
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.058374

ARTICLE

DecMamba: Mamba Utilizing Series Decomposition for Multivariate Time
Series Forecasting

Jianxin Feng*, Jianhao Zhang, Ge Cao, Zhiguo Liu and Yuanming Ding

Communication and Network Key Laboratory, Dalian University, Dalian, 116622, China
*Corresponding Author: Jianxin Feng. Email: fengjianxin863@163.com
Received: 11 September 2024 Accepted: 22 October 2024 Published: 03 January 2025

ABSTRACT

Multivariate time series forecasting is widely used in traffic planning, weather forecasting, and energy consumption.
Series decomposition algorithms can help models better understand the underlying patterns of the original
series to improve the forecasting accuracy of multivariate time series. However, the decomposition kernel of
previous decomposition-based models is fixed, and these models have not considered the differences in frequency
fluctuations between components. These problems make it difficult to analyze the intricate temporal variations
of real-world time series. In this paper, we propose a series decomposition-based Mamba model, DecMamba, to
obtain the intricate temporal dependencies and the dependencies among different variables of multivariate time
series. A variable-level adaptive kernel combination search module is designed to interact with information on
different trends and periods between variables. Two backbone structures are proposed to emphasize the differences
in frequency fluctuations of seasonal and trend components. Mamba with superior performance is used instead of
a Transformer in backbone structures to capture the dependencies among different variables. A new embedding
block is designed to capture the temporal features better, especially for the high-frequency seasonal component
whose semantic information is difficult to acquire. A gating mechanism is introduced to the decoder in the seasonal
backbone to improve the prediction accuracy. A comparison with ten state-of-the-art models on seven real-world
datasets demonstrates that DecMamba can better model the temporal dependencies and the dependencies among
different variables, guaranteeing better prediction performance for multivariate time series.

KEYWORDS
Data prediction; time series; Mamba; series decomposition

1 Introduction

Multivariate time series (MTS) forecasting is the task of predicting future information based
on the historical information of multiple variables. MTS forecasting is widely used in the fields of
finance [1,2], transportation [3,4], weather [5], and energy [6]. Recently, deep learning has achieved
good prediction results in MTS forecasting tasks [7,8]. Cleveland et al. [9] denoted that separating
long-term trends from cyclical variations is beneficial for analyzing complex time series. The various
components after decomposition exhibit different underlying patterns. So, a better decomposition
algorithm can help the model reveal the underlying patterns of the original series, thereby improving

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.058374
https://www.techscience.com/doi/10.32604/cmc.2024.058374
mailto:fengjianxin863@163.com


1050 CMC, 2025, vol.82, no.1

the accuracy of time series forecasting. Previous series decomposition algorithms [10–12] all use fixed
kernels to decompose the original series into seasonal and trend components. However, for each
variable of multivariate time series, the kernel of the series decomposition algorithm is fixed with
the same value. Fixed kernels that only make fixed scale trends and periods interact with information
make it difficult to analyze the complex trend correlations and periodic correlations between variables.
This is detrimental to modeling the dependencies among different variables. The decomposed seasonal
component exhibits stronger frequency fluctuations compared to the trend component. Previous
decomposition-based forecasting models have overlooked the differences in sub-series frequency
fluctuations between these two modes [10–12]. Transformer has become a mainstream model for
MTS tasks, and previous Transformer-based [13] models [7,8,14–16] have achieved good results on
MTS tasks. However, the disadvantage of its quadratic complexity in modeling the dependencies
among different variables with variable dimensions that are too high leads to its high computation
cost. To solve the above problems, we propose a Mamba model based on series decomposition,
DecMamba. In DecMamba, we have designed a new decomposition module called Multivariate
Adaptive Decomposition (MAD). MAD adopts a variable-level adaptive kernel search method to
find the best set of kernel combinations that is most suitable for modeling the dependencies among
different variables of seasonal and trend components in multivariate time series. DecMamba uses two
different embedding methods to represent the trend and seasonal components separately. For the trend
component, similar to iTransformer [17], we embed each variate of the trend component as a token and
use Multilayer Perceptron (MLP) to model the temporal dependencies of the trend component easily.
Considering its high-frequency fluctuations and semantically separable characteristics of the seasonal
component, we have designed a new embedding block called Dimension Extension Embedding (DEE).
DEE decomposes the seasonal component with a fixed time delay, and each seasonal sub-series
is embedded into an independent token. Semantic information in seasonal components with high-
frequency fluctuations is more easily obtained by univariate extending to multivariate. Furthermore,
the fluctuation of the sub-series is smoother, and the semantic information is clearer than that of
the original seasonal series. Due to the special embedding, the feature maps of seasonal components
contain more complex information. Seasonal components using linear projection as a decoder [7,15]
tend to make the decoder ignore important information. So, we introduce a gating mechanism to
design a new Decoder, Gate Future Prediction (GFP). GFP uses an attention mechanism to score the
final feature map of the seasonal component and scales it to the interval 0–1 as the weight matrix
of representation. After the gating unit is completed, the important information in the feature map
is compressed, and the noisy information is ignored. Finally, the prediction results of the seasonal
component are obtained by a linear projection. Recently, the State Space Model (SSM), as a series
modeling framework, has gradually become a popular tool in the field of time series analysis due
to the virtue of its intrinsic mechanism of ordinary differential equations [18,19]. The ADSSM
effectively translates PPG signals into ECG waveforms, showcasing the superior time series analysis
capabilities of SSM [18]. Mamba [20], as an innovative extension of SSM, significantly improves the
performance of traditional models by introducing a selection mechanism to filter useless information
and dynamically adjust the state. Mamba also cleverly incorporates a hardware-aware design for
efficient parallel training, making it a strong competitor to models like Transformer in tasks such as
natural language understanding [21,22], audio waveform processing [23], computer vision [24–26], and
point cloud learning [27]. Based on the linear complexity and high throughput of Mamba, we explore
the application of Mamba in MTS by using it as a new master architecture to model the dependencies
among different variables. In summary, our contributions are as follows:



