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ABSTRACT

With the rapid development of artificial intelligence, the Internet of Things (IoT) can deploy various machine
learning algorithms for network and application management. In the IoT environment, many sensors and devices
generate massive data, but data security and privacy protection have become a serious challenge. Federated learning
(FL) can achieve many intelligent IoT applications by training models on local devices and allowing AI training on
distributed IoT devices without data sharing. This review aims to deeply explore the combination of FL and the IoT,
and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.
In this paper, we first describe the potential advantages of FL and the challenges faced by current IoT systems in
the fields of network burden and privacy security. Next, we focus on exploring and analyzing the advantages of
the combination of FL on the Internet, including privacy security, attack detection, efficient communication of the
IoT, and enhanced learning quality. We also list various application scenarios of FL on the IoT. Finally, we propose
several open research challenges and possible solutions.
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1 Introduction

IoT refers to a network technology that connects various smart devices, sensors, and terminals
through the Internet to realize the exchange and sharing of information [1]. The development of
the IoT has attracted global attention, and it is considered to be the third information technology
revolution after the computer and the Internet. The application fields of the IoT are vast, covering
many aspects such as smart medical treatment, smart homes, intelligent transportation, and smart
cities. The development of the IoT has not only brought convenience and efficiency to people’s lives and
work but also provided impetus and support for social progress and economic growth. However, the
development of the IoT also faces some challenges and problems [2], the most prominent of which are
data security and privacy protection. Since the IoT involves a large amount of personal and sensitive
data, such as health data, location data, behavioral data, etc., if this data is maliciously attacked or
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leaked, it will bring serious loss and harm to users. In addition, the amount of data in the IoT is also
very large, resulting in the cost and pressure of data transmission and storage. According to statistics,
by 2030, the number of IoT devices will reach 125 billion [3]. These IoT devices will generate huge
amounts of data. A recent report [4] suggests that by 2025, the data generated by IoT devices will
reach 794.4 zettabytes. In addition, the difficulty and complexity of data analysis and processing has
become an important challenge. Therefore, how to realize the safe sharing and efficient use of data in
the IoT is an urgent problem to be solved.

To overcome these challenges, an emerging distributed machine learning framework, FL, has
attracted a lot of attention. FL is a machine learning technique that can use multiple distributed clients
(such as smartphones, tablets, IoT devices, etc.) to collaborate on training a global machine learning
model without centralizing data to a central server [5]. As shown in Fig. 1, The advantage of FL is
that it can protect the privacy and security of the data, as the data is only processed locally and does
not need to be uploaded to the cloud or elsewhere. At the same time, FL can also reduce the overhead
of data transmission and storage, and improve the utilization and value of data. FL has been applied
in many fields, such as intelligent keyboards, speech recognition, image classification, etc. [6].

Figure 1: A schematic diagram of federated learning [7]

FL, when combined with IoT, can bring many advantages to IoT systems. First, FL can effectively
protect sensitive data generated and stored in IoT devices from data breaches or misuse. Second, FL
can reduce communication overhead in IoT systems, as only model parameters need to be transmitted
instead of raw data. In addition, FL can adapt to the heterogeneity in IoT systems, as it can handle
different devices, different data sources, different data distribution, and so on. At present, FL already
has some application scenarios in IoT systems, such as smart homes, intelligent transportation, and
intelligent medical care. For example, in the smart home scenario, multiple families can build a shared
voice recognition or image recognition model through FL, thereby improving the service quality
and user experience of smart devices; In the intelligent traffic scenario, multiple vehicles can realize
information exchange and collaboration among vehicles through FL, so that road data can be used to
judge congestion [8]. In the intelligent medical scenario, multiple medical institutions can share medical
knowledge and experience through federal learning, thereby improving the diagnostic accuracy and
treatment effect [9].
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In order to compare our work with various existing reviews on federated learning, it is essential
to point out that reference [10] primarily focuses on the applications of federated learning in the
field of computer vision, emphasizing specific use cases and the challenges faced, particularly in
the technological advancements related to object detection and video surveillance. In contrast, our
manuscript encompasses the fundamentals, advantages, application scenarios of federated learning,
and its integration within the Internet of Things (IoT), thereby providing a broader perspective. In
terms of content depth, we explore the classification of federated learning and its adaptability to
different application scenarios, particularly how its combination with IoT can enhance data security,
communication efficiency, and the quality of learning. Furthermore, when discussing open challenges,
we outline in detail the specific issues that may arise in the application of federated learning within the
IoT context and propose corresponding solutions. This comparison not only highlights the differences
in research directions and perspectives between the two papers but also underscores the unique
contributions of our study within the context of the Internet of Things.

After determining the research objectives, topic-based keywords were selected, and a research
retrieval was conducted through the Web of Science platform to find relevant research papers on the
application of FL in the IOT. The complete search string used is as follows:

“(TS=(Federated learning) OR TS=(Federated) OR TS=(Machine Learning) OR TS=(Neural
Network) OR TS=(Security) OR TS=(Privacy security) OR TS=(Attack detection)) AND
(TS=(Internet of Things) OR TS=(Industrial Internet of Things) OR TS=(Sensors) OR TS=(Smart
Healthcare) OR TS=(Smart City) OR TS=(Networking of vehicles))”

The Web of Science search yielded 60,035 records up to October 2024. A total of 231 papers were
selected through initial screening. The number of papers was reduced to 84 after an in-depth analysis
of the abstracts and full papers.

The main content and structure of this paper are shown in Fig. 2. Chapter 2 introduces the
concept, advantages, and applications of FL, and analyzes the limitations of centralized FL, as well
as the characteristics and applicable scenarios of different types of FL. Chapter 3 summarizes the
definition, development, characteristics, and problems of the IoT, pointing out the shortcomings
and challenges of the IoT in data privacy security, communication efficiency, attack detection, and
other aspects. Chapter 4 expounds on the vision of the combination of FL and the IoT, analyzes the
advantages of the application of federal learning in the IoT, such as privacy security, communication
efficiency, attack detection, learning quality, etc., as well as the application fields of FL in the IoT, such
as smart medicine, sensors, car networking, etc. Chapter 5 summarizes the challenges faced by the IoT
under FL, such as high communication load, security and privacy issues, heterogeneous type, hardware
constraints, standard specifications, etc., and puts forward possible solutions to these challenges. I
hope this paper can provide some reference and inspiration for the development of FL in the IoT.

Figure 2: Architecture of this article
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2 Overview and Current Status of Federated Learning

In this section, we will provide a comprehensive and detailed introduction to FL, starting from
the limitations of traditional Centralized Learning (CL). This will mainly include the basis of FL, the
classification of FL, the advantages of FL, and the application fields of FL.

2.1 Limitations of Traditional Centralized Learning

Machine learning (ML) is a data-based method that builds a model with the ability to generalize
by learning rules and knowledge from extensive data [11]. It has a wide range of applications in various
fields, such as image recognition, natural language processing, and recommendation systems. However,
with the increasing amount of data and the diversification of data distribution, traditional CL in ML
is facing more and more challenges and limitations [12]. This approach typically requires all data to be
centralized to a central node (Fig. 3), where model training and inference are then performed. There
are several main problems with this CL approach [13]:

1. Data privacy risks in CL: CL necessitates the transfer of raw data from multiple data owners to
a central server for model training. This centralized data storage introduces significant privacy
risks, as data is vulnerable to leakage, unauthorized access, or malicious exploitation during
transmission or at the server. For instance, in healthcare, patient data can be highly sensitive,
and any breach of privacy could lead to a loss of trust and legal repercussions for institutions.
In contrast, FL mitigates these risks by keeping data localized. Instead of sharing raw data,
only encrypted model updates are transmitted between the client devices and the central server.
This approach significantly enhances privacy protection, ensuring that sensitive information
remains secure at its source. Moreover, FL can be combined with techniques such as differential
privacy and secure multi-party computation to further enhance data privacy.

2. Communication overhead in CL: CL typically requires the transfer of vast amounts of raw data
to the central server for model training, which results in high network bandwidth consumption.
In data-intensive scenarios such as the Internet of Things (IoT), where numerous devices
generate large amounts of data, this can lead to network congestion and significant delays.
Moreover, many IoT devices have limited computational and storage capabilities, making
such data transmission inefficient and resource-intensive. In contrast, FL significantly reduces
communication overhead by only transmitting model parameters or updates, which are often
orders of magnitude smaller than the raw data. This not only conserves bandwidth but
also minimizes the delay, making it particularly suitable for low-bandwidth environments or
scenarios with limited connectivity.

3. Computational inefficiency in CL: CL centralizes all computation at a single server, which
can create a bottleneck, especially when dealing with large-scale datasets and complex models.
The central server may become overwhelmed by the volume of data and the complexity of
the computations, leading to slower processing times and lower overall efficiency. FL, on the
other hand, leverages the distributed computational power of client devices. Model training is
performed locally on each device, and the results are aggregated at the central server. This
distributed approach allows for parallel processing, significantly improving computational
efficiency. Additionally, FL can dynamically adjust training strategies based on the capabilities
of individual devices, further enhancing performance in heterogeneous environments like IoT.
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Figure 3: Comparison of FL and CL [14]

2.2 Foundations of Federated Learning

FL is an emerging ML paradigm that allows multiple distributed data owners to collaboratively
train a shared model while preserving data privacy. Instead of transmitting data from data owners
to the central node, FL distributes the model from the central node to each data owner, updates the
model locally, and returns the updated model parameters to the central node for aggregation [15].
In this way, data owners can use their data for model training and inference, and can also enjoy the
advantages brought by the global model. FL was first proposed by Google and implemented on its
smart keyboard [13]. The basic algorithm of FL is Federated Averaging (FedAvg) [16]. The algorithm
consists of the following steps [17], as shown in Fig. 4:

1. Initialization: The server initializes a global model and randomly selects a subset of data
owners as participants;

2. Distribution: The central node sends the global model to the participants and specifies a local
number of training rounds;

3. Update: Participants perform model updates on their local data and send the updated model
parameters encrypted to the server.

