv. Manag. (CNSM), IEEE, Nov. 2020, pp. 1–7. doi:
10.23919/CNSM50824.2020.9269119.

[68] I. V. Bastos, V. C. Ferreira, D. C. Muchaluat-Saade, C. V. N. De Albuquerque, and I. M. Moraes, “Path
recovery algorithm using fast-failover for software-defined networks,” in 2020 4th Conf. Cloud Internet
Things, CIoT 2020, 2020, pp. 49–52. doi: 10.1109/CIoT50422.2020.9244292.

[69] E. Bellagamba, J. Kempf, and P. Sköldström, “Link failure detection and traffic redirection in an openflow
network,” vol. 1, no. 19, 2011. Accessed: Jan. 2, 2024, [Online]. Available: http://www.diva-portal.org/
smash/record.jsf?pid=diva2:613241.

[70] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs and P. Skoldstrom, “Scalable fault management
for OpenFlow,” in 2012 IEEE Int. Conf. Commun. (ICC), IEEE, Jun. 2012, pp. 6606–6610. doi:
10.1109/ICC.2012.6364688.

https://doi.org/10.1109/ICTC.2018.8539715
https://doi.org/10.1109/INFOCOM.2014.6848109
https://doi.org/10.1109/LCN44214.2019.8990689
https://doi.org/10.1109/ICRAIE52900.2021.9703992
https://doi.org/10.1109/LANMAN49260.2020
https://doi.org/10.1109/AINA.2013.81
https://doi.org/10.1109/NOMS.2014.6838393
https://doi.org/10.1109/DRCN.2015.7149024
https://doi.org/10.1109/ACCESS.2017.2736949
https://doi.org/10.1109/LCOMM.2016.2638430
https://doi.org/10.1109/JSAC.2019.2927098
https://doi.org/10.1109/ICECCT.2019.8869085
https://doi.org/10.23919/CNSM50824.2020.9269119
https://doi.org/10.1109/CIoT50422.2020.9244292
http://www.diva-portal.org/smash/record.jsf?pid=diva2:613241
http://www.diva-portal.org/smash/record.jsf?pid=diva2:613241
https://doi.org/10.1109/ICC.2012.6364688

136 CMC, 2025, vol.82, no.1

[71] Y. D. Lin, H. Y. Teng, C. R. Hsu, C. C. Liao, and Y. C. Lai, “Fast failover and switchover for link failures
and congestion in software defined networks,” in 2016 IEEE Int. Conf. Commun., ICC 2016, 2016. doi:
10.1109/ICC.2016.7510886.

[72] C. Cascone, D. Sanvito, L. Pollini, A. Capone, and B. Sansò, “Fast failure detection and recovery in SDN
with stateful data plane,” Int. J. Netw. Manag., vol. 27, no. 2, pp. 1–14, 2017. doi: 10.1002/nem.1957.

[73] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState,” ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 44–51, Apr. 2014. doi: 10.1145/2602204.2602211.

[74] S. S. Kumar, S. Sharathkumar, R. Scholar, and N. Sreenath, “A fast failover technique for link failures and
proactive controller based fault recovery mechanism in software deened networks a fast failover technique
for link failures and proactive controller based fault recovery mechanism in software defined network,”
2022. doi: 10.21203/rs.3.rs-1975833/v1.

[75] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast failover via forwarding table
compression,” in Proc. Symp. SDN Res., New York, NY, USA, ACM, Mar. 2016, pp. 1–12. doi:
10.1145/2890955.2890957.

[76] B. Stephens, A. L. Cox, and S. Rixner, “Plinko: Building provably resilient forwarding tables,” in Proc.
12th ACM Work. Hot Top. Networks, HotNets 2013, 2013. doi: 10.1145/2535771.2535774.

[77] H. Li, Q. Li, Y. Jiang, T. Zhang, and L. Wang, “A declarative failure recovery system in software defined
networks,” in 2016 IEEE Int. Conf. Commun., ICC 2016, 2016. doi: 10.1109/ICC.2016.7510887.

[78] P. Thorat, S. Jeon, and H. Choo, “Enhanced local detouring mechanisms for rapid and lightweight
failure recovery in OpenFlow networks,” Comput. Commun., vol. 108, pp. 78–93, Aug. 2017. doi:
10.1016/j.comcom.2017.04.005.

[79] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Source routed forwarding with software
defined control, considerations and implications,” in Conex. Student 2012-Proc. ACM Conf. 2012 Conex.
Student Work., 2012, pp. 43–44. doi: 10.1145/2413247.2413274.