CMC, 2025, vol.82, no.1 1051

1. We design a new decomposition algorithm, Multivariate Adaptive Decomposition (MAD),
which can dynamically decompose each variable series in a multivariate time series. The
optimal combination of kernels for decomposition is searched for multivariate time series at
the variable level to facilitate better modeling the temporal dependencies and the dependencies
among different variables.

2. Aiming at the characteristics of high-frequency fluctuation of seasonal components after
series decomposition, a new Embedding module, Dimension Extension Embedding (DEE), is
designed, which can decompose a single seasonal variable into multiple sub-seasonal variables.
DEE can reduce the high-frequency fluctuation of the seasonal series, simplify the semantic
information of the seasonal component, and capture the temporal dependency of the seasonal
component in a better way with dimension expansion.

3. A new prediction module, Gate Future Prediction (GFP), is designed for seasonal components
after series decomposition. This module enables the prediction layer to focus on the important
information of seasonal series and ignore the noise information.

4. The linear complexity and high throughput of Mamba make it an alternative to replace the
Transformer. Based on the superior performance of Mamba in other domains, we use it as a
new master architecture for the dependencies among different variables modeling to explore
the application of Mamba in the MTS domain.

5. Based on the above improvements, a new architecture, DecMamba, for multivariate time series
forecasting is proposed. Its better forecasting performance is verified by comparing it with ten
SOTA models on seven real-world datasets.

2 Related Works
2.1 Multivariate Time Series Forecasting

MTS prediction models can be broadly classified into statistical models and deep learning models.
The traditional statistical models are no longer sufficient to meet the current prediction needs of MTS.
Due to the superior fitting capabilities, deep learning models are now commonly used as the main
architecture for MTS. When modeling dependencies among different variables in multivariate series,
deep models typically incorporate three approaches: local channel mixing, global channel mixing, and
independent channels. Local channel mixing generally considers multidimensional information at a
single time step independently and then captures the temporal dependencies of the series. For example,
Recurrent Neural Networks (RNNs) are commonly used for multivariate time series (MTS) tasks.
LSTM [28] and GRU [29] introduce gating mechanisms to mitigate the vanishing gradient issue in long
sequences. LSTNet [30] improves multivariate time series forecasting by capturing both short-term and
long-term patterns. DeepAR [31] enhances the robustness of the model by generating probabilistic
forecasts through Monte Carlo sampling. Wen et al. [32] proposed a BiLSTM with temporal pattern
attention for ignoring irrelevant information and amplifying the required information. TCN [33]
in CNN introduces causal convolution to simulate the temporal relationships in the series with the
method of local channel mixing. SCINet [34] in CNN repeatedly extracts and exchanges information
at different time resolutions and learns effective representations to improve predictability. SCINet
has shown significant advantages in traffic flow forecasting tasks [35]. Transformer models such as
Informer [16], Autoformer [10], FEDformer [12], and Stationary [14] use point tokens to mix channels
locally. Autoformer, FEDformer, and Stationary have achieved good results in Traffic, Weather,
and finance tasks, respectively [36–38]. Crossformer [8] proposes a two-stage Routing Attention
mechanism that extracts all dependencies among different variables by routