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ABSTRACT

Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather
data on ecological and environmental factors. These vehicles are crucial in various fields, including environmental
science research, ecological and environmental monitoring projects, disaster response, and emergency manage-
ment. A key method employed in these vehicles for achieving high-precision positioning is LiDAR (lightlaser
detection and ranging)-Visual Simultaneous Localization and Mapping (SLAM). However, maintaining high-
precision localization in complex scenarios, such as degraded environments or when dynamic objects are present,
remains a significant challenge. To address this issue, we integrate both semantic and texture information from
LiDAR and cameras to enhance the robustness and efficiency of data registration. Specifically, semantic information
simplifies the modeling of scene elements, reducing the reliance on dense point clouds, which can be less efficient.
Meanwhile, visual texture information complements LiDAR-Visual localization by providing additional contextual
details. By incorporating semantic and texture details from paired images and point clouds, we significantly improve
the quality of data association, thereby increasing the success rate of localization. This approach not only enhances
the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to
improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.

KEYWORDS
LiDAR-Visual; simultaneous localization and mapping; integrated semantic; texture information

1 Introduction

In today’s rapidly evolving society, accelerated urbanization coupled with increasingly severe
environmental issues has significantly amplified the importance of ecological monitoring vehicles.
These vehicles have become indispensable tools in modern urban management and environmental
protection [1,2]. Equipped with cutting-edge sensors and sophisticated data processing systems,
they are capable of real-time data collection and analysis in both complex urban landscapes and
dynamic natural environments. Looking forward, these vehicles are expected to play a crucial role
in providing accurate and comprehensive services for species surveys and environmental monitoring.
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Their onboard monitoring systems are multifaceted, including meteorological sensors, air quality
monitors, thermometers, noise sensors, high-resolution cameras, and LIDAR sensors. This extensive
array of sensors allows for a comprehensive, multidimensional approach to environmental data
collection. Such capabilities are vital, offering essential scientific and technical support for a range
of applications including urban planning, tracking pollution sources, and responding effectively to
sudden environmental events [3].

Despite notable advancements in technology, ecological monitoring vehicles continue to confront
several challenges in practical deployment, with the enhancement of positioning accuracy being
a particularly critical issue [4]. Achieving precise real-time positioning in dynamically changing
ecological environments remains a complex and challenging task, largely dependent on the efficacy
of Simultaneous Localization and Mapping (SLAM) technology [5]. Although significant progress
has been made, existing technologies have proven effective in addressing specific environmental
changes, such as puddles and snowdrifts [6–8], the issue of positioning module failures induced by
environmental dynamics persists.

This study aims to address these challenges by integrating LiDAR inertial odometry (LIO) with a
global LiDAR localization module that is based on map matching techniques. These measurements are
synthesized within a pose graph optimization framework, creating a robust localization system capable
of handling temporary ecological and environmental changes or inaccuracies in the map, all while
ensuring consistent global localization. This innovative approach provides the technical foundation
necessary for effective monitoring and surveying of field species. The specific contributions of this
paper are outlined as follows:

(1) Development of an integrated framework for the localization of ecological monitoring vehicles
that dynamically merges global matching and local odometry information. This integration enhances
the system’s resilience against failures caused by fluctuating indoor environments and other dynamic
conditions.

(2) Creation of a closely integrated LiDAR-Inertial Odometry system that leverages both occu-
pancy data and LiDAR intensity information. This system is designed to deliver precise real-time state
estimations, improving the accuracy and reliability of ecological monitoring.

(3) Establishment of a reliable ecological monitoring vehicle localization system that has been
rigorously tested in various environments, including busy indoor streets and diverse outdoor settings.
This testing demonstrates the system’s robustness and adaptability to dynamically changing condi-
tions, further validating its effectiveness for real-world applications.

2 Related Work
2.1 Long-Term Localization

Constructing a continuous 7-day localization system poses significant challenges. Wolcott et al. [6]
addressed the issue of varying environmental conditions such as repavement and snow by utilizing
a robust LiDAR system coupled with multi-resolution mapping techniques. This approach ensures
the system remains reliable under diverse and dynamic conditions. Wan et al. [8] made strides in
navigation by incorporating altitude cues, which assist in improving the accuracy of localization in
varying terrains. Levinson et al. [9] tackled these challenges by normalizing LiDAR scans, which
effectively reduces variations in reflectance that can otherwise lead to inconsistencies in the data.
Meanwhile, Aldibaja et al. [7] focused on enhancing system robustness in adverse weather conditions,
including rain and snow, by applying Principal Component Analysis (PCA) and edge profiles to better
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handle the noise and distortions associated with such environments. Our research aims to provide a
more generalized solution by integrating odometry with global matching cues, offering a versatile
approach to continuous localization. In contrast, other studies [10–14] have relied predominantly on
vision sensors, which can be susceptible to significant performance degradation due to changes in
appearance and lighting conditions.

2.2 LiDAR Inertial Odometry

Several studies have made notable contributions to LiDAR odometry and SLAM [15–17]. In
particular, inertial data has been used to support motion estimation [18,19] and distortion correction
[20–22], enhancing the precision of constraints [23,24] and contributing to the development of
integrated odometry solutions [25,26]. Building on Hess’s work [16], which highlighted the benefits
of LiDAR-inertial odometry due to its alignment with map representation, our approach integrates
inertial sensors to achieve improved performance and robustness. Drawing inspiration from previous
research, we incorporate these inertial sensors to further enhance the accuracy and reliability of our
system.

2.3 Localization Fusion Methods

Fusion methods are crucial in combining estimates from various sensors to improve overall
performance. Loosely-coupled fusion techniques leverage complementary sensors such as Global
Navigation Satellite System (GNSS) [27], cameras [28], odometers [29], and Inertial Measurement
Units (IMUs) to achieve more accurate and reliable localization results. Some methodologies [8,30,31]
implement Kalman filters to perform sensor fusion, which helps in combining data from different
sources effectively. Our approach aligns with [31] by employing a graph-based framework, which
offers computational efficiency and robust performance [32,33]. In a related study, the authors [34]
demonstrated the effectiveness of a tightly-integrated system combining GNSS, LiDAR, and inertial
sensors, showcasing the benefits of a holistic approach to sensor fusion for enhanced localization.

3 Method

This section provides a detailed overview of the proposed architecture for the Visual Boosted
Registration Framework, as illustrated in Fig. 1. Our system is designed to accurately register the
source frame with the target frame, emphasizing crucial aspects such as data association and the
estimation of relative pose transformations. Each frame within our system is composed of multi-
camera images with minimal overlap, accompanied by a 64-line laser point cloud. The images are
1920∗1080 pixel surround images after de-distortion, and the laser point cloud is the point cloud after
removing motion distortion.

We assume that the camera intrinsics and sensor extrinsics are precisely calibrated, and that
time synchronization with IMU compensation is accurately accounted for, ensuring the precision of
pose transformations. Under these assumptions, we consider these parameters to be sufficient for
our calculations and subsequent processing. The system ultimately outputs the pose transformation
that defines the spatial relationship between the two frames after analyzing their input data. The
framework comprises four key modules: Data Association, Scale-free Transform Estimate, Recover
Scale, and Robust Optimization. Fig. 1 provides a comprehensive depiction of the workflow involved
in these modules. Initially, the Data Association module is responsible for extracting and associating
image keypoints and semantic objects from the laser point cloud. This process involves matching these
keypoints and semantic objects between the source and target frames to generate a set of corresponding
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keypoint and semantic matching pairs. These matching pairs are then processed through the Scale-
free Transform Estimate module, which computes the scale-free pose transformation between the
frames. This transformation is performed without considering the absolute scale, focusing instead
on the relative spatial arrangement of the keypoints and semantic objects. The subsequent Recover
Scale module is employed to address the scale of the transformation, adjusting the computed pose
to accurately reflect the true scale of the frames. Finally, the Robust Optimization module refines the
pose transformation by incorporating robust optimization techniques to improve accuracy and handle
any discrepancies or errors in the initial data.

Figure 1: The proposed architecture

Overall, this workflow ensures that the registration process is both precise and resilient, leveraging
the strengths of each module to produce an accurate pose transformation between the source and
target frames. The pose transformation is recorded as (Rst, tst,f) belong to the Special Orthogonal
Group SO(3). Following the Scale Recover stage, the laser point cloud projection is used to estimate
the depth of multiple image keypoints, and the scale Sts of the pose transformation (Rst, tst,f) is recovered
to obtain the real scale pose transformation, which we recorded as (Rst, Sts, tst). Finally, the real scale
pose transformation result is used as the initial value for robust optimization. We construct the
optimization residuals based on keypoint and semantic matching pairs to obtain the final optimized
pose transformation between the source and target frames. The following sections will provide a
detailed introduction to these four system modules in sequence.

3.1 Data Association

Data association is a critical component for successful registration. A common approach involves
iteratively finding nearest point correspondences within a predefined distance threshold, which
requires an initial estimate of the relative pose between the datasets. However, associating data
based solely on geometry poses significant challenges. The correspondence may be effective only
for certain 3D geometric features or can lead to degeneracies in specific dimensions, as noted in
Reference [35]. Texture information plays a crucial role in achieving stable correspondences, especially
in environments with degenerate features, such as tunnels, highways, and complex urban scenes, where
geometric features alone may not provide reliable matching.

(1) 2D Keypoints

Our method employs the SuperPoint [36] network to extract 2D keypoints from all images.
To mitigate the impact of incorrect matches, we utilize the SuperGlue [37] network for improved
matching accuracy across all pairs of images requiring keypoint matching. The presence of numerous
moving objects in real-world road scenes can significantly affect the accuracy of keypoint-based



CMC, 2025, vol.82, no.1 1405

calculations. To address this issue, we incorporate the SegNet [38] network for semantic segmentation
to differentiate between dynamic and static objects. For each keypoint pair generated by SuperGlue, if
either keypoint is found on a dynamic object, we discard the pair. Only the keypoint pairs that pass this
semantic filtering are retained as final correspondences for further feature point-related calculations.

Once 2D-2D data association is established, we can recover the relative pose by decomposing the
essential matrix. By associating LiDAR points with image features, we can estimate the scale using the
depth information of each keypoint. These processes, including the detailed steps for pose recovery
and scale estimation, are elaborated upon in the subsequent sections.

(2) Semantic Objects

In addition to determining the initial relative pose, another critical aspect of data association for
registration is the quality of the correspondence ratio. In practice, texture-based data association often
focuses on ground features, while distinctive landmarks in the point cloud can be utilized to construct
correspondences that help constrain the horizontal dimension. We establish correspondences for the
same landmark, such as road signs or pillars, ensuring both semantic and geometric consistency.

We parameterize semantic objects as primitives, such as lines or planes, and align them using cor-
responding distance errors. To achieve accurate object correspondences, we employ a Random Sample
Consensus-based (RANSAC-based) approach to identify the closest (within a specified threshold
distance) and unique landmarks across frame pairs. Typically, poles are particularly distinctive for lane
lines. After determining an initial relative translation, this translation is used to search for additional
correspondences by examining all semantic objects within the frame pairs.

3.2 Scale-Free Transform

Since 2D keypoints in images do not provide accurate depth information, directly applying
methods such as PnP (Perspective-n-Point) or ICP (Iterative Closest Point) can result in significant
errors. To address this issue, our approach first estimates the rotation and scale-free translation
matrices using the Essential Matrix. Subsequently, we use the projected depth values to estimate the
translation scale.

