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ABSTRACT

Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault
features of signals, which has certain limitations. Conversely, deep learning techniques have gained prominence as
a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end
fault diagnosis efficiency. Recently, utilizing the respective advantages of convolution neural network (CNN) and
Transformer in local and global feature extraction, research on cooperating the two have demonstrated promise
in the field of fault diagnosis. However, the cross-channel convolution mechanism in CNN and the self-attention
calculations in Transformer contribute to excessive complexity in the cooperative model. This complexity results
in high computational costs and limited industrial applicability. To tackle the above challenges, this paper proposes
a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis. First, a separable
multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from
different channel dimensions of vibration signals. Then, an efficient self-attention block is developed to capture
critical fine-grained features of the signal from a global perspective. Finally, experimental results on the planetary
gearbox dataset and the motor roller bearing dataset prove that the proposed framework can balance the advantages
of robustness, generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on
CNN and Transformer. This study presents a feasible strategy for developing a lightweight rotating machinery fault
diagnosis framework aimed at economical deployment.

KEYWORDS
CNN-Transformer; separable multiscale depthwise convolution; efficient self-attention; fault diagnosis

1 Introduction

As modern mechanical systems advance swiftly, rotating machinery has emerged as a crucial
component in intelligent manufacturing, attracting significant attention to its safety from both
academic and industrial sectors [1]. Under high-intensity operating conditions, the core transmission
components of rotating machinery unavoidably suffer from wear, crack, break, and other faults [2].
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Faulty transmission components severely affect the operational reliability and stability of rotating
machinery, potentially leading to major incidents, financial losses, and human casualties [3]. Conse-
quently, research into rotating machinery fault diagnosis is of considerable value [4].

Traditional data-driven fault diagnosis methods depend on expert experience to manually extract
effective fault features of signals, which has certain limitations [5]. Conversely, deep learning techniques
have gained prominence as a central focus of research in the field of fault diagnosis by strong fault
feature extraction ability and end-to-end fault diagnosis efficiency [6]. Particularly, methods based on
CNNs and their variants prove effective in various fault diagnosis scenarios. He et al. [7] developed
an ensemble CNN with multi-sensor fusion for rotating machinery fault diagnosis under different
working conditions. Zhao et al. [8] designed a rotating machinery fault diagnosis method based on
CNN with mixed information. Huang et al. [9] proposed a multi-scale CNN with channel attention
mechanism for rolling bearing fault diagnosis. The CNN models excel at extracting local features
within short-range sequences but lack the capability to establish global dependencies between long-
range sequences. Nevertheless, when there is noise interference in the collected signals, it is a struggle
to identify effective fault information using only local features [10].

As a rising star in natural language processing (NLP) and computer vision (CV), Transformer
has a strong ability to capture fine-grained features and build temporal correlations from long-range
sequences by assessing the resemblance among sequences [11,12]. Over the previous three years,
various scholars have gradually employed Transformer in the domain of rotating machinery fault
diagnosis. Tang et al. [13] developed a Signal-transformer architecture for rotating machinery fault
diagnosis under variable operating conditions. Li et al. [14] designed a variational Transformer for
rotating machinery fault diagnosis. Ding et al. [15] proposed a time-frequency Transformer for rolling
bearings fault diagnosis. However, the Transformer models lack the local correlation extraction and
spatial inductive bias capability of CNN models. Thus, training these models usually demands a
significant number of samples to assure effective performance, which poses a challenge for fault
diagnosis tasks [16]. Moreover, vibration signals are periodic and continuous, making it crucial not
to overlook local features [17].

Approaches that combine CNNs with Transformers (CNN-Transformer) have recently been
explored to jointly capture local features and global dependencies of temporal sequences. Fang et al. [18]
developed a bearing fault diagnosis framework named CLFormer using multiscale convolution and
linear self-attention. Han et al. [19] proposed a gearbox fault diagnosis framework named Convformer-
NSE that utilizes local and global feature information. Yan et al. [20] designed a rotating machinery
fault diagnosis framework called LiConvFormer using separable multiscale convolution and broadcast
self-attention. Although existing CNN-Transformer models have demonstrated promise in the
domain of fault diagnosis, they continue to face certain challenges in processing high-dimensional
signal features: (1) the cross-channel convolution mechanism in CNN greatly raises the number of
convolution operations; (2) the scaled dot-product attention in Transformer requires performing
numerous high-dimensional exponential calculations and matrix multiplication operations. The
preceding shortcomings contribute to excessive complexity in the cooperative model, which results in
high computational costs and limited industrial applicability. Therefore, designing simple, lightweight,
and efficient convolution and self-attention mechanisms is especially crucial for building a lightweight
cooperative model that can maintain overall performance.