4. Aggregation: The server aggregates the model parameters of the received participants to obtain
a new global model;

5. Repeat: The server repeats the above steps until a preset termination condition is reached.
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Figure 4: Process of FL

The basic assumptions of FL:

1. The data of data owners is non-independent and identically distributed (Non-IID), that is, each
data owner’s data comes from the same population distribution and is independent of each
other. Studies have shown that traditional FL may converge slowly when the distribution of
training data between clients is very different [18]. For example, a convolutional neural network
trained with the FedAvg algorithm on a Non-IID dataset will suffer a significant reduction in
accuracy, up to 55% for a highly skewed Non-IID dataset, the Keyword Detection (KWS)
dataset [19].

2. The communication between the data owner and the central server is reliable, that is, the model
parameters transmitted each time arrive at the destination intact and correctly, and will not be
tampered with or corrupted.

2.3 Classification of Federated Learning

We divide FL into two categories based on data distribution and network structure, as shown in
the Fig. 5.

Figure 5: Classification of federated learning
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2.3.1 Classification by Data Distribution

FL can be classified into horizontal FL, vertical FL and federated transfer learning according
to the different distribution of training data, that is, the different distribution of training data in the
sample space and feature space.

Horizontal FL (HFL) (Fig. 6): It is suitable for situations where the data features are similar
between data owners but the data samples are different [20]. For example, banks in different regions
can share credit scoring models of customers through HFL without revealing customers’ personal
information. In 2017, Google designed a HFL scheme for Android phone model updates. The core
idea of this scheme is to let each Android phone user update the model parameters locally on his/her
terminal device, and then transmit the updated parameters to the Android cloud, to build a centralized
model with other users [17]. This approach has a notable advantage in its ability to manage data sources
that share the same feature space, such as user data across multiple devices. The training process
is relatively straightforward and easy to implement, allowing HFL to significantly enhance model
performance while safeguarding user privacy through the use of diverse datasets. However, challenges
may arise when HFL encounters Non-IID datasets, which can affect performance [21]. Additionally,
as the volume of data increases, both communication overhead and computational costs may rise
correspondingly;

Figure 6: Horizontal federated learning (HFL)

Vertical FL (VFL) (Fig. 7): It is suitable for similar data samples between data owners but with
different data characteristics. For example, a bank and an e-commerce company in the same region
can share a customer’s consumption behavior model through VFL without revealing the customer’s
transaction history or shopping preferences. Hardy et al. [22] proposed a VFL scheme to train a logistic
regression model that can achieve privacy protection. Serpanos et al. [23] proposed a malware detection
solution based on VFL, in which FL is used to develop detection models in environments with cross-
island configurations. Experiments show that VFL can bring high malware detection accuracy for all
clients. An advantage of VFL is its ability to manage data from different feature sets, such as patient
records across multiple healthcare institutions, while protecting user privacy. VFL can improve model
performance by leveraging complementary features and helps address challenges like label distribution
skew and attribute skew [24]. However, VFL implementations are more complex compared to other
methods, as they require entity alignment and data modeling. Additionally, when there are significant
differences in the feature sets, model performance may be affected;
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Figure 7: Vertical federated learning (VFL)

Federated Transfer Learning (FTL) (Fig. 8): It is suitable for the situation where data character-
istics and data samples are different between data owners, which helps to reuse existing experience
from the source domain to another related target domain to quickly adapt to the task of the target
domain. For example, enterprises in different domains can use FTL to share related but different task
models without revealing their own business data or domain knowledge. Majeed et al. [25] proposed
and designed an FTL scheme for traffic classification. Tan et al. [26] used transfer learning to pre-train
the dataset for breast cancer classification. One significant advantage of FTL is its ability to reduce
training time and computational resource consumption by reusing pre-trained models on new tasks,
making it particularly beneficial in scenarios where data is scarce or labels are limited. Additionally,
FTL can enhance the generalization capabilities of models when applied to new tasks. However, the
effectiveness of FTL can be influenced by the choice of pre-trained models and tuning strategies.
Furthermore, when there is a considerable discrepancy in data distributions between the source and
target tasks, the performance of the transfer learning process may be compromised [27].

Figure 8: Federated transfer learning (FTL)

2.3.2 Classification by Network structure

According to different network structures, that is, different communication patterns between
clients and servers, FL can be divided into centralized FL and decentralized FL [28]. The basic
principles of centralized FL and decentralized FL are shown in Fig. 9.

Centralized FL (CFL): CFL adopts a client-server architecture, where all clients communicate
with a central server, which coordinates and aggregates model training and updates for clients. CFL
can effectively utilize the computing power and storage space of the central server to achieve fast
and efficient model training and model updates. CFL is suitable for situations of stable network
environment, low communication cost and small security risk. The reliance of CFL on a central server
greatly enhances the speed and efficiency of model training, particularly when handling large datasets.
This centralized framework facilitates model updates, thereby accelerating optimization processes.
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However, such dependence may introduce potential bottlenecks, as network issues or bandwidth
constraints can negatively impact performance [29]. Furthermore, the central server serves as a single
point of failure, presenting security vulnerabilities if targeted by malicious attacks [30]. Additionally,
privacy protection remains a significant concern, as centralized data processing heightens the risk of
sensitive information leakage [31];

Figure 9: Comparison of centralized FL and distributed FL

Decentralized FL (DFL): DFL refers to the FL that does not set up a central server, and
the clients communicate directly with each other. In a peer-to-peer manner, model information
is directly exchanged between data owners for model training and updating. DFL can effectively
protect the data privacy and model security of data owners, and realize flexible and reliable model
training and model updating. It can be seen that DFL is suitable for situations of unstable network
environments, high communication costs, and large security risks. Du et al. [32] proposed a DFL
strategy and conducted experiments on the CIFAR-10 dataset. The results show that the ResNet50
model trained with this strategy is as good as the model trained with the CFL strategy. A key
advantage of Decentralized Federated Learning (DFL) is its decentralized structure, which eliminates
the need for centralized data storage and thus reduces the risk of data breaches. Additionally, by
enabling direct communication between clients, DFL preserves flexibility in model training, even in
unstable network environments. However, this approach has its drawbacks. The absence of central
coordination can complicate network communication, potentially leading to longer model update
times. Furthermore, the decentralized architecture may slow model convergence, adversely affecting
overall training efficiency.

2.4 Advantages of Federated Learning and Its Application Scenarios

2.4.1 Potential Advantages of Federated Learning

The advantages of FL are as follows:

1. Effective data privacy protection: FL does not need to transfer data from the data owner to
the central node, but only the model parameters, which can effectively protect data privacy.
In addition, FL can also be combined with other privacy-preserving techniques, such as
differential privacy, homomorphic encryption, and secure multiparty computation, to further
enhance data privacy protection.
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2. Small communication overhead: FL only needs to transmit the model parameters over the net-
work instead of directly transmitting the raw data, which can greatly reduce the communication
overhead. In addition, FL can also adopt some communication optimization techniques, such
as compression, coding, layering, etc., to further reduce communication overhead.

3. High computational efficiency: FL can leverage the local computing power of the data owner
to perform model updates in parallel and aggregate at a central node, which can significantly
improve computational efficiency. In addition, FL can al-so perform adaptive model selection
and update strategies according to the characteristics and needs of the data owner, thus further
improving the computational efficiency.

2.4.2 Application Scenarios of Federated Learning

There are many potential application scenarios for FL in different domains (Fig. 10), such as:

Figure 10: Applications of FL in different domains

Financial domain: Financial institutions can leverage data from different sources through FL to
build more accurate and comprehensive risk assessment models, thereby reducing the risk of credit
default, fraud, money laundering, etc. At the same time, financial institutions can also use FL to
provide more convenient and reasonable financial services to users who lack credit information, such
as rural areas and the self-employed. In addition, financial institutions can also use FL to combine
user behavior data on different platforms to make more refined user pro-files and recommendations.

Medical field: Medical institutions can realize the sharing and analysis of medical data across
institutions, regions and countries through FL, to improve the quality and efficiency of medical care.
For example, medical institutions can use distributed medical image data to train more accurate
diagnostic models through FL. Alternatively, healthcare organizations can leverage distributed genetic
data through FL for more effective drug discovery and personalized treatment.
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Communication field: Communication operators can optimize the allocation and management of
network resources through FL to improve network performance and user experience. For example,
communication operators can use FL to utilize network quality data on user devices for more
intelligent network planning and scheduling. Alternatively, communication operators can use FL
to leverage ap-plication usage data on user devices for more accurate traffic control and service
recommendations.