In order to get the scale-free pose transformation, we use the 2D Keypoint matching results to
estimate the Essential matrix (E) between two images. After that, we inversely solve the rotation R and
translation t (normalized results) of the pose transformation. For multi-camera scenes, we compute
Ei, Ri, and ti for each image matching pair. In order to use the multi-camera model to obtain a more
accurate pose transformation, for each estimated Ri, and ti, we use the external parameters between
multiple cameras to get Ri,j, and ti,j (normalized results) of several other matching pairs. Then we
calculate the fundamental matrix (F) according to Eq. (1), where K is the camera intrinsic.

F = K−T
1 t∧RK−1

2 (1)

where

t∧ =
⎡⎣ 0 −t3 t2

t3 0 −t1

−t2 t1 0

⎤⎦
After that, the Fundamental Matrix is used to estimate the average distance between the two

feature points and the respective baselines, and the feature points within the threshold are set as inlier
points (P1, P2 represents the undistorted pixel position of thefeature point), as shown in Eq. (2). The
result with the largest number of inlier points in multiple Ri and ti is used as the estimated scale-free
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pose transformation, which are recorded as Ri, ti (normalized results).

Ri, ti = ArgMin(Errmean)

Errmean = 1
2

( ∣∣PT
2 FP1

∣∣∥∥PT
2 F |0: 2|∥∥

2

+
∣∣PT

2 FP1

∣∣
‖FP1 |0: 2|‖2

)
(2)

3.3 Scale Recover

Since the previously restored pose transformations Ri and ti are scale-free, they cannot directly
participate in pose optimization. Therefore, we propose to use the true depth of Keypoints from
multiple cameras to recover scale.

The first is to use the laser point cloud to estimate the depth of the 2D Keypoints in the images.
We project the laser point cloud onto the image according to the extrinsics between the cameras and
the Laser sensor and the instrinsics of the cameras according to Eq. (2). RCl and tCl represent the pose
transformation from the Camera to the Laser sensor.

π(Pix) = − 1
point.z

∗ K ∗ (RCl ∗ Pt + tCl) (3)

By projection the point cloud to image plane, we can associate the 2D keypoint to the 3D plane
patch, and obtain a good depth estimation for matched 2D keypoints. After obtaining the depth
estimation results of multiple keypoints, we start to recover the scale later. According to Section 3.2,
the scale-free pose transformations Ei, Ri, ti between the corresponding multiple cameras in the source
submap and the target submap are obtained. Then we set the actual scale result as si. We jointly use the
Keypoints in multiple camera to estimate s0. We assuming that Rs

ik and ts
ik represent the transformation

between the i-th camera and the k-th camera in the source frames and Rt
ik and tt

ik represent the
transformation between the i-th camera and the k-th camera in the target frames. According to the
relationship between the camera extrinsic parameters, we can get:[

Rik tik

0 1

]
=

[
Rs

ki ts
ki

0 1

] [
Ri sîti

0 1

] [
Rt

ik tt
ik

0 1

]
(4)

where Rs
ki, ts

ki represents the extrinsic reference between the K-th image and the i-th image in MIs, and
Rt

ik, tt
ik represents the extrinsic reference between the i-th image and the k-th image in MIt.

Thus, for the j-th matching feature point pair us
kj and ut

kj in the k-th image pair in MIs and MIt, we
can get:

λs
k,ju

s
kj = Rikλ

t
k,ju

t
kj + tik (5)

Among them, λs
kj represents the actual depth of us

kj, and λt
kj represents the actual depth of ut

kj.
According to the previous method of generating Mappoints, some Mappoints correspond to image
feature points, and these image feature points will have known depth values λs

kj or λt
k,j.