Inspired by the aforementioned research, this paper proposes a lightweight CNN-Transformer
named SEFormer for rotating machinery fault diagnosis. The primary contributions are detailed
below:
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(1) A separable multiscale depthwise convolution block is designed to extract and integrate
multiscale feature information from different channel dimensions of vibration signals.

(2) An efficient self-attention block is developed to capture critical fine-grained features of the
signal from a global perspective.

(3) A lightweight CNN-Transformer named SEFormer for rotating machinery fault diagnosis
based on separable multiscale depthwise convolution block and efficient self-attention block is
proposed.

(4) Experimental results prove that the proposed framework can balance the advantages of
robustness, generalization and lightweight compared to recent state-of-the-art fault diagnosis models
based on CNN and Transformer.

The rest of this paper is organized below. Section 2 introduces the basic theory. Section 3 details
the proposed lightweight SEFormer and rotating machinery fault diagnosis framework. Section 4
illustrates the two experimental studies and visualization analysis. Section 5 summarizes this paper
and concludes future work.

2 Basic Theory
2.1 Depthwise Separable Convolution

The depthwise separable convolution (DSC) [21] is a form of factorized convolution, as shown
in Fig. 1. Standard convolution implements spatial-wise (filter) and channel-wise (combination)
computation in a single stage, depthwise separable convolution divides the operation into two stages:
depthwise convolution first applies a single filter kernel to each channel (capturing spatial-wise
correlations), and then pointwise convolution constructs a linear combination of the results (capturing
channel-wise correlations). This factorization requires fewer parameters than standard convolution,
which can substantially reduce computational cost and model size, thereby improving computational
efficiency [22,23]. Several studies have demonstrated that capturing spatial-wise correlations and
channel-wise correlations separately is more efficient than capturing them simultaneously [23,24].

yk = ConcatC1
i=1

(
wk

i ∗ xi

)
(1)

z = ConcatC2
j=1

(
C1∑
i=1

w1
i,j ∗ yi

)
(2)

where x ∈ R
C1×L1 denotes the input, C1 and L1 are the channel number and the temporal length,

respectively. wk ∈ R
C1 represents the weight of the k depthwise convolution filter kernel, k is

the depthwise convolution filter kernel size. yk ∈ R
C1×L2 indicates the output of the k depthwise

convolution. w1 ∈ R
C2×C1 represents the weight of the pointwise convolution filter kernel. ∗ and

Concat(·) mean convolution and concatenation operations, respectively. z ∈ R
C2×L2 denotes the output,

C2 and L2 are the output channel dimension and the output temporal dimension, respectively.
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Figure 1: Depthwise separable convolution

2.2 Multiscale Convolution

The multiscale convolution (MC) [18], as visualized in Fig. 2, can parallelly extract multiscale
features across different local receptive fields through filter kernels of multiple scales, compared to
standard convolution with only filter kernels of the same scale. The extracted features are concatenated
along the channel dimension, a batch normalization (BN) layer is then utilized to stabilize the feature
distribution. Finally, the gaussian error linear unit (GELU) activation function is applied to execute
nonlinear feature mapping. The formula describing the entire process is as follows:

ykl = ConcatC2
j=1

(
C1∑
i=1

wkl
i,j ∗ xi

)
(3)

z = GELU
(
BN

(
Concat

(
yk1 , yk2 , · · · ykn

)))
(4)

where wkl ∈ R
C2×C1 represents the weight of the kl convolution filter kernel, C2 and kl are the output

channel dimension and the convolution filter kernel size, respectively. z ∈ R
nC2×L2 denotes the output,

n is the number of convolution filter kernel sizes, L2 is the output temporal dimension.

2.3 Efficient Attention

Self-attention mechanism, a key part of Transformer [25], captures global feature representations
across the temporal dimension through computing and assigning attention scores [26]. The scaled dot-
product attention is currently the dominant method for calculating self-attention, and its mathematical
formula is expressed as follows:

Attention (Q, K, V) = Softmax
(

Q · KT

d

)
· V (5)

where Q ∈ R
L×C, K ∈ R

L×C, and V ∈ R
L×C denote query matrix, key matrix, and value matrix,

respectively. L and C are the temporal length and the channel number, respectively. d represents
the scaling factor, usually d = √

C. T and mean matrix transposition and matrix multiplication
operations, respectively. Softmax(·) indicates Softmax normalization operation.
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In Eq. (5), the matrix obtained by Q KT has a size of L × L, and its complexity is O(L2). Therefore,
scaled dot-product attention demands high computational resources when the input dimension L is
large. To address this, Shen et al. [27] proposed an efficient attention mechanism with linear complexity.
Instead of using the Softmax operation, a matrix of size C × C is first obtained by KT · V according
to the matrix association law, which has a complexity of O(C2). Since L � C, the complexity can
be considered linear. Further, Fang et al. [18] rewrote Eq. (5) equivalently as Eq. (6) on this basis, and
proposed normalizing Q in the temporal dimension and K in the channel dimension before calculating
Q · KT . This allows the scaled dot-product attention to be interpreted as weighted average of vj with
eqi

T kj as the weight, reducing the complexity to near-ideal linear.

Attention (Q, K, V)i =
∑L

j=1 eqi
T kj vj∑L

j=1 eqiT kj
(6)

Figure 2: Multiscale convolution

3 The Proposed Method
3.1 Separable Multiscale Depthwise Convolution Block

In order to efficiently extract and integrate multiscale feature information from different channel
dimensions, a separable multiscale depthwise convolution (SMDC) block is designed by fusing DSC
[21] and MC [18]. The depthwise separable convolution establishes a one-to-one direct mapping
between input and output channels, thereby significantly lowering the computational cost of mul-
tiscale convolution. Unlike the separable multiscale convolution (SMC) block [20], the SMDC block
adjusts the placement of multiscale depthwise convolution and pointwise convolution operations, first
capturing multiscale spatial-wise correlations and then capturing channel-wise correlations, with the
aim of aligning more closely with the DSC structure. Fig. 3 illustrates the structure of the SMDC
block. First, multiscale features are extracted from different local receptive fields using parallel
depthwise convolution kernels of various sizes. Then, these features are concatenated along the channel
dimension. Next, pointwise convolution is utilized to integrate the feature information and capture
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channel-wise correlations. Finally, the BN and GELU are applied to stabilize feature distribution and
perform non-linear mapping, respectively. The formula for these operations is defined as follows:

ykl = ConcatC1
i=1

(
vkl

i ∗ xi

)
(7)

h = Concat
(
yk1 , yk2 , · · · ykn

)
(8)

z = GELU

(
BN

(
ConcatnC1

j=1

(
nC1∑
i=1

v1
i,j ∗ hi

)))
(9)

where x ∈ R
C1×L1 denotes the input, C1 and L1 are the channel number and the temporal length,

respectively. vkl ∈ R
C1 represents the weight of the kl depthwise convolution filter kernel, kl is the

depthwise convolution filter kernel size. ykl ∈ R
C1×L2 represents the output of the kl depthwise

convolution. h ∈ R
nC1×L2 represents the output of the multiscale depthwise convolution. v1 ∈ R

nC1×nC1

represents the weight of the pointwise convolution filter kernel. z ∈ R
nC1×L2 denotes the output, n is the

number of depthwise convolution filter kernel sizes, L2 is the output temporal dimension.

Figure 3: Separable multiscale depthwise convolution block

3.2 Efficient Self-Attention Block

To efficiently capture critical fine-grained features of the signal from a global perspective, an
efficient self-attention (ESA) block is developed, as depicted in Fig. 4. First, to expand the repre-
sentational capacity of each feature and reduce computation, three parallel DSC blocks are used to
generate the input features for self-attention: the query matrix Q, key matrix K, and value matrix V .
Then, efficient attention is employed to fully leverage global feature information transmission while
lowering computational cost of self-attention calculation. Since output range of Softmax is (0, 1),
it serves as a normalization operation suitable for the form of efficient attention. The matrices Q
and K are normalized along the temporal and channel dimensions, respectively. Finally, attention
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weights are calculated through matrix transposition and multiplication operations. The formula for
these operations is represented as follows:

EA (Q, K, V) = SoftmaxL (Q) · [
(SoftmaxC (K))

T · V
]

(10)

where (·)T indicates matrix transpositon operation. SoftmaxL(·) and SoftmaxC(·) represent Softmax
normalization operations in the temporal dimension and channel dimension, respectively.

Figure 4: Efficient self-attention block

3.3 The Architecture of SEFormer

The architecture of SEFormer is simple and primarily includes three consecutively linked feature
extraction layers along with a final output layer, as illustrated in Fig. 5.

Figure 5: The architecture of SEFormer

The feature extraction layers serve as the crucial parts of SEFormer. To begin with, the SMDC
block is applied to extract and integrate multiscale feature information of the signal from different
channel dimensions. Next, the ESA block is employed to capture critical fine-grained features from a
global perspective. A residual connection is introduced to mitigate the risk of overfitting, and BN is
adopted to stabilize the distribution of feature information. Remarkably, inspired by Deng et al. [28],
two trainable weights are incorporated into the residual connection to dynamically tune feature
importance. Similar to the approach used by Mehta et al. [29], a lightweight feed forward network is
then used to perform the non-linear feature transformation. Finally, the extracted features are output
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via a residual connection and BN. The specific flow and details of the feature extraction layer based
on mathematical expressions are shown in Algorithm 1.

Algorithm 1: The algorithm flow of the feature extraction layer based on mathematical expressions
Input signal: s ∈ R

B×C×L: Input a batch signals
W = [w1, w2, w3, w4]: Initialized residual weights

Output features: o ∈ R
B×4C× L

2 : Output a batch features
Function definition:

f 1(x): SMDC with out channels = 4C, kernel size = 3,5,7,9, stride = 2 and padding = 1,2,3,4
f 2

1(x): DSConv with out channels = 4C, kernel size = 3, stride = 1 and padding = 1
f 2

2(x): DSConv with out channels = 4C, kernel size = 3, stride = 2 and padding = 1
f ↓(x): Conv with out channels = C, kernel size = 1, stride = 1 and padding = 0
f ↑(x): Conv with out channels = 4C, kernel size = 1, stride = 1 and padding = 0
⇒: dimension transposition

1. SMDC block: c = f 1(s), c ∈ R
B×4C× L

2

2. ESA block: q, k, v = f 2
1(c), f 2

2(c), f 2
2(c), q ∈ R

B×4C× L
2 , k ∈ R

B×4C× L
4 , v ∈ R

B×4C× L
4

q ⇒ q1, k ⇒ k1, v ⇒ v1, q1 ∈ R
B× L

2 ×4C, k1 ∈ R
B× L

4 ×4C, v1 ∈ R
B× L

4 ×4C

a1 = EA(q1, k1, v1), a1 ∈ R
B× L

2 ×4C

a1 ⇒ a, a ∈ R
B×4C× L

2

3. Add & BN: p = BN[w1 · c + w2 · a], p ∈ R
B×4C× L

2

4. Feed forward: d = f ↓(p), d ∈ R
B×C× L

2

u = f ↑(d), u ∈ R
B×4C× L

2

5. Add & BN: o = BN[w3 · p + w4 · u], o ∈ R
B×4C× L

2

In the output layer, global average pooling (GAP) is first utilized for feature reduction in the
temporal dimension. Next, a pointwise convolution block is used to integrate features across the
channel dimension. Finally, a linear transformation is employed to project the high-dimensional
features onto the healthy state.

Table 1 lists the detailed parameter configuration of SEFormer for an input signal with 1024 data
points, including the core parameters and the output shape of each layer.

Table 1: The parameter configuration of SEFormer

Layers Blocks Parameters Output shape

Input signal – – m × 1024
Feature extraction layer 1 SMDC block d = 4m; kl = 3,5,7,9; s = 2;

p = 1,2,3,4
4m × 512

ESA block d = 4m 4m × 512
Feed forward r = 4 4m × 512

Feature extraction layer 2 SMDC block d = 16m; kl = 3,5,7,9; s = 2;
p = 1,2,3,4

16m × 256

ESA block d = 16m 16m × 256
Feed forward r = 4 16m × 256

(Continued)
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Table 1 (continued)

Layers Blocks Parameters Output shape

Feature extraction layer 3 SMDC block d = 64m; kl = 3,5,7,9; s = 2;
p = 1,2,3,4

64m × 128

ESA block d = 64m 64m × 128
Feed forward r = 4 64m × 128

Output layer GAP dg = 1 64m × 1
Conv block d = 32m; k = 1; s = 1 32m × 1
Linear dl = C C

Note: m denotes the number of sensor channels for signal acquisition, d is the output channel dimension, kl is the kernel size of SMDC
block, s is the convolution stride, p is the convolution padding, r is the scaling factor of feed forward, dg is the output temporal dimension
of GAP, k is the kernel size of pointwise convolution, dl is the output temporal dimension of linear transformation, and C represents the
number of healthy state classes.