Transportation: Traffic management departments and transportation service providers can
achieve more efficient and safe traffic management and services through FL. For example, traffic
management departments can use distributed traffic monitoring data and vehicle sensor data
through FL to perform more re-al-time and accurate traffic state prediction and congestion control.
Alternatively, transportation service providers can use distributed vehicle driving data and user travel
data through FL for more intelligent and personalized driver assistance and trip recommendations.

Video recommendation: Video platforms can achieve video recommendation that is more in line
with users’ needs and preferences through FL. For example, video platforms can use video viewing data
and feedback data on users’ devices to train more accurate video recommendation models through FL.

Elderly care: Community service agencies can use the health data and behavior data on the elderly’s
devices through FL to provide more timely and intimate care services for the elderly.

3 Internet of Things Overview

This section comprehensively explores multiple aspects of the IoT, from its development history
and core concepts to its characteristics and problems. For a comprehensive understanding of IoT, we
subdivide the research content into three sub-chapters. Each of these sub-chapters provides an in-depth
analysis of the historical background, key features, and key challenges of IoT. We review the literature
in related fields to gain a deeper understanding of it through the perspectives and findings of different
researchers. Table 1 is a summary of the papers on it.

Table 1: Summary of papers in the application fields of FL

Ref. Domains Key contributions Advantages of
FL

Limitations Year

[13] Healthcare
Industry

Discussed the
implementation of
FL in medical
imaging

Protect data
privacy,
improve model
performance

High Communication
Cost, Data
Heterogeneity

2020

[33] Healthcare
Industry

Proposed a
sensor-based PFL
model for OCD
detection

Protect data
privacy

Data Heterogeneity,
Personalization
Complexity

2021

[34] Healthcare
Industry

Proposed an
intelligent healthcare
system based on FL

Protect data
privacy
Improve
computational
efficiency

High Communication
Cost, Model
Convergence and
Accuracy

2021

(Continued)
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Table 1 (continued)

Ref. Domains Key contributions Advantages of
FL

Limitations Year

[35] Healthcare
Industry

Proposed a FL based
model for masked
psoriasis severity
classification

Protect data
privacy

Data Quality and
Integrity, High
Communication Cost

2022

[36] Communication
Sector

Proposed an
SDN-based FL
approach for
satellite-IoT
framework

Protect data
privacy

High Communication
Cost, Complex
Network Topology

2023

[37] Communication
Sector

Proposed a
UAV-Assisted edge
intelligent system
based on FL

Improve model
performance

High Communication
Cost, Resource
Allocation
Complexity

2023

[38] Transportation
Field

Proposed a FL based
cooperative
positioning scheme
for social Internet of
vehicles

Protect data
privacy

High Communication
Cost, Data
Heterogeneity

2021

[39] Video Recom-
mendation
Sector

Proposed an
improved video
recommendation
system for IoT
devices using FL

Reduce
communication
overhead

Data Heterogeneity,
Device Selection and
Coordination

2023

[40] Care for the
Elderly

Proposed a fall
detection algorithm
based on FL and
extreme learning
machine (Fed-ELM)

Protect data
privacy

Manual Labeling
Requirement, Data
Heterogeneity

2022

3.1 Definition and Development History of IoT

The IoT, defined as a wirelessly connected network of things that enables various objects to
interact with each other without human intervention, is expected to form an important part of the
future Internet, consisting of billions of intelligent communication devices. With the development of
technology, the IoT has begun to penetrate many fields such as healthcare, cities, and automobiles. It is
combined with federal learning, thus giving birth to several emerging fields including smart healthcare,
smart cities, and intelligent transportation [41]. For example, the Industrial IoT leverages RFID,
wireless, mobile, and sensor devices to build powerful industrial systems and applications [42], while
the medical IoT represents a deep integration of IoT with the medical industry. The Internet of Vehicles
(IoV), as an emerging in-vehicle network infrastructure, demonstrates agility and interoperability,
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enabling the building of vehicle networks using components from multiple vendors, and facilitating
market competition and customization options [43].

It is a revolutionary technology paradigm that seamlessly connects the physical world with the
digital world, allowing a variety of physical objects to communicate and collaborate via the Internet.
Physical objects can be the vision of the IoT lies in the seamless connection between people and things,
and between things, to enable real-time perception of the physical world, precise management, and
scientific decision-making. The IoT is a network of sensors and devices that continuously generate data
and exchange messages through a complex network, supporting machine-to-machine communication
and monitoring and controlling critical smart world infrastructure [44]. The general definition of the
IoT refers to various information sensing devices such as sensors, RFID technology, global positioning
systems, infrared sensors, laser scanners, gas sensors, and other devices and technologies, objects, or
processes that capture any monitoring, connection, interaction in real time to collect their sound, light,
heat, electrical, mechanical, chemical, biological, location and other necessary information, Forming
a huge network combined with the Internet [45].

3.2 Deficiencies of IoT

At present, the development of the IoT has penetrated into various industries, such as automotive,
medical, urban architecture, personal homes, etc., which also means that a large amount of data may
be generated that may contain users’ private information, and the traditional centralized learning and
processing methods on the cloud are faced with challenges due to high communication and storage
costs and privacy issues [46]. However, due to the extensive application of the IoT and large-scale
connectivity, various challenges and obstacles have been brought, including heterogeneity, scalability,
security, big data, energy demand, etc. [47,48]. We describe three of these major deficiencies, as shown
in Fig. 11. As shown in Table 2, we have also summarized the existing work of the IOT to demonstrate
the existing problems in the IOT.

Figure 11: Three main shortcomings of the Internet of Things
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a. Internet of Things data privacy: As an important area of current technological development, the
IoT is playing an increasingly critical role in improving the convenience of daily life and the efficiency
of industrial automation. However, the IoT extreme reliance on data also raises a series of profound
questions about privacy and security. First, the proliferation of IoT devices means sensors and devices
everywhere, from home environments to public Spaces, are constantly collecting data about individuals
and the environment. This data can range from sensitive information such as an individual’s activity
habits to precise location information. The problem is that there is often a lack of transparency in the
collection, storage, and processing of such personal data, which brings hidden risks to users’ privacy
and security. For example, smart home devices may collect detailed information about residents’ daily
activities, and this collection of personal data, combined with the increasing deployment of Internet-
connected devices in homes, exposes residents to new privacy and security risks [49], which could be
accessed by unauthorized third parties if not properly handled. Secondly, in the process of large-scale
deployment and use of IoT devices, since most users are not Internet or security experts and do not have
the ability to assess risks or security and privacy measures [50], they often lack a full understanding
of the data collection and processing mechanisms of these devices. Even many users may use these
devices without fully understanding the relevant privacy policies, which undoubtedly increases the
risk of personal privacy being inadvertently disclosed or abused [51]. With the further development
of artificial intelligence and machine learning technology, the data collected in large quantities is used
to train complex algorithm models, which may further aggravate the privacy problem. For example,
centralized learning is a traditional machine learning method, but it may leak user privacy because it
uploads local data sets to the server [52].

b. Internet of Things network burden: The essence of the IoT lies in connecting devices and objects
in the physical world through network technology to form a large and complex network system. This
system not only connects physical objects but also covers multiple aspects such as data collection,
transmission, and processing. As a network-based system, it puts a series of special requirements on
the network. Different devices (such as mobile phones, wristbands, smart watches, laptops, etc.) may
use different wireless communication technologies (such as Wi-Fi, Bluetooth, 5G, NFC, etc.), and
may need to exchange data seamlessly between these different network technologies. Not only does
the large number of devices communicating with each other make the already limited bandwidth of
IoT gateways even more difficult. But also makes maximizing throughput while efficiently allocating
bandwidth to connected devices a challenging problem [53]. If the network bandwidth is not satisfied,
it will inevitably cause network congestion. Congestion will have a huge impact on the network,
which will affect the network performance and lead to network failures [54]. When large amounts
of data are trying to be transmitted over limited bandwidth, packets in the network begin to queue
for transmission, causing latency to increase significantly. For applications that require real-time or
fast response (such as emergency services, and real-time monitoring systems), this delay can seriously
affect their functionality and efficiency.

c. IoT security vulnerabilities: IoT security vulnerabilities essentially stem from flaws or vul-
nerabilities in the system and can lead to serious security threats if not addressed promptly. These
vulnerabilities include physical security risks against IoT nodes, exploitation of open debug ports, and
leaving devices vulnerable to resource depletion attacks due to a lack of effective energy harvesting
capabilities, as shown in detail in Fig. 12 of the classification of IoT vulnerabilities [55]. IoT devices
are particularly vulnerable to adversary attacks due to their often limited computing power and
energy. They are more exposed to cyberattacks than traditional computers. And, unfortunately, it
is more difficult for these devices to obtain effective protection against cyberattacks [56]. Security
vulnerabilities in IoT systems include inadequate physical security, open debug ports, lack of energy
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harvesting capabilities, and weak authentication mechanisms. As a result, these vulnerabilities make
IoT devices vulnerable to threats from direct physical access, such as node cloning and side-channel
attacks, etc. [55]. Of particular concern is that since IoT deployments often consist of a group of
devices with similar or nearly identical characteristics, this similarity amplifies the severity of security
vulnerabilities [57]. The simplicity and regularity of IoT devices make them vulnerable targets. At
the same time, because these devices often have access to users’ sensitive data, it further increases
the likelihood that they will be targeted. Therefore, when optimizing IoT systems, we must focus on
addressing these vulnerabilities to ensure the security and stability of the system [56].