If λt
kj is known:

λs
kju

s
kj = Rikλ

t
k,ju

t
kj + ts

ki + Rs
kiRitt

ik + siRs
kit̂i (6)

si = us
kj × (Rikλ

t
kju

t
kj + ts

ki + Rs
kiRitt

ik)

us
kj × Rs

kit̂i

(7)
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The same reason, if λt
kj is known:

si = Rikut
kj × (λs

kju
s
kj − ts

ki − Rs
kiRitt

ik)

λs
kju

s
kj × Rs

kit̂i

(8)

Since the scale value si is a scalar, the result is very sensitive to noise, and our method of restoring
the scale only requires more than one image feature point with accurate depth value to calculate
the result. Therefore, we only use the image features corresponding to the Mappoint with higher
confidence to participate in the scale restoration:⎧⎨⎩maxi∈� ‖π(pt) − ui‖2 < θ0

1
Nc

∑
i∈�

∥∥∥λ̂i − λi

∥∥∥ < θ1

(9)

pt represents the coordinates of the current Mappoint, � represents the set of image feature points
corresponding to the 3D feature point, ui represents the pixel position of the feature point, λi represents
the depth of the feature point restored by the point cloud, λ̂i represents the estimated depth of the
feature point, and Nc represents the modulus of the set �. This formula indicates that only when the
reprojection error of the image feature corresponding to the current Mappoint and the depth error of
the point cloud restoration are small enough, the Mappoint will be considered to have high confidence
and participate in the calculation of scale recovery, so that a more accurate scale result can be obtained.
In our experiment, we set reprojection error threshold θ0 as 5 pixel and depth error threshold θ1 as
0.25 m.

For each si(i = 1, 2...m), we can get several formulas similar to the above si according to the image
features corresponding to the selected Mappoint, and get a one-dimensional overdetermined equation.
We use the least squares solution to get the final restored scale si.

In this way, for the previously estimated R0, R1 . . . Rm, and t̂0, t̂1 . . . t̂m, the corresponding s0, s1 . . . sm

can be estimated. We get the results of m pose transformations. In order to obtain a more accurate
pose transformation, we need to screen these [Ri, sit̂i].

We filter by counting the number of reprojection errors less than the threshold. For each
[
Ri, sit̂i

]
,

we calculate the error between the position of all 3D feature points pts
l in MIs projected on the image

of MIt and the corresponding 2D feature point pixel position ut
l, and count the number of points less

than the threshold. Similarly, the number of points less than the threshold between the position of all
3D feature points ptt

l in MIt projected on the image of MIs and the corresponding 2D feature point
pixel position us

l :

Argmax
[Ri ,si t̂i]

[ N
lεMIs

(
∥∥π(pts

l) − ut
l

∥∥
2
< θ2) + N

lεMIt
(
∥∥π(ptt

l) − us
l

∥∥
2
< θ2)] (10)

The set with the largest sum of the two quantities
[
Ri, sit̂i

]
is considered to be the restored pose

transformation, and the pose transformation result [RL, tL] of the point cloud between the Source
Frame and the Target Frame can be obtained according to the external parameters in the Frame, where
[Rs

Li, ts
Li] represents the external parameters from camera i to the point cloud in the Source Frame, and

[Rt
iL, tt

iL] represents the external parameters from the point cloud to camera i in the Target Frame:[
RL tL
0 1

]
=

[
Rs

Li ts
Li

0 1

] [
Ri sit̂i

0 1

] [
Rt

iL tt
iL

0 1

]
(11)



1408 CMC, 2025, vol.82, no.1

3.4 Robust Optimization

In the robust optimization stage, the residuals term of our method is mainly divided into two parts:
keypoint residuals and semantic residuals.

For keypoint residuals, we mainly use the pixel error as the residual term to optimize the pose
transformation. In the matching results of multiple camera Keypoints obtained above, only some of
the Keypoints have depth values. For the convenience of recording, for the multiple camera images
of the source frame, the set of Keypoints without depth is recorded as δs, and the set of Keypoints
without depth in the images of the target frame is recorded as δt. In contrast, the set of Keypoints with
depth in the images of source frame and target frame are recorded as γs and γt, respectively.