[80] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Exploring source routed forwarding
in SDN-based WANs,” in 2014 IEEE Int. Conf. Commun., ICC 2014, 2014, pp. 3070–3075. doi:
10.1109/ICC.2014.6883792.

[81] L. Huang, Q. Shen, and W. Shao, “Congestion aware fast link failure recovery of SDN network
based on source routing,” KSII Trans. Internet Inf. Syst., vol. 11, no. 11, pp. 5200–5222, 2017. doi:
10.3837/tiis.2017.11.002.

[82] A. Malik, B. Aziz, M. Adda, and C. H. Ke, “Smart routing: Towards proactive fault handling of software-
defined networks,”Comput. Networks, vol. 170, 2020, Art. no. 107104. doi: 10.1016/j.comnet.2020.107104.

[83] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, “OpenFlow-based segment pro-
tection in ethernet networks,” J. Opt. Commun. Netw., vol. 5, no. 9, Sep. 2013, Art. no. 1066. doi:
10.1364/JOCN.5.001066.

[84] N. M. Sahri and K. Okamura, “Fast failover mechanism for software defined networking-openflow
based,” in CFI ’14: Proc. Ninth Int. Conf. Future Internet Technologi., 2014, pp. 2–3, doi:
10.1145/2619287.2619303.

[85] V. Padma and P. Yogesh, “Proactive failure recovery in OpenFlow based Software Defined Networks,”
in 2015 3rd Int. Conf. Signal Process. Commun. Networking, ICSCN 2015, 2015. doi: 10.1109/IC-
SCN.2015.7219846.

[86] P. M. Mohan, T. Truong-Huu, and M. Gurusamy, “TCAM-aware local rerouting for fast and efficient
failure recovery in software defined networks,” 2016. doi: 10.1109/glocom.2015.7417309.

[87] S. Wang, H. Xu, L. Huang, X. Yang, and J. Liu, “Fast recovery for single link failure with segment
routing in SDNs,” in Proc. 21st IEEE Int. Conf. High Perform. Comput. Commun. 17th IEEE Int. Conf.
Smart City 5th IEEE Int. Conf. Data Sci. Syst. HPCC/SmartCity/DSS 2019, 2019, pp. 2013–2018. doi:
10.1109/HPCC/SmartCity/DSS.2019.00278.

[88] C. Cascone, L. Pollini, D. Sanvito, and A. Capone, “Traffic management applications for stateful
SDN data plane,” in Proc. Eur. Work. Softw. Defin. Networks (EWSDN), 2015, pp. 85–90. doi:
10.1109/EWSDN.2015.66.

https://doi.org/10.1109/ICC.2016.7510886
https://doi.org/10.1002/nem.1957
https://doi.org/10.1145/2602204.2602211
https://doi.org/10.21203/rs.3.rs-1975833/v1
https://doi.org/10.1145/2890955.2890957
https://doi.org/10.1145/2535771.2535774
https://doi.org/10.1109/ICC.2016.7510887
https://doi.org/10.1016/j.comcom.2017.04.005
https://doi.org/10.1145/2413247.2413274
https://doi.org/10.1109/ICC.2014.6883792
https://doi.org/10.3837/tiis.2017.11.002
https://doi.org/10.1016/j.comnet.2020.107104
https://doi.org/10.1364/JOCN.5.001066
https://doi.org/10.1145/2619287.2619303
https://doi.org/10.1109/ICSCN.2015.7219846
https://doi.org/10.1109/glocom.2015.7417309
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00278
https://doi.org/10.1109/EWSDN.2015.66

CMC, 2025, vol.82, no.1 137

[89] A. Capone, C. Cascone, A. Q. T. Nguyen, and B. Sanso, “Detour planning for fast and reliable failure
recovery in SDN with OpenState,” in 2015 11th Int. Conf. Des. Reliab. Commun. Netw. (DRCN), IEEE,
Mar. 2015, pp. 25–32. doi: 10.1109/DRCN.2015.7148981.

[90] D. Adami, S. Giordano, M. Pagano, and N. Santinelli, “Class-based traffic recovery with load balancing
in software-defined networks,” in 2014 IEEE Globecom Work., GC Wkshps. 2014, 2014, pp. 161–165. doi:
10.1109/GLOCOMW.2014.7063424.