3.4 Lightweight Rotating Machinery Fault Diagnosis Framework

This paper proposes a lightweight rotating machinery fault diagnosis framework by incorporating
the SEFormer model. As illustrated in Fig. 6, the specific procedure is described in the three stages
below:

Stage 1: Data acquisition, sampling, and splitting. Vibration signals are obtained through data
acquisition devices from the components of rotating machinery. The collected signals are then divided
into a sample set by sliding window sampling, and the sample set is split into training, validation, and
test sets.

Stage 2: Model training and validation. The SEFormer model is trained using the training and
validation sets. During the iteration process, the model with the highest validation accuracy is selected
as the well-trained model.

Stage 3: Fault diagnosis and result analysis. The test set is input into the well-trained SEFormer
model for fault diagnosis, and the results are visually analyzed from multiple perspectives.

4 Case Study
4.1 Experimental Setup

The running configuration is as follows: CPU is an i7-14700HX with 16 GB of RAM; GPU is a
RTX 4060 with 8 GB of memory. The running environment is as follows: the programming language
is Python 3.8.13; the DL framework is Pytorch 1.13.1.

The cross-entropy function is applied to calculate the training loss, the Adam weight decay
regularization (AdamW) [30] optimization algorithm is implemented to update the model parameters,
and the learning rate is dynamically adjusted according to the loss of the validation set using an
adaptive decay strategy. The initial learning rate is 0.001 in Case Study 1, and 0.01 in Case Study 2.
The number of iterations for each training is 100, and the batch size is 64. In addition, unless otherwise
stated, each experiment is performed five times to minimize the impact of randomness.
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Figure 6: Lightweight rotating machinery fault diagnosis framework

4.2 Case Study 1: Fault Diagnosis of Planetary Gearbox

4.2.1 Dataset Description

The planetary gearbox dataset is acquired from the Institute of Aero-engine at Xi’an Jiaotong
University, Xi’an, China [31]. The test rig is depicted in Fig. 7a. Two 1D-accelerometers are mounted in
the X and Y directions of the planetary gearbox to gather vibration signals. During the experiment, the
rotational speed of the motor and the sampling frequency are 1800 r/min and 20480 Hz, respectively.
As illustrated in Fig. 7b, the fault types in the planetary gearbox consist of four gear faults and four
bearing faults, one of which is a mixed fault. As a result, vibration signals are collected across nine
healthy states, including the normal state.

The vibration signals for each health state are divided into 1200 samples using sliding window
sampling. Of these, 500 samples are allocated for training, 300 samples for validation, and 400 samples
for testing, with each sample comprising 1024 data points. To avoid test leakage, consecutive windows
do not overlap and are spaced apart. While the original signals inherently carry some amount of
noise, they still differ from the signals encountered in actual industrial manufacturing environments.
Therefore, to assess the model’s anti-noise performance, two types of noises are sequentially added to
the test samples. The specific formula for adding noise is as follows:

Si = (Si + α) × β (11)
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where Si denotes the i-th data point of a single test sample, α ∼ N(0, σ ) and β ∼ N(1, σ ) indicate the
additive and the scaled Gaussian noise, respectively. σ is the variance of the Gaussian distribution,
with larger values corresponding to stronger noise. To more realistically reflect the variability and
uncertainty of noise, each sample has a 50% probability of randomly adding either type of noise. This
approach allows the experimental results to be more random, better simulating the effects of noise in
real-world scenarios.

Figure 7: The test rig of the XJTU Gearbox: (a) The test rig; (b) Healthy state of gears and bearings

4.2.2 Result Analysis

This paper selects seven recent state-of-the-art models for comparative analysis with the proposed
model, including three new end-to-end fault diagnosis models based on CNN-Transformer, called
LiConvFormer [20], Convformer-NSE [19], and CLFormer [18], as well as four popular CNN models,
called MobileNetV2 [23], MobileNet [21], MK-ResCNN [32], and ResNet18 [33]. When performing
comparative analysis, each model may achieve different results under varying input signal lengths and
training strategies. Therefore, to guarantee an equitable comparison, all models adopt the same input
signal length and training strategy as the proposed model [6]. The average loss and accuracy from five
repeated experiments for each model are depicted in Fig. 8. During the iteration process, the proposed
model demonstrates minimal fluctuation at each stage and achieves lower validation loss and higher
validation accuracy compared to the other models. In the early epochs, the training loss and training
accuracy exhibit less fluctuation than those on the validation set for each model. The proposed model,
LiConvFormer, MobileNetV2, MobileNet, MK-ResCNN, and ResNet18 show a rapid convergence
rate, achieving convergence after 30 epochs, whereas Convformer-NSE and CLFormer require 80
epochs to converge. This delay in convergence is attributed to the feature dimension compression
in these two models, which leads to some loss of fine-grained features and impedes their ability to
adequately learn the multi-dimensional information within the signals.
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Figure 8: The average loss and accuracy curves of the five repeated experiments: (a) Training loss; (b)
Training accuracy; (c) Validation loss; (d) Validation accuracy