In order to obtain a more accurate pose transformation estimation, we designed residual items for
both feature points to participate in the final optimization. As a result, the error term mainly includes
two items, namely 2D error r2d for Keypoints without depth and 3D error r3d for Keypoints with depth.

For 2D Keypoints in δs or δt without depth, the estimated R and t are using to infer the fundamental
matrix using Eq. (1) and calculate the distance from the Keypoint to the baseline as the residual.
Among the formula, Pij represents the 2D pixel position of the j-th Keypoint of the i-th image in
the source frame, and P′

ij represents 2D pixel location of the matching Keypoint in the target frame.
And Fi represents the fundamental matrix recovered by Ri, siti.

ei,j = ∣∣PT
ij FiP

′
ij

∣∣ (12){
ls
i,j = ∥∥PT

ij Fi[0 : 2]
∥∥

2

lt
i,j = ∥∥FiP

′
ij[0 : 2]

∥∥
2

(13)

r2d =
∑n

i=1

∑
j∈δs

∣∣∣∣∣ei,j

ls
i,j

∣∣∣∣∣
2

+
∑n

i=1

∑
j∈δt

∣∣∣∣∣ei,j

lt
i,j

∣∣∣∣∣
2

(14)

r3d =
∑n

i=1

∑
j∈γs

∥∥π(Ptij)
∥∥2

2
+

∑n

i=1

∑
j∈γt

∥∥π(Pt
′
ij − Pij)

∥∥2

2
(15)

For other 2D Keypoints in γs or γt with depth, we calculate the reprojection error of 3D Keypoint
to 2D image pixels as residual. As shown in Eq. (13), Ptij represents the 3D coordinate of the j-th
Keypoint of the i-th image in the source frame, and Pt′

ij represents 3D coordinate of the matching
Keypoint in the target frame. π() represents projecting the 3D point to the 2D pixel in the image
plane.

Semantic objects are parameterized to primitives as line or plane and then align them with
corresponding distance error. Among them, ni represents the direction of the Lane, pi represents the
three-dimensional coordinates of the center point of the element. mi represents the direction of the
Lane, qi represents the three-dimensional coordinates of the center point of the element.{

rC
P = (pi − pj) · nj

rC
L = (qi − qj) × vj

(16){
rO

P = ni × nj

rO
L = vi × vj

(17)

The semantic object residual shown in Fig. 2 can written as

rs =
∑

P
(ω0

(
rC

P

)2 + ω1

∥∥rO
P

∥∥2

2
) +

∑
L
(ω0

∥∥rC
L

∥∥2

2
+ ω1

∥∥rO
L

∥∥2

2
) (18)
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and the symbol definition is shown in Table 1.

Figure 2: Graph structure of semantic objective

Table 1: The constraints use by each primitives

Primitive Location Orientation

Constraints Covariance Constraints Covariance

Lane rC
L ΣL rO

L ΣP

Pole rC
P ΣL rO

P ΣP

After jointly optimizing all these residuals, the final high-precision positioning can be obtained,
In actual experiments, we set ω0 as 0.1, ω1 as 3.0, and ω2 as 1.5:

r = ω0r2d + ω1r3d + ω2rs (19)

The overall framework is shown in Algorithm 1.

Algorithm 1: Visual registration
Input: Target Images It1, . . . , It6, Cloud Ct. Source Images Is1, . . . , Is6, Cloud Cs.
Output: Relative Transform R, t.
1: {Iti, Isi} → SuperPoint → 2D keypoints {uti, usi}
2: Cloud Projection → keypoints depth {λti, λsi}
3: Keypoint Match → Mappoints {Mpi}
4: Triangulate → supplement keypoints depth {λti, λsi}
5: Calcualte:
6: Eq. (2) to optimization no scale transform Ri, ti

7: For Mpi in Mappoints {Mpi}:
8: Eq. (8) to calculate scale si.
9: Eq. (10) to count the number Ni of mappoints that meet the threshold.