[91] S. Petale and J. Thangaraj, “Link failure recovery mechanism in software defined networks,” IEEE J. Sel.
Areas Commun., vol. 38, no. 7, pp. 1285–1292, Jul. 2020. doi: 10.1109/JSAC.2020.2986668.

[92] A. Malik and R. De Frein, “A proactive-restoration technique for SDNs,” in Proc. IEEE Symp. Comput.
Commun., 2020, vol. 2020, pp. 1–6. doi: 10.1109/ISCC50000.2020.9219598.

[93] Z. Zhu, H. Yu, Q. Liu, D. Liu, and B. Mei, “FFRLI: Fast fault recovery scheme based on link
importance for data plane in SDN,” Comput. Networks, vol. 237, 2023, Art. no. 110062. doi:
10.1016/j.comnet.2023.110062.

[94] Y. Zhao, A. Saeed, M. Ammar, and E. Zegura, “Scouting the path to a million-client server,” vol. 12671,
pp. 337–354, 2021. doi: 10.1007/978-3-030-72582-2.

[95] Y. Wang et al., “Virtual network fault management platform and mechanism based on big data,” in
2023 IEEE Int. Symp. Broadband Multim. Syst. Broadcast. (BMSB), IEEE, Jun. 2023, pp. 1–4. doi:
10.1109/BMSB58369.2023.10211122.

[96] M. Moseva and V. Lipatov, “Research and development of algorithms for improving fault tolerance in
SDN networks based on artificial intelligence,” in 2024 Wave Electron. Appl. Inform. Telecommun. Syst.
(WECONF), IEEE, Jun. 2024, pp. 1–5. doi: 10.1109/WECONF61770.2024.10564664.

[97] Y. Dong et al., “Research on fault management system based on artificial intelligence in data network,”
in 2023 IEEE Int. Symp. Broadband Multim. Syst. Broadcast. (BMSB), IEEE, Jun. 2023, pp. 1–5. doi:
10.1109/BMSB58369.2023.10211345.

[98] S. Soltani, A. Amanlou, M. Shojafar, and R. Tafazolli, “Security of topology discovery service in SDN:
Vulnerabilities and countermeasures,” IEEE Open J. Commun. Soc., vol. 5, pp. 3410–3450, 2024. doi:
10.1109/OJCOMS.2024.3406489.

[99] F. Huicong et al., “SDN network reliability guarantee mechanism based on network characteristics,” in
2023 IEEE 7th Inform. Technol. Mechatron. Eng. Conf. (ITOEC), IEEE, Sep. 2023, pp. 1093–1097. doi:
10.1109/ITOEC57671.2023.10291757.

[100] X. Zhang and J. Chen, “ATL: A link failure recovery method with fast recovery speed, low interruption
rate, and small TCAM consumption in SDN,” in 2023 IEEE 29th Int. Conf. Paral. Distrib. Syst.
(ICPADS), IEEE, Dec. 2023, pp. 2083–2090. doi: 10.1109/ICPADS60453.2023.00283.

[101] G. N. Kumar, K. Katsalis, P. Papadimitriou, P. Pop, and G. Carle, “Failure handling for time-sensitive
networks using SDN and source routing,” in 2021 IEEE 7th Int. Conf. Netw. Softwariz. (NetSoft), IEEE,
Jun. 2021, pp. 226–234. doi: 10.1109/NetSoft51509.2021.9492666.

https://doi.org/10.1109/DRCN.2015.7148981
https://doi.org/10.1109/GLOCOMW.2014.7063424
https://doi.org/10.1109/JSAC.2020.2986668
https://doi.org/10.1109/ISCC50000.2020.9219598
https://doi.org/10.1016/j.comnet.2023.110062
https://doi.org/10.1007/978-3-030-72582-2
https://doi.org/10.1109/BMSB58369.2023.10211122
https://doi.org/10.1109/WECONF61770.2024.10564664
https://doi.org/10.1109/BMSB58369.2023.10211345
https://doi.org/10.1109/OJCOMS.2024.3406489
https://doi.org/10.1109/ITOEC57671.2023.10291757
https://doi.org/10.1109/ICPADS60453.2023.00283
https://doi.org/10.1109/NetSoft51509.2021.9492666

	A Survey of Link Failure Detection and Recovery in Software-Defined Networks
	1 Introduction
	2 Existing Surveys on SDN Failure Recovery
	3 Link Failure Detection Techniques in SDN
	4 Link Failure Recovery Mechanisms in SDN
	5 Research Challenges and Future Directions
	6 Conclusion
	References