Table 2: Existing work in the Internet of Things

Ref. Topic Key contribution Key problem

[44] Internet of Things
Edge Computing

Enhance the computing power of the Internet of
Things and reduce communication overhead by
using edge computing.

Network burden

[45] Internet of Things
Review

Introduced the concept of the Internet of
Things, what technologies are used, what aspects
it can be used for, and explained the importance
of data privacy.

Data privacy

[58] Internet of Things
Challenges

Challenges of the IoT and related technologies
of Thread networks are discussed.

Network burden

[59] Internet of Things
Privacy
Protection

To study privacy protection technology, the
Privacy Information Security Classification
(PISC) model is proposed, which divides privacy
into four security classifications, and studies the
security objectives of each classification.

Data privacy

[60] Internet of Things
Reliable

This article provides an overview of future IoT
applications and their main communication
needs, and briefly reviews recent work in four
main areas: resource allocation, latency
management, security and reliability metrics.

Network burden

[47] Internet of Things
Review

It concisely explains the concepts and
applications of the Internet of Things, as well as
challenges and opportunities.

Network burden

[49] Smart Home Study smart home technology adoption and
related factors such as privacy concerns,
performance expectations, trust in outcomes and
social impact.

Data privacy

[50] Internet of Things
Privacy

Through quantitative survey and analysis, we
provide an in-depth exploration of users’
perceptions of IoT security and privacy issues,
and how these issues affect the adoption of IoT
technology in the home field.

Data privacy

(Continued)
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Table 2 (continued)

Ref. Topic Key contribution Key problem

[53] Internet of Things
Data Processing

A method called BACOFF is proposed, which
takes into account the characteristics of IoT
devices and gateways as well as the needs of
specific services.

Network burden,
Data privacy, and
Security
vulnerability

[55] Internet of Things
Challenge

The paper delves into security vulnerabilities and
energy efficiency issues of IoT devices and
provides practical solutions and
recommendations for IoT sustainability.

Security
Vulnerability

[56] Internet of Things
Security

This paper effectively solves the problem of lack
of label information in IoT networks by
proposing a new deep transfer learning model,
while achieving significant improvements in the
accuracy of IoT attack detection.

Security
Vulnerability

[57] Internet of Things
Challenge and
Security

This paper provides an effective solution to
protect user privacy and security information by
proposing a new IoT hierarchical model and
implementing a cloud/edge supported IoT
system.

Security
Vulnerability

Figure 12: Classification of IoT vulnerabilities [55]
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4 Internet of Things under Federated Learning
4.1 Vision of Federated Learning Combined with the Internet of Things

With the rapid development of the IoT, there has been an explosion in the number of devices and
the amount of data. However, in the traditional IoT system, the model training is often on the data
center or cloud server, due to the limited computing power and storage capacity of IoT devices, as well
as the existence of data privacy and security issues, so the data of IoT devices cannot be fully utilized,
which poses a huge challenge to the development of data-driven intelligent applications. FL, as a new
machine learning framework, can make full use of the data of distributed devices while protecting
data privacy, to achieve more efficient model training and prediction. Therefore, the combination of
FL and the IoT will provide new possibilities for intelligent, personalized, and secure IoT.

First of all, the combination of federal learning and the IoT can realize the intelligence of IoT
devices. IoT devices usually require a lot of data processing and analysis to enable various intelligent
applications, such as smart cities, smart healthcare, etc. However, due to the limited computing power
and storage capacity of IoT devices, as well as the existence of data privacy and security issues, the
data of IoT devices cannot be fully utilized, which poses a huge challenge for the development of
data-driven intelligent applications. FL, through model training on the device side, can make full use
of the data of IoT devices, thus achieving more efficient model training and prediction. In addition,
FL can realize knowledge sharing among devices through model aggregation, thus improving the
generalization ability and prediction accuracy of the model. Secondly, the combination of FL and
the IoT can realize the personalization of IoT devices. IoT devices usually need to provide customized
services according to the individual needs of users. However, traditional machine learning methods
usually need to centralize the data of all devices into one place for training, which not only leads to
data privacy and security issues but also fails to meet the personalized needs of users. FL can protect
the user’s data privacy through model training on the device side and also can customize the model
training according to the user’s personalized needs, to realize the personalized IoT devices.

The data of the IoT device usually contains a large amount of sensitive information, such as the
user’s location information, health information, etc. The disclosure of this information may pose a
threat to the user’s privacy and security. By conducting model training on the device side, Federal
Learning can protect the data privacy of users, and at the same time, it can realize knowledge sharing
among devices through model aggregation, without the need to share data directly, to realize the
security of IoT devices.

In the following, we will introduce through extensive work what services are provided for the IoT
by introducing FL and the applications of FL in the IoT.

4.2 Services Provided by Federated Learning in the Internet of Things

In the context of the Internet of Things (IoT), the application of Federated Learning (FL)
primarily focuses on several key areas, including privacy security, attack detection, communication
efficiency enhancement, and learning quality improvement. FL effectively safeguards user privacy
by allowing devices to process data locally and share model parameters, while also enhancing the
accuracy and efficiency of attack detection. Furthermore, FL optimizes data transmission, reducing
communication overhead, and improves model performance and adaptability through distributed
learning. To systematically present these research findings, Table 3 summarizes the key information
from the relevant studies, including the datasets used and evaluation metrics, providing readers with a
clearer understanding of the practical applications of FL in the IoT domain.
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4.2.1 Privacy Security

In the IoT environment, the data generated by the device usually contains a large amount of
sensitive information, such as the user’s personal information, location information, health status,
etc. If this information is used improperly, it may cause serious infringement on the user’s privacy.
Therefore, how to protect users’ privacy and security while ensuring data utilization has become
an important issue in the development of the IoT. Common problems to solve are data encryption
algorithms, such as AES (Advanced Encryption Standard), ECC (Elliptic curve cryptography) and
SHA (secure hash algorithm), and access control algorithms (access control algorithms are mainly
used to control user’s access to data), such as RBAC (role-based access control), ABAC (attribute-
based access control) and so on. However, although these traditional privacy protection methods
improve the security of IoT data to a large extent, they may affect the performance of IoT devices
with limited resources, and there is a risk of exposing users’ privacy in the process of data collection.
FL, as a distributed machine learning method, provides a new way to solve this problem. In FL, each
device no longer needs to send the original data to the central server, but trains the model on the
local device. Each device only needs to send the parameters of the model to the central server, and the
central server does the aggregation of the model. In this way, the user’s original data will not leave
the local device, thus effectively protecting the user’s privacy. For example, FL has been applied in
the medical field to protect the privacy of patient information. Sun et al. explored the classification
of massive medical sensor data by developing a scalable and transferable FL Classification System
(SCALT) [61]. In this process, FL only shares computational results by keeping patient data at the
source While concealing the patient’s personal information, thus realizing data privacy protection.
Also in the field of smart medicine, Wang et al. proposed a privacy-enhancing disease diagnosis
mechanism using federal learning for medical IoT [62]. The mechanism first reconstructs medical data
via variational autoencoders (VAE) and adds differential privacy noise to enhance privacy protection.
This data is then used to train a local disease diagnosis model, thereby protecting patient privacy.
The work designs incentives to encourage participants to participate in federal learning and rewards
participants accordingly. In addition, to ensure the security and privacy of sensor IoT architecture, a
blockchain-based FL approach for sensor networks is proposed [63]. The challenges of low latency,
availability, real-time data traceability, and security in IoT-based systems are addressed by introducing
a permission-enabled blockchain architecture that supports FL. The architecture supports end-device
privacy, prioritizes data and user privacy, and provides anonymity and transparency upon user request.

Table 3: Summary of federated learning services in IoT

Ref. Datasets used Key contribution Best performance Year

[61] MIT-BIH-AR,
MIT-BIH-SUP,
INCART,
Sleep-EDF, Wrist
PPG During
Exercise

Proposed a scalable and
transferable federated learning
system (SCALT) for
classifying healthcare sensor
data, which addresses the
challenges of dynamic data
distributions and the
appearance of initially
unknown classes

Accuracy: 98.65% 2023

(Continued)
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Table 3 (continued)

Ref. Datasets used Key contribution Best performance Year

[62] MIT-BIH Proposed a privacy-enhanced
disease diagnosis mechanism
using federated learning (FL)
that incorporates variational
autoencoder (VAE) and
differential privacy to protect
patient data from inference
attacks

N/A 2023

[63] Sampled
Electrochemical
Sensors (ECS)

Proposed PPFchain, a
privacy-preserving
blockchain-based federated
learning framework for sensor
networks, which ensures data
security and traceability

N/A 2023

[64] MNIST,
CIFAR-10,
Shakespeare

Provided the first theoretical
and experimental analysis of
free-rider attacks in federated
learning, demonstrating how
attackers can obtain the final
aggregated model without
contributing data

N/A 2021

[65] Various datasets
depending on
specific
experiments

Conducted a comprehensive
survey on privacy and
robustness in federated
learning, covering threat
models, privacy attacks and
defenses, and poisoning
attacks and defenses