Table 2 presents the diagnostic result and model complexity under different levels of noise for
each model. From the results, some baseline models exhibit somewhat higher average accuracy than
the proposed model when σ = 0. However, the robustness superiority of the proposed model becomes
significant as the noise level increases. Across all three noise levels, the proposed model performs
well. Specifically, it achieves the highest average accuracies (96.63% and 72.72%) among all models,
with small standard deviation values (0.89% and 0.59%) at σ = 0.2 and σ = 0.6. When σ = 0.4,
the average accuracy of the proposed model is slightly lower than that of LiConvFormer, but it has
a smaller standard deviation than LiConvFormer. In terms of overall performance, the second-best
LiConvFormer shows comparable diagnostic accuracy to the proposed model. However, the pro-
posed model demonstrates significant superiority in terms of model complexity over LiConvFormer.
Although Convformer-NSE and CLFormer have relatively lower model complexity, their diagnostic
performance significantly lags behind that of other models. Additionally, the optimal CNN model,
MK-ResCNN, ranks third among all models.
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Table 2: The diagnostic result and model complexity under different levels of noise

Model Accuracy (%) Complexity (M)

σ = 0 σ = 0.2 σ = 0.4 σ = 0.6

Mean Std Mean Std Mean Std Mean Std Params FLOPs

SEFormer 99.61 0.07 96.63 0.89 82.70 1.77 72.72 0.59 0.093 9.315
LiConvFormer 98.48 0.57 95.72 0.62 83.28 1.80 72.69 1.49 0.323 14.520
Convformer-NSE 88.76 10.07 80.15 8.40 68.41 6.57 59.99 6.08 0.245 6.270
CLFormer 86.96 6.07 83.79 5.27 75.13 3.83 66.96 3.30 0.005 0.144
MobileNetV2 98.81 0.34 90.42 1.38 74.26 1.92 66.79 2.67 2.192 96.955
MobileNet 99.11 0.11 88.39 3.07 74.43 1.71 65.31 3.21 3.186 333.620
MK-ResCNN 99.69 0.13 95.88 0.61 82.55 1.37 71.94 0.76 2.117 83.893
ResNet18 99.69 0.11 94.01 1.41 78.35 2.76 69.12 1.57 3.854 175.920
Note: Mean and Std represent the mean accuracy and standard deviation values obtained from five repeated experiments, respectively. The
learning parameters (Params) and floating-point operations (FLOPs) are evaluation metrics for model complexity [34]. The training and
inference times of the model are closely related to the running configuration (CPU and GPU), and the relationship between time complexity
and model complexity is a relatively deep topic. Therefore, time complexity is not discussed in this paper.

The average diagnostic accuracy and model complexity under different levels of noise for each
model is visualized in Fig. 9. The proposed model accomplishes the strongest diagnostic robustness
among all models while maintaining model complexity. Specifically, the proposed model obtains an
average accuracy of 87.92% and a standard deviation value of 0.83% across different noise levels, with
0.093 M Params and 9.315 M FLOPs. Compared with the second-best model, LiConvFormer, the
proposed model reduces the Params by 0.23 M and FLOPs by 5.205 M, while enhancing the average
accuracy by 0.38% and decreasing the standard deviation by 0.29%. Compared to the advanced CNN
model, MK-ResCNN, the proposed model decreases the Params by approximately 23-fold and FLOPs
by approximately 9-fold, while enhancing the average accuracy by 0.40%.