(Continued)
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Algorithm 1 (continued)
10: s = Argmax({Ni}),
11: Initial Pose: Ri, sti

12: Optimization: Eq. (19) to optimization precise result R, t.

4 Experimental Results
4.1 Platforms and Datasets

Our system has been extensively tested in real-world scenarios primarily using two datasets, the
Kitti dataset [39] and our internal hostital dataset.

The KITTI SLAM dataset, developed by the Karlsruhe Institute of Technology and the Toyota
Technological Institute at Chicago, is a widely-used resource for benchmarking SLAM (Simultaneous
Localization and Mapping) algorithms. It consists of data captured from a car equipped with multiple
sensors, including high-resolution stereo cameras, a Velodyne 3D laser scanner, and GPS/IMU,
providing rich information for 3D reconstruction and localization tasks. The dataset covers a variety
of driving scenarios such as urban, rural, and highway environments, and includes ground truth
poses obtained from GPS for accurate evaluation. With its diverse and challenging sequences, the
KITTI SLAM dataset is essential for developing and testing autonomous driving and computer vision
algorithms. It is publicly accessible and comes with extensive tools and benchmarks for performance
evaluation.

Our Explainable-AI healthcare service robot platform is equipped with a Velodyne HDL-64E
360◦ LiDAR and a NovAtel PwrPak7D-E1 GNSS RTK receiver integrated with dual antennas
and an Epson EG320N IMU. The ground truth poses used in the evaluation are generated using
offline LiDAR SLAM methods typically formulated as a large-scale global least-square optimization
problem, which are beyond the scope of this work.

4.2 Performance

We use the error between the predicted and true values as the primary criterion for determining
the success of localization. Specifically, localization is deemed successful when the difference in the
rotation angle is within 10 degrees, and the translation error remains within 50 cm. This criterion is
essential for ensuring the accuracy and reliability of localization systems. As illustrated in Tables 2 and
3, our evaluation focuses primarily on the Root Mean Square Error (RMSE) of the relative translation
error (RTE) and the relative rotation error (RRE), alongside the recall rate.

Table 2: Localition peformence in kitti dataset

Method RTE (m) RPE (°) Recall (%)

ICP [40] 0.0624 0.2013 25.516
GICP [41] 0.0602 0.2381 45.883
DGR [42] 0.0986 0.2840 95.504
D3Feat [43] 0.0919 0.6096 99.946
PCAM [44] 0.1079 0.6014 99.296

(Continued)
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Table 2 (continued)

Method RTE (m) RPE (°) Recall (%)

Predator [45] 0.0938 0.6055 99.892
HregNet [46] 0.1277 0.6132 96.187
VLIS (Ours) 0.1895 0.1944 99.187

Table 3: Localition peformence in ecological park dataset

Method RTE (m) RPE (°) Recall (%)

ICP [40] 0.2354 0.4949 3.677
GICP [41] 0.0902 0.1187 10.477
DGR [42] 0.1058 0.7790 65.928
D3Feat [43] 0.1112 0.8111 93.701
PCAM [44] 0.1238 0.7561 68.100
Predator [45] 0.1014 0.8195 94.433
HregNet [46] 0.0967 1.1623 95.598
VLIS (Ours) 0.0796 0.0731 96.243

In the context of the KITTI dataset, our proposed method demonstrates the highest level of
precision among all algorithms assessed. This exceptional performance is reflected not only in the
low RMSE values for both translation and rotation errors but also in a recall rate that stands
competitively against leading methods in the field. Our approach achieves superior results when tested
on our internal hostile dataset, showcasing a remarkable ability to handle challenging conditions. This
includes excelling in both translation accuracy and angular error measurements, further validating the
robustness and effectiveness of our method. The comprehensive evaluation across different datasets
highlights the strength of our approach in real-world scenarios. The KITTI dataset, known for its
diverse driving conditions, serves as a rigorous benchmark, and the exceptional performance of our
method underscores its capability to provide reliable localization under varied and complex conditions.
Additionally, the results on our internal hostile dataset emphasize our method’s robustness in adverse
situations, which is crucial for practical applications in autonomous driving and related fields.