N/A 2023

[66] Car Hacking:
Attack & Defense
Challenge 2020
Dataset

Proposed a federated
learning-based attack
detection framework for
vehicular sensor networks
using a combination of Gated
Recurrent Units (GRU) and
Random Forest (RF)

Accuracy: 99.52%,
Precision: 99.77%,
Recall: 99.54%,
F1-score: 99.65%

2022

[67] IoT-Botnet 2020 Proposed a federated deep
learning framework using a
deep neural network (DNN)
and mutual information (MI)
for effective anomaly
detection in IoT networks

Accuracy: 99.52% 2023

(Continued)
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Table 3 (continued)

Ref. Datasets used Key contribution Best performance Year

[69] MNIST,
Fashion-MNIST,
CIFAR-10

Introduced FedQNN, a
framework that combines
low-bitwidth quantization
with federated learning to
reduce computational and
communication overheads for
IoT devices

Computational
energy savings: Up
to 90%, Model size
reduction:
Reduced by 30+
times, Maintained
reasonable
accuracy across
datasets

2023

[70] MNIST, EMNIST Proposed HCFL, a high
compression approach for
federated learning in
large-scale IoT networks,
which reduces communication
costs and makes intensive
learning processes more
adaptable on low-computing
resource IoT devices

Compression
Ratio: Up to 32
times, Test
Accuracy on
MNIST (LeNet-5):
99% with a
compression ratio
of 1:16

2023

4.2.2 Attack Detection

In the IoT environment, due to the large number and wide distribution of devices, this makes IoT
devices an important target for attackers. Traditional centralized attack detection methods need to
centralize the data of all devices into one place for analysis, which may not only lead to data privacy
disclosure but also bring huge computing and storage pressure in the case of a large amount of data.
To deal with the attacks in the IoT, methods such as adversarial training [64] have been proposed,
but most of these methods are applied to specific types of attacks and cannot be well extended to the
current environment of distributed IoT. For this reason, federation learning has become an effective
means for IoT attack detection. In IoT attack detection, FL can be used to identify various types of
malicious activities, such as DDoS attacks, intrusion attempts, and abnormal traffic patterns [65].

With the rapid development of vehicle technology, modern vehicles have introduced several smart
sensors that help drivers effectively identify traffic and road signs, monitor roads, reduce the risk
of collisions, and provide an accurate estimate of the distance between the vehicle and surrounding
objects. However, the complexity of the architecture of vehicle-mounted sensor networks, the diversity
of communications, and the high mobility of vehicles make these networks vulnerable to multiple cyber
attacks. Recently, MDriss et al. have proposed a federal learning framework for vehicle sensor network
attack detection [66] in which a gated cycle unit (GRU) of a set of random forest (RF) integrated units
is employed for the efficiency of processing sequential data, which is critical for detecting patterns
that indicate a network attack. RF is used to improve the accuracy and robustness of GRU model
predictions. Moreover, the federal learning method proposed in this paper shows high accuracy in
detecting cyber attacks in vehicle sensor networks, with accuracy, recall, and F1 scores of 99.77%,
99.54%, and 99.65%, respectively. By combining FL and deep learning, it can be applied to anomaly
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detection in the IoT. A recent method combines deep neural networks and FL [67] and uses mutual
information as an effective detection method to detect anomalies in the IoT. In addition, this method
uses dispersed device-side data for model training, saves the information on localized IoT devices, and
shares the modified weight only in the centralized FL server, which greatly protects the privacy of the
data. By deploying the FL model on each IoT device, network traffic, and device behavior can be
monitored in real-time. When an abnormal state is detected, the system can take quick measures, such
as isolating the affected device, to prevent further data leakage or system damage.

4.2.3 Achieving Efficient Communication for the Internet of Things

In an IoT environment, thousands of devices need to communicate with each other to collect,
share, and process data. However, due to the limited computing power and storage capacity of IoT
devices, as well as the constraints of network bandwidth, the traditional cloud-centered learning
approach faces significant challenges [68]. FL, as a distributed machine learning paradigm, can realize
learning tasks through the aggregation of local computation and model updates without directly
sharing data, thus providing a solution for efficient communication for IoT. FL allows IoT devices to
do data processing and model training locally, which means that only model parameters or gradient
information need to be transmitted in the network, not the raw data [7]. This greatly reduces the
communication load, as the model parameters are typically much smaller than the original data set. FL
supports asynchronous communication, which is important for devices in IoT environments that may
not be constantly online due to energy constraints, shaky network connections, or other environmental
factors. In FL, devices can perform calculations locally and upload updates when conditions permit,
without the need for all devices to be online at once. In addition, FL can optimize communication
efficiency through intelligent scheduling and resource allocation strategies. For example, a recently
proposed FL framework for computing and communication efficiency in IoT scenarios [69]. It intro-
duces ultra-low bit-width quantization technology into the FL environment for the first time, enabling
end devices to perform fixed-point computation with low power consumption and low memory
footprint. At the same time, it adopts a combination strategy of quantization and sparsity to compress
data transmission down and down lines, which greatly reduces the communication bandwidth and
data volume. In addition, it also considers the case of unbalanced data distribution, ensuring the
convergence and accuracy of the model. For large-scale IoT networks, MD Nguyen et al. also proposed
a new compression scheme [70], called High Compression FL (HCFL), for large-scale IoT networks.
HCFL utilizes an incomplete autoencoder structure to achieve improved communication efficiency in
the FL process while maintaining the quality of the model. Moreover, the relationship between the
number of IoT devices and the convergence level of the FL model is also studied in this paper to better
evaluate the quality of FL. As the number of IoT devices continues to increase, these advantages of FL
will become more and more significant, which is of great significance for promoting the development
and application of IoT technology.

4.2.4 Enhance the Quality of Learning

In the context of IoT, FL offers a unique way to enhance the quality of learning by training
models across multiple devices in a distributed manner without the need to centralize data into a single
location. By drawing large amounts of computing resources and different datasets from a network of
IoT devices, leveraging local data on individual devices can improve the generalization and accuracy
of the model, something that cannot be done with centralized learning that uses insufficient data and
limited computing power. Here are a few aspects of how FL can enhance the quality of learning in
IoT:
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1. Data diversity: IoT devices are distributed in different geographical locations and environ-
ments, and the data of each node is usually Non-IID [71]. For example, air quality monitors in
cities may have significantly different characteristics of the data collected compared with those
in rural areas, and frequently uploaded models on certain specific nodes may attract divergence
from the global model. These devices are distributed in different geographical locations, and
the data collected is highly diverse. FL allows these devices to train the model together without
sharing the original data, which allows the model to learn a wider and more diverse set of data
features, thereby improving the model’s generalization performance.

2. Real-time learning and adaptation: IoT devices can continuously collect large amounts of
data that reflect changing environments and user behavior. With FL, these devices can not
only collect data in real-time but also update and optimize their models locally. This means
that the models can adapt to new data distributions and environmental changes in real time,
without having to send data to a central server for processing. Such a learning mechanism
greatly enhances the flexibility and timeliness of the learning process, while also improving the
efficiency of data processing and privacy protection. In addition, FL enables devices to achieve
collaborative learning by sharing learning outcomes while maintaining their independence,
further enhancing the overall learning effect and application value.

3. Improve model robustness: In FL, the model needs to perform well on a variety of devices,
which forces the model to have better robustness. The improvement of model robustness is
conducive to resisting various adversarial attacks, protecting the training process and the
effectiveness of the model; It is beneficial to promote the performance fairness of the system
and ensure the balanced performance of different clients. In the face of diverse devices and data
environments, strengthening model robustness becomes a key strategy to improve the overall
system performance and security in FL.

4. Personalized services: FL supports personalized model training while protecting user privacy
[72]. This means that IoT devices can provide more customized services to better meet the
personalized needs of users. This personalized service can be used for home health monitoring,
with trained cloud models based on common data sets from dispersed homes, which may
not capture the specific characteristics of a single target user well. For personalized home
health monitoring, each user can train a personalized model by integrating the trained global
model with his health data. Of course, this kind of personalized service can also benefit
the development of other industries, such as connected vehicles, smart homes, precision
agriculture, personalized digital immersion, and wireless systems.

5. Cross-domain collaboration: FL allows IoT devices of different domains and ownership
to collaborate to train and improve models together, without directly ex-changing data.
This cross-domain collaboration dramatically enhances the quality of learning, especially in
complex application scenarios that require the fusion of knowledge from multiple domains.
Under this concept, the federal imitation learning framework realizes the imitation of the cross-
domain model state through the knowledge-sharing module, to optimize traffic scheduling
in the IoT environment, reflecting the practical application and benefits of cross-domain
collaboration.

4.2.5 Limitations of the Study

In this study, although FL demonstrates numerous advantages in its application within IoT, such
as enhanced privacy protection, improved attack detection capabilities, optimized communication
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efficiency, and elevated learning quality, it still faces several challenges and limitations during imple-
mentation.

Firstly, high communication costs present a significant issue. Research across various fields
indicates that the implementation of FL may incur substantial communication overhead. For instance,
studies in the healthcare, telecommunications, and video recommendation sectors highlight that
the frequent demand for data transmission increases network burdens, particularly in large-scale
distributed environments, where such costs become even more pronounced. Additionally, data het-
erogeneity poses another major obstacle for FL applications. The differences in data generated by
various devices and users not only affect the training effectiveness of the models but may also lead to
a decline in model performance. Relevant studies have shown that this issue is especially prominent
in the healthcare and transportation sectors, where data diversity and inconsistency are particularly
evident.