Figure 9: The average diagnostic accuracy and model complexity: (a) Performance of accuracy vs.
Params; (b) Performance of accuracy vs. FLOPs

To additionally assess the feature extraction performance of each model under noise interference,
feature distribution visualization is performed using t-distributed stochastic neighbor embedding (t-
SNE) [35]. As shown in Fig. 10, the output features on the test set for each model are visualized in two
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dimensions, with different color shapes representing different healthy states. It is worth mentioning
that the output features under different levels of noise for each model are combined to account
for the effect of noise interference. In comparison with other models, the proposed model shows
greater proficiency in distinguishing fault features across all health states, effectively clustering intra-
class features of the same health state while differentiating between inter-class features of different
health states. The second-best model, LiConvFormer, and the third-best model, MK-ResCNN, also
demonstrate relatively good recognition of fault information across all health states. Moreover, other
comparison models exhibit varying degrees of mixing between the four fault states, including root
cracks, tooth surface wear, missing teeth, and normal state. This suggests that the feature information
for these fault states is somewhat similar and more susceptible to noise interference.

Figure 10: The feature distribution visualization by t-SNE: (a) SEFormer; (b) LiConvFormer; (c)
Convformer-NSE; (d) CLFormer; (e) MobileNetV2; (f) MobileNet; (g) MK-ResCNN; (h) ResNet18

4.3 Case Study 2: Fault Diagnosis of Motor Roller Bearing

4.3.1 Dataset Description

The motor roller bearing dataset is sourced from Jiangnan University (JNU), China [36],
and includes three vibration datasets recorded at different motor rotational speeds (600, 800, and
1000 r/min) with a sampling frequency of 50 kHz. The experimental platform is illustrated in Fig. 11.
The health states of the bearings include normal, inner race fault, outer race fault, and ball fault.
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Figure 11: The illustration of test bench of the JNU Bearing

For each rotational speed, vibration signals corresponding to each health state are divided into
450 samples using sliding window sampling, with each sample comprising 1024 data points. As in Case
Study 1, consecutive windows are spaced apart to avoid test leakage. To validate the generalization
performance of the model, two cross-domain datasets are set up, as list in Table 3. The source domain
dataset is split into training and validation sets at a ratio of 2:1, while the target domain dataset serves
as the test set.

Table 3: The description of two cross-domain datasets

Dataset D1 D2

Source domain 600 r/min 800 r/min
Target domain 800 r/min 600 r/min

4.3.2 Result Analysis

As in Case Study 1, seven comparison models are also utilized for comparative analysis with the
proposed model, all with the same experimental setups. Additionally, a feature quantitative evaluation
metric [37] based on between-class and within-class covariances is introduced to examine the quality of
extracted features for each model in numerical terms. The between-class covariance is typically utilized
to assess the extent of dispersion among distinct classes, while the within-class covariance is generally
utilized to evaluate the extent of clustering within a single class. Therefore, the larger the value of the
evaluation metric, the more distinguishable the output features of the model are, which is expressed as
follows:

f̂ c = 1
Nc

Nc∑
i=1

f c
i (12)

f̂ = 1
N

N∑
i=1

fi (13)

Sb =
C∑

c=1

Nc

(
f̂ c − f̂

) (
f̂ c − f̂

)T

(14)
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Sw =
C∑

c=1

Nc∑
i=1

(
f c

i − f̂ c
) (

f c
i − f̂ c

)T

(15)

J = ‖Sb‖
‖Sw‖ (16)

where J is the feature quantitative evaluation metric, and the larger J values indicate the better output
feature quality. f i and f̂ represent the extracted feature of the i-th sample and the mean extracted feature
of all samples, respectively. C and N are the number of healthy states and all samples, respectively. Sb

and Sw denote the between-class and the within-class covariances, respectively. ||·|| means the second-
order normalization.

The feature quantitative evaluation and model complexity under the two cross-domain datasets
for each model are detailed in Table 4. From the overall results, the J values on the D1 dataset are
generally higher than those on the D2 dataset. This implies that the features on the D2 dataset are
more difficult to extract than those on the D1 dataset. For both datasets, the proposed model has the
highest mean J value (2.84 and 2.01) and min J value (2.47 and 1.62) among all models. This indicates
that the proposed model remains effective in capturing fault features despite cross-domain influence.
On the D1 dataset, the mean J value and min J value of the proposed model are approximately 21.37%
and 43.60% higher, respectively, than those of the second-best MobileNetV2. On the D2 dataset,
the mean J value is about 27.22% higher and the min J value is about 14.08% higher compared to
the second-best MobileNetV2. Since Case Study 2 has fewer sensor channels for input signals than
Case Study 1, the Params and FLOPs for each model are slightly reduced. While CLFormer has the
smallest model complexity among all models, reducing feature dimensions leads to poor output feature
quality. In comparison with the second-best MobileNetV2 and the third-best MobileNet, the proposed
model shows a significant advantage in terms of model complexity while maintaining excellent feature
extraction performance.