In summary, the performance metrics detailed in Tables 2 and 3 underscore the effectiveness
of our localization method. By achieving the highest precision in translation and rotation errors
within the KITTI dataset and excelling on our internal hostile dataset, our approach demonstrates
its superiority and reliability. This positions our method as a leading solution in the field, offering
significant advancements in localization accuracy and robustness.

Our method has demonstrated improved performance on the local Ecological Park Datasets,
which can be attributed primarily to the more advantageous external parameters provided by the Baidu
dataset compared to the KITTI dataset. The Baidu dataset benefits from the inclusion of a greater
number of cameras, specifically featuring a front view camera, a left view camera, and three additional
cameras positioned at the rear and right rear. This increased number of cameras contributes to a wider
field of view, which enhances the overall data richness and enables more accurate localization.
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Furthermore, to facilitate a more nuanced comparison of success rates across different methods,
we have plotted the recall rates of each method as the error threshold varies. This comparative analysis
provides a clearer understanding of how different approaches perform under varying conditions. The
results from the KITTI dataset and the Ecological Park Dataset are illustrated in Fig. 3, showcasing
the effectiveness of our method in both scenarios.

Figure 3: The recall rate of each method as the error threshold changes



CMC, 2025, vol.82, no.1 1413

The improved performance of the Ecological Park Datasets is indicative of the enhanced capa-
bilities of our approach when supported by superior data quality and more comprehensive sensor
setups. The wider field of view and the additional camera perspectives provided by the Baidu dataset
play a crucial role in refining the accuracy of localization, demonstrating the advantage of using more
detailed and varied data sources.

In summary, the comparison between the KITTI dataset and the Ecological Park Dataset
highlights the benefits of using datasets with better external parameters and more extensive camera
setups. By illustrating the recall rates as the error thresholds shift, Fig. 3 provides a valuable visual
representation of our method’s performance, further emphasizing its effectiveness and reliability across
different datasets.

Compared with traditional registration methods, our method does not rely on initial values and
can still obtain relatively good results when the difference is more than 10 m. Compared with deep
learning methods, it has better generalization and does not require separate training. In addition, this
registration algorithm is far better than other methods in the registration of weak structure and strong
texture areas.

However, in the experiment, we also found some disadvantages of our method, such as the pos-
sibility of misregistration in repeated problem areas. Since a large number of mutual transformations
between multiple sensors are used, the accuracy of external parameters is required to be quite high.
These issues can be considered for optimization in subsequent work.

5 Conclusion

This paper introduces a robust LiDAR localization framework specifically designed for ecological
monitoring vehicles to address localization issues in dynamic environments. The proposed approach
employs a pose graph-based fusion framework that adaptively integrates both LiDAR semantic
information and visual key points. Compared with traditional registration methods, the method we
propose does not rely on the initial value and can still obtain better results when the difference is more
than 10 m. Compared with deep learning methods, it has better generalization and does not require
separate training. At the same time, the registration effect will be better for areas with weak structures
and strong textures. The method we proposed proves that the solution of combining laser and vision
for positioning can effectively improve the positioning accuracy and success rate, thereby further
improving ecological monitoring vehicle’s accuracy, and making it better for pollution monitoring
and species survey and monitoring. In the future, we will consider researching more about the training
or fine-tuning of the neural networks used (SuperPoint, SuperGlue, SegNet) to further improve the
localization system.
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