Furthermore, the effective allocation of computational resources to support the efficient operation
of FL remains a challenge. This is particularly crucial in scenarios involving drone-assisted edge
intelligence systems or sensor networks within vehicular networks, where the proper allocation of
resources is vital to ensuring overall system performance. At the same time, the quality and integrity of
data directly impact the training outcomes of the models. In healthcare studies, inaccurate or missing
data can lead to erroneous decisions, subsequently affecting the quality and reliability of services.
Moreover, in the field of elder care, training effective fall detection algorithms necessitates a substantial
amount of manually annotated data, which is not only time-consuming but also costly.

Lastly, the complexity of personalization is another critical concern. In the healthcare sector,
designing and implementing FL models to meet specific user needs entails considerable complexity,
particularly in highly personalized application scenarios such as mental health detection. In summary,
while FL offers many potential advantages for IoT, overcoming the aforementioned challenges is
essential to ensure the effectiveness and practicality of the technology in real-world applications.
Future research could focus on reducing communication costs, improving data quality, and optimizing
resource allocation, thereby further promoting the widespread adoption of FL in the IoT domain.

4.3 Application Fields of Federated Learning in the Internet of Things

4.3.1 Sensors

Sensors are the fundamental components of the IoT, responsible for collecting environmental
data such as temperature, humidity, light, and movement. The application of Federated Learning (FL)
in this context must address the critical needs for data privacy and efficient real-time processing, as
centralized data storage and processing can lead to significant risks of data breaches and bandwidth
constraints. This data often requires processing and analysis to provide valuable insights and intelligent
decision support. However, due to privacy protection and bandwidth constraints, centralizing all
sensor data into one central location for processing may not always be feasible [73]. In such cases, FL
offers an effective solution. Under the Federation learning framework, sensor devices can train shared
machine learning models locally as participants (otherwise known as clients). Each sensor updates the
model parameters based on the data it collects and then sends these updates to a central server. The
server is responsible for aggregating these updates from multiple sensors to improve the global model.
This approach not only reduces data transfer and reduces communication costs, but also enhances
data privacy protection.
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Recently, there has been extensive research on applying FL to sensors to address various chal-
lenges. For instance, acoustic sensor networks enable the use of data from widely distributed acoustic
sensors for location services, voice enhancement, and activity monitoring [74–76]. To enhance the
privacy protection of acoustic sensor networks, the introduction of FL becomes an effective means
[77]. This privacy-protecting unsupervised clustering FL method groups microphones by evaluating
the similarity of model weight updates introduces a lightweight variational autoencoder and provides
supplementary control criteria for the algorithm to speed up convergence. Similarly, aiming at the
detection of abnormal states in sensor systems, DH Tran et al. proposed an improved sensor anomaly
detection method in IoT systems using FL [78]. This method tackles the challenge of detecting
anomalies in manufacturing systems caused by abnormal behavior of smart sensors, which may
indicate failures or potential risks during operation. Such approaches demonstrate the significant
potential of FL in processing sensor data effectively while maintaining privacy and responsiveness.

As federated learning technologies continue to evolve, more innovative applications are expected
to emerge, maximizing the potential of sensors in IoT. The ability of FL to adapt to the unique
requirements of sensor networks positions it as a promising approach for enhancing data privacy,
enabling efficient real-time processing, and facilitating collaborative learning among devices.

4.3.2 Smart Healthcare

In smart medicine, AI-based approaches have been widely used to learn health data to facilitate
medical services, such as medical imaging [79] and drug prediction [80]. Medical data often contains
sensitive personal health information, has extremely high requirements for privacy protection, and has
different patient populations and data sets for different healthcare institutions. In complex healthcare
environments, deleting data such as patient information is not enough to protect patient privacy, and
multiple parties such as hospitals and insurance companies have access to medical databases, including
data analysis and processing. Clearly, using traditional AI methods and relying on a central server for
analysis is not an effective solution. Federal learning allows for joint training and improvement of
predictive models across healthcare institutions without sharing raw patient data, thereby facilitating
the development of medical research and services without violating privacy regulations [81]. Recent
work has demonstrated the advanced capabilities of federal learning in the field of smart health care.
FL is a viable way to connect healthcare institutions’ electronic medical record data, allowing them
to share their experience instead of their data and guaranteeing privacy. Specifically, Lee et al. [82]
proposed a privacy protection platform in an FL environment for patient similarity learning across
institutions. Their model can find similar patients from one hospital to another without sharing patient
information. In the field of medical images, Lai et al. [83] proposed a lightweight federal learning
method to detect COVID-19 in chest CT images, addressing the need for effective and rapid diagnostic
methods in the face of the global spread of the novel coronavirus. This method standardizes the local
training process through the global average feature vector, reducing the communication burden of joint
learning while maintaining the accuracy of detecting COVID-19 on chest CT images. Many customers
choose different local models according to their computing power and do not need to transmit the
parameters of the model, only need to transmit the average feature vector, which can protect the privacy
of the data. To sum up, the application of federal learning in the field of smart medicine provides
new possibilities for improving the quality and efficiency of medical services as well as the treatment
experience of patients.
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4.3.3 Smart City

A smart city refers to the use of modern information technologies, including the IoT, cloud
computing, big data, and artificial intelligence, to optimize a city’s infrastructure, services, and
management, and enhance a city’s sustainability, economic development and residents’ quality of life
[84,85]. The core objectives of a smart city are to achieve optimal allocation of resources, improve the
efficiency of public services, enhance urban safety, and promote environmental protection through
efficient data management and analysis. In addition, the aim is to. Although the concept and practice
of smart cities have made remarkable progress, there are still a number of challenges in practical
operation:

1. Data privacy and security: Smart cities rely on a large amount of data collection and
processing, which involves the personal privacy and data security of residents. How to protect
personal privacy while collecting and utilizing data is an important issue in the development
of smart cities.

2. Data silos: Different city administrations and service providers may form data silos, that is,
data is stored in isolation and difficult to share and integrate across departments, which limits
the value of data and the overall effectiveness of smart cities.

3. Data processing power: With the increase of IoT devices, the amount of data is exploding,
which puts higher demands on data processing power. How to effectively process and analyze
massive amounts of data is one of the technical challenges facing smart cities

4. System integration and interoperability: Smart cities involve the integration of multiple systems
and applications, and poor interoperability between different systems can lead to inefficiencies
and increase management costs.

In view of the above problems, federal learning provides new ideas and technical support for the
development of smart cities. Through FL, decentralized data resources can be used more effectively,
and the intelligent level of urban management and services can be improved. FL has the advantages
of distributed processing and effective privacy protection. Some scholars apply FL to road defect
detection called the 3Pod system [86], in which computer vision technology is used to automatically
detect road defects to ensure road safety and efficiency. FL then trains the model on data distributed
across multiple devices or locations without centralizing the data, and it enables the system to utilize
data from a variety of sources without compromising privacy. By using FL, the 3Pod system can
continuously learn and improve its detection capabilities by aggregating knowledge from different
locations and devices, thus ensuring that the model stays up to date with the latest road conditions.
Predicting urban traffic flow is an important application for smart cities, however, data privacy has
become a real concern. Recently, Djenouri et al. [87] proposed a new federal deep learning method
for predicting urban traffic flow forecasts by pre-processing road networks to eliminate noise from
traffic data. Next, anomaly feature detection is performed to trim uncorrelated edges and patterns.
The generated graph is then used to learn the graph convolutional neural network to calculate the
traffic flow of the future city. In this process, massive data is effectively processed based on the FL
framework, and the data privacy is well protected by the characteristics of the FL place.

4.3.4 Networking of Vehicles

Vehicle networking technology is in a stage of rapid development. With the commercialization
of 5G communication technology and the progress of intelligent vehicle technology, the application
scenarios of vehicle networking are constantly expanding, including intelligent traffic management,
vehicle remote monitoring, automatic driving assistance systems, vehicle maintenance prediction, and
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so on. At present, many countries and regions have begun to deploy vehicle-connected infrastructure,
such as intelligent street lights, traffic signal systems, roadside units (Rsus), etc., and more and more
vehicles are equipped with vehicle-based communication systems (V2X). At the same time, major
automakers are actively developing and promoting vehicle-connected technologies to improve vehicle
safety and driving experience. However, the rapid development of connected vehicles has also brought
a series of problems, and privacy and security issues have always been the focus of attention, as
connected vehicle systems need to process and store a large amount of personal location data and
behavioral information. In addition, due to the huge amount of data generated by the Internet of
Vehicles, high requirements are put forward for data processing capabilities, and traditional data
processing methods of centralized learning may not be able to meet the needs of real-time and
efficiency. In addition, network latency and bandwidth limitations are also technical challenges facing
the Internet of Vehicles, which may affect the quality of the Internet of Vehicles service and user
experience.

FL offers an innovative solution to these challenges. As a distributed machine learning method,
FL allows vehicles to train data models locally and share only model parameters or updates, rather
than raw data, which can effectively reduce the amount of data transfer and reduce dependence on
central servers while protecting user privacy. In addition, when computing locally in the vehicle or
roadside unit, FL can improve data processing efficiency, reduce network latency, and improve the
real-time performance of vehicle-connected systems. Recently, researchers have applied the improved
FL method to the Internet of Vehicles. For example, Pervej et al. [88] applied FedProx [89] as the
core to the Internet of Vehicles, which can solve the problem of unbalanced data distribution in the
Internet of Vehicles. By introducing a near-end entry to control data heterogeneity. The FedProx is
also improved to adapt to the online learning requirements of vehicles. In terms of communication
optimization, the authors consider the high-speed movement and delay limits of vehicles, and propose
an optimized communication and computing resource allocation scheme, which enables each vehicle
to complete the local model training and upload within the specified time, while ensuring the accuracy
and robustness of the global model. With the rapid development of new energy, the battery technology
of electric vehicles continues to advance, the battery energy density increases and the cost decreases,
making the endurance capacity of electric vehicles significantly improved. At the same time, charging
technology is also constantly developing, with fast charging stations becoming more and more popular
and charging speeds improving. However, electric vehicles need an effective charging network, and
intelligent charging network management has become a challenge for the development of electric
vehicles. Federal learning can help optimize the distribution and charging scheduling of charging
stations to reduce charging wait times and balance grid loads, and by running learning algorithms
on local EVs and charging stations, model updates rather than detailed charging data can be shared,
thus protecting user privacy. Recently, Li et al. proposed [90] an FL framework that enables mobile
slave stations to train model parameters locally and upload them to edge servers periodically for
global parameter aggregation. This paper uses a stacked long Short-term memory (LSTM) model
to predict future charging locations and a scoring mechanism to preprocess local datasets. After a lot
of simulation experiments and comparisons, this federal learning framework significantly shortens the
waiting time of electric vehicles, improves the charging ratio, reduces the charging cost, and speeds up
the training convergence speed.

5 Open Challenges and Possible Solutions

As mentioned above, the combination of FL and IoT has great development potential and
broad application prospects, which can provide ML solutions with low data leakage risk, low data
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transmission overhead, low latency, and high generalization ability for intelligent applications in
various fields [91]. However, despite FL offering new ideas and innovative solutions for processing the
large amount of data generated by smart devices in IoT, numerous studies have shown that applying
FL to IoT still faces several challenges. In this paper, we analyze and summarize the typical challenges
faced by the current combination of FL and IoT starting from the limitations of FL and IoT as well
as the difficulties encountered when applying FL in the field of IoT.

5.1 High Communication Load

In FL, participants do not need to exchange raw data but still need to exchange model parameters
or gradient information frequently, which leads to the consumption of a large number of commu-
nication resources. Especially when FL is applied to IoT, the explosive growth of data generated
by massive devices in IoT makes the challenge of the high communication load faced by FL more
severe. However, excessive communication load will lead to communication delay, seriously reducing
communication efficiency and model convergence speed. Frequent communication will also increase
energy consumption and computational overhead, which will affect the performance and lifetime of
the device. Several possible solutions to the problem of high communication load in FL have been
proposed. They can be mainly divided into the following categories.

Communication compression. Communication compression refers to the use of compression
algorithms to quantize or sparsify the model parameters or gradient information to be transmitted
to reduce the size of model updates. The quantization algorithm maps the model updates to a set of
discrete values [5], and the sparsification algorithm selects only a small number of important model
updates for transmission. Cui et al. [92] systematically studied the relationship between compression
ratio and model accuracy in FL in the network environment and proposed a framework suitable for
different compression algorithms. The framework maximizes the model accuracy by adjusting the
compression rate and is tested on popular datasets such as MNIST and CIFAR-10. The test results
show that the framework can effectively reduce network traffic while maintaining high model accuracy.

Communication Optimization. Communication optimization refers to designing more efficient
FL algorithms to reduce the number of communication rounds or reduce the frequency of communica-
tion. For example, the FedDM method aims to reduce the number of communication rounds in FL by
using iterative distribution matching, which constructs local surrogate functions by learning a synthetic
dataset to approximate the local training objective. These surrogate functions are transmitted to the
server to construct and update a global surrogate function. By sending synthetic data instead of local
model updates, FedDM reduces the amount of information required by the server and significantly
improves communication efficiency [93].

Communication scheduling. Communication scheduling refers to dynamically adjusting the
policy or parameters of communication to adapt to different network environments or device states
by selecting appropriate participants. Yang et al. [94] proposed that FL at the edge of the network can
be optimized through radio resource allocation and scheduling, including user selection, bandwidth
allocation, and batch allocation. They define a new performance metric: training efficiency, which
accelerates convergence, reduces the number of communication rounds, and improves the accuracy
of the training process, and propose an effective algorithm that adjusts the user’s wireless channel,
computing power, and local data set to achieve a significant improvement in system performance.
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5.2 Security and Privacy Issues

With the gradual popularization of IoT technology and the rapid development of FL, there have
been significant changes in users’ lifestyles and work practices. An increasing number of individual
and enterprise users are utilizing IoT devices to process personal data, financial data, and business
data [95]. This data often involves users’ privacy and sensitive information, which, if not adequately
protected, could lead to data breaches and privacy violations. Although FL does not directly share
raw data, there remains a potential risk of privacy leakage. Therefore, it is particularly important to
propose effective strategies and implement robust measures to enhance privacy protection.

In terms of security challenges related to the application of FL in the IoT environment, the types of
attacks can primarily be categorized into adversarial attacks and privacy attacks. Adversarial attacks
include model poisoning attacks and backdoor attacks. In a model poisoning attack, an attacker
submits malicious model updates to contaminate the global model, leading to a degradation in model
performance or incorrect outputs [96]. Backdoor attacks involve embedding specific triggers within
the model, causing it to exhibit the attacker’s desired erroneous behavior when certain input conditions
are met [30]. On the other hand, privacy attacks aim to leak participants’ personal information
or data characteristics during the model training process, encompassing attribute inference attacks
and membership inference attacks. Attribute inference attacks leverage the model’s outputs to infer
sensitive attributes of specific users, while membership inference attacks attempt to determine whether
a particular data record belongs to the training dataset [97].

To address these security challenges, several defensive strategies can be employed. Differential
privacy is an effective privacy protection technique that adds noise to data, ensuring that attackers
find it difficult to infer sensitive information from observing individual model updates. For example,
the differential noise addition-based FL method (DDPFL) proposed by Han et al. [98] and the FLBDP
method by Zhu et al. [99] both incorporate noise during the local update phase to mitigate the
risk posed by attackers. Additionally, secure multi-party computation (SMPC) allows for the joint
computation of functions without disclosing individual data, thereby ensuring the security of the
FL system during parameter updates and aggregation processes [100]. Another noteworthy defensive
measure is the blockchain-based security mechanism, which leverages blockchain technology to ensure
the security and integrity of data transmission [101]. Each parameter update can be recorded on the
blockchain, thereby enhancing the system’s transparency and trustworthiness.

Moreover, in the applications of FL-IoT, privacy protection issues cannot be overlooked. While
FL avoids the direct transmission of data, local model parameters may still inadvertently disclose
certain information. Thus, combining differential privacy and encryption techniques can effectively
prevent malicious third parties or central servers from inferring user privacy through parameter
updates [102]. Additionally, user consent mechanisms are critical, ensuring that users are informed
about how their data will be used and have the right to choose whether to participate in data sharing
or model training [103]. During the data sharing process, it is essential to balance the level of sharing
with privacy protection, establishing reasonable sharing standards and regulations to ensure the secure
and reliable transfer and utilization of data across different devices.

In conclusion, while FL holds immense potential for application in the IoT landscape, it also
faces numerous security and privacy challenges. By conducting an in-depth analysis of various attack
types and defensive strategies, and integrating technologies such as differential privacy and multi-party
computation, FL can promote the widespread adoption and development of IoT while safeguarding
privacy.
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5.3 Heterogeneity of FL-IoT

IoT refers to the massive heterogeneous smart devices connected by heterogeneous communica-
tion technologies such as Ethernet, WiFi, Bluetooth, and ZigBee [104]. The data heterogeneity of IoT
refers to the differences in data distribution, data quality, data volume, and data dimension of data
collected by massive IoT devices, which lead to statistical heterogeneity and structural heterogeneity of
data. IoT devices are widely distributed across the globe, from home automation systems to industrial
monitoring devices, and they continuously generate large amounts of data. The heterogeneity of these
data is mainly reflected in statistical heterogeneity and model heterogeneity.

Statistical heterogeneity: Statistical heterogeneity means that the data distribution of each cus-
tomer in FL is inconsistent and does not obey the same sampling, that is, Non-IID [105]. In real-
world applications, this situation is very common because different clients may originate from different
regions, backgrounds, or user groups, and therefore the data they collect and generate have different
characteristics and patterns. Secondly, some devices often generate and collect data on the web in
highly different distributed ways, e.g., mobile phone users use different languages in the context of
the next word prediction task [106]. These problems can lead to unstable model performance and
poor generalization ability, which leads to lower learning efficiency and complications of the update
aggregation process.

Model heterogeneity: In the context of FL refers to the use of machine learning models with
different architectures or configurations by different clients. When unevenly distributed data is
collected from multiple devices to train a federated model, it will seriously affect the final efficiency
of the model [7]. In real IoT applications, different devices want to build their models to adapt to
their application environment and resource constraints (i.e., computing power). And, they may not
be willing to share the model details due to privacy concerns. As a result, the model architectures of
different local models take on different shapes, causing the simple aggregation methods in traditional
FL to become inapplicable [107]. Therefore, to accommodate this model heterogeneity, FL needs to
adopt more flexible strategies and techniques to ensure effective collaborative learning even in diverse
and privacy-sensitive environments.

The widespread adoption of IoT devices and the heterogeneity of their data pose significant
challenges and opportunities for FL to overcome statistical heterogeneity and model heterogeneity,
researchers and engineers need to develop more advanced algorithms and techniques. These include
improved data preprocessing methods, more sophisticated model aggregation strategies, and a high
degree of adaptability to device heterogeneity. At the same time, privacy protection and data security
become important considerations when designing these systems. Ultimately, through these efforts, FL
will be able to more effectively address the challenges in the IoT environment, enabling smarter and
more secure global data collaboration and knowledge sharing.

5.4 FL Limitations of IoT Hardware Conditions

Federated Learning-Internet of Things (FL-IoT) systems face a series of hardware limitations
in their implementation and operation, which have a significant impact on the performance and
efficiency of the system. IoT devices often have limited computing power, battery life, and network
constraints, and these characteristics determine the challenges of deploying efficient and sustainable
learning algorithms in FL-IoT systems.

Computational Power Constraints: IoT devices are usually equipped with low-power and low-
performance processors. These devices need to perform complex machine learning model training, but
the training process may become slow or unable to handle more complex models due to computational
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resource constraints. In response to the growing demand for services in areas such as smart cities,
factories, and medical systems, IoT devices deployed at large scale mainly perform monitoring,
data collection, preprocessing, and real-time decision-making tasks. Due to the relatively weak and
heterogeneous computing power of these devices [108], they are usually not suitable for complex
machine learning training.

Energy constraints: Many IoT devices rely on battery power, so energy efficiency becomes an
important consideration. Most of the devices in IoT have fairly small sizes and are not fixed. Due to
their size and often changing location attributes, devices cannot get power all the time. So low power
consumption is a universal constraint for IoT. They either use battery technology or they use some
technology that uses other devices to get power from the environment. Therefore, it is necessary to
design such power consumption techniques or low power schemes that enable devices to have a long
lifetime [54]. Performing complex computing tasks and communication operations can significantly
consume battery energy, which is particularly critical for devices that find it difficult to replace their
batteries frequently.

Network limitations: Although IoT devices are connected through multiple communication
technologies, such as Wi-Fi, Bluetooth, ZigBee, etc., when simultaneous messages from multiple
devices eventually lead to extreme overload situations, congestion problems occur, which can have
a huge impact on the network, thereby affecting network performance and leading to network failures
[54]. The network connection may be unstable or bandwidth limited, which also affects the uploading
of data and the synchronization of model parameters, thus affecting the efficiency of FL.

To overcome these hardware limitations, FL-IoT systems need to adopt lightweight machine-
learning models, efficient data compression techniques, and energy-efficient computing methods.
In addition, it is necessary to intelligently manage the energy and storage resources of devices, as
well as optimize the communication process between devices. These measures help to maximize the
performance and reliability of FL-IoT systems under limited hardware conditions.

5.5 Standards and Specifications

After a period of development, FL and IoT have formed some preliminary protocols [109].
However, the application of FL in the field of IoT is still in its initial stage, and there is still a lack
of unified standards and mature norms to guide and lead its development. It is urgent to establish
corresponding legal norms, policy standards, and ethical frameworks to ensure its efficient and
sustainable development on the road of legality, reasonability, and compliance. The main challenges
faced by the combination of FL and IoT in terms of standards and norms are as follows.

Data quality and security: The data generated by IoT devices may have problems such as low
quality, incomplete, inconsistent, and unreliable. Effective data cleaning, verification, and encryption
operations are required to ensure the availability and security of the data. At present, there is still a
lack of unified data quality and security standards. Different IoT devices and FL platforms may adopt
different data processing methods, which will lead to data incompatibility and non-interoperability.

Model Evaluation and Validation: The goal of FL is to train models with high performance and
generalization ability while preserving data privacy. However, there is still a lack of unified model
evaluation and verification standards for the application of FL in the Internet field. Different IoT
devices and FL platforms may adopt different model metrics, evaluation methods, and verification
processes, which will lead to incomparability and unreliability of the model.
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Communication protocols and interfaces: The communication process of FL involves data
exchange and coordination between multiple IoT devices and the FL platform, which needs to follow
certain communication protocols and interfaces to ensure the efficiency and stability of communi-
cation. However, there is still a lack of unified communication protocols and interface standards.
Shome et al. [110] explored the high dependence of FL on wireless communication technologies,
particularly in optimizing network resources and managing real-time decision-making. Due to the
dynamic nature of wireless communication channels, the FL model update process requires efficient
communication protocols to address issues like channel variability and interference. Current solutions,
such as the Federated Averaging (FedAvg) method, ensure model synchronization but still necessitate
more advanced communication-efficient protocols—such as gradient compression and asynchronous
update mechanisms—to handle bandwidth limitations and reduce network congestion during the
transmission of large-scale model parameters.

Data Format: Standardizing data formats is essential for the efficient processing and analysis of
data in IoT and FL applications. IoT devices generate data in diverse formats, including text, images,
audio, and video, all of which must be standardized to ensure compatibility and interoperability across
different devices and platforms. For instance, Seljeseth et al. [111] introduced a data fusion framework
for smart city applications that integrates data from various sources, such as sensors, cameras, and
social media, underscoring the critical role of data format standardization in enabling efficient data
fusion and analysis. Despite this, there remains a significant lack of unified data format standards.
The heterogeneity of data produced by IoT device creates substantial challenges in processing and
sharing data across platforms [112]. Different IoT devices and FL platforms may employ varying data
encoding methods, compression techniques, and data structures, resulting in incompatibility and poor
interoperability. Therefore, the establishment of unified data format standards is crucial to facilitate
seamless data exchange and collaboration between devices, ultimately enhancing the efficiency and
performance of FL model training in IoT applications.

6 Future Directions

The integration of Federated Learning (FL) with the Internet of Things (IoT) presents significant
potential; however, challenges remain in terms of model interpretability, scalability, and large language
model (LLM) integration. Future research could focus on the following three key areas:

Enhancing Model Interpretability in Federated Learning: As FL becomes widely adopted in
critical IoT applications, such as healthcare and cybersecurity, model interpretability has become
essential. Kalakoti et al. [113] propose a SHAP-based framework that aggregates local explanations
from devices to derive global feature importance, providing high-quality interpretability for server-
side models, thus greatly enhancing FL transparency and credibility in multi-device environments.
Additionally, Salim et al. [114] integrated blockchain and differential privacy techniques to further
strengthen FL’ s trustworthiness and privacy protection, enabling the identification of features with
significant predictive contributions and thereby improving model interpretability. Future research
should further explore FL-based interpretability mechanisms that enhance model transparency while
safeguarding privacy, allowing FL to support a broader range of IoT applications.

Improving the Scalability of Federated Learning in Large-Scale IoT Networks: As the number
of IoT devices surges, enhancing FL scalability becomes a key challenge, especially in resource-
constrained environments. Huba et al. [115] proposed a strategy that combines edge computing with
communication optimization to effectively reduce data transmission latency between devices, while
ensuring efficient allocation of computing resources, thereby significantly improving FL efficiency
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and scalability. Building on these findings, future research could further optimize FL performance in
environments with limited device resources and dynamic network conditions to meet the increasing
number and complexity of IoT devices and data processing demands.

Integrating Large Language Models (LLMs) within FL and IoT: Incorporating large language
models (LLMs) like GPT and BERT into the FL framework can provide IoT with advanced language
processing capabilities, supporting high-level applications such as virtual assistants and sentiment
analysis. However, fine-tuning LLMs in FL environments poses challenges in terms of communication
and computational costs. Kuang et al. [116] introduced the FederatedScope-LLM (FS-LLM) toolkit,
which integrates parameter-efficient tuning (PEFT) methods, such as LoRA and prefix-tuning, to
reduce resource overhead and enhances privacy through the offsite-tuning algorithm. Additionally,
Fan et al. [117] proposed the FATE-LLM framework, which employs a multi-center architecture to
optimize communication efficiency and privacy management, balancing the communication costs and
performance of LLM fine-tuning. These studies lay the groundwork for applying LLMs in FL and IoT
settings.

7 Conclusion

This paper describes the application of FL in the field of IoT, and explores its current status,
challenges, and possible solutions. We first introduce the basic concepts of FL, including its limitations
compared with centralized learning, different classifications, and the advantages of its application in
multiple domains. Then, we expounded the definition, development process, basic characteristics and
current problems of IoT. We look forward to the vision of the combination of FL and IoT, and discuss
in detail the multiple advantages of the application of FL in IoT, such as privacy security, efficient
communication, attack detection, and enhancement of learning quality. In addition, we explore the
practical use cases and potential value of FL in specific IoT application areas such as smart healthcare,
sensor networks, Internet of vehicles, and smart cities. Despite the many improvements brought by
FL for IoT, there are still challenges in the actual deployment and application process. In short, as a
cutting-edge distributed machine learning method, FL provides new impetus and possibilities for the
development of the IoT.
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