Table 4: The feature quantitative evaluation and model complexity under two cross-domain datasets

Model J Complexity (M)

D1 D2

Mean Min Mean Min Params FLOPs

SEFormer 2.84 2.47 2.01 1.62 0.025 2.562
LiConvFormer 1.30 1.18 1.34 1.20 0.321 14.395
Convformer-NSE 0.90 0.73 1.25 0.93 0.245 6.220
CLFormer 1.33 1.20 1.16 1.03 0.005 0.133
MobileNetV2 2.34 1.72 1.58 1.42 2.185 96.899
MobileNet 2.32 1.54 1.54 1.47 3.181 333.517
MK-ResCNN 1.66 1.52 1.26 1.16 2.113 83.660
ResNet18 1.81 1.65 1.34 1.22 3.851 175.688
Note: Mean and Min represent the mean and minimum values of the feature quantitative evaluation metric J of the five
repeated experiments, respectively.
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Fig. 12 depicts the diagnostic results under the two cross-domain datasets for each model, where
precision and F1 score are also used to evaluate the diagnostic performance of each model in addition
to accuracy. Since the features on the D2 dataset are more difficult to extract than those on the D1
dataset, the diagnostic results on the D1 dataset are generally higher than those on the D2 dataset,
consistent with the feature quantitative evaluation. The proposed model obtains the best diagnostic
results on both datasets, with the average of the three evaluation metrics on the D1 dataset reaching
97.24%, 97.28%, and 97.21%, respectively. On the D1 dataset, the three evaluation metrics are 1.81%,
1.65%, and 1.82% higher, respectively, than those of the second-best MobileNet. On the D2 dataset,
the accuracy is 1.78% higher, precision is 4.15% higher, and the F1 score is 1.39% higher compared to
the second-best MobileNet.

Figure 12: The diagnostic results under two cross-domain datasets: (a) D1; (b) D2

To more deeply investigate the feature extraction performance of each model under cross-domain
influence, the confusion matrix is employed to evaluate the diagnostic details. As shown in Fig. 13, the
confusion matrices from five repeated experiments on the D1 dataset for each model are integrated.
In these matrices, IF, NS, OF, and BF on the coordinate axes correspond to the four health states of
bearings: inner race fault, normal state, outer race fault, and ball fault. The proposed model achieves
excellent classification results, with the recognition accuracy for each health state exceeding 92%,
and accuracies for IF, NS, and OF reaching 99%. The classification results of the other comparison
models are significantly lower than those of the proposed model. For the second-best MobileNet, the
recognition accuracy for health states IF, NS, and OF exceeds 97%, but the accuracy for health state
BF is relatively lower at 87%. Additionally, all models show lower performance in recognizing health
state BF compared to other health states, indicating that the feature information of ball fault is more
susceptible to cross-domain influences than that of the other health states.
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Figure 13: The confusion matrix on the D1 dataset: (a) SEFormer; (b) LiConvFormer; (c) Convformer-
NSE; (d) CLFormer; (e) MobileNetV2; (f) MobileNet; (g) MK-ResCNN; (h) ResNet18

5 Conclusions

To tackle the issue of high computational costs and limited industrial applicability posed by the
cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer, this
paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault
diagnosis. The SEFormer comprises two core components: the SMDC block and the ESA block. The
SMDC block is designed to extract and integrate multiscale feature information from different channel
dimensions of vibration signals. The ESA block is developed to capture critical fine-grained features
of the signal from the global scope. The experimental results on the planetary gearbox dataset and the
motor roller bearing dataset prove that the proposed framework can balance advantages of robustness,
generalization and lightweight compared to the recent state-of-the-art fault diagnosis models based on
CNN and Transformer. This study presents a feasible strategy for developing a lightweight rotating
machinery fault diagnosis framework aimed at economical deployment.

In future work, we will study the relationship between time complexity and model complexity,
and further reduce the computational burden of the proposed model using techniques like model
pruning, quantization, low-rank factorization, and knowledge distillation. Additionally, we will focus
on further enhancing the reliability and practicality of the proposed model. To achieve this, we
will investigate several advanced techniques, including multi-sensor fusion, interpretability, few-shot
learning, and transfer learning [38,39]. These efforts will collectively contribute to achieving more
reliable diagnostic results and more economical deployment.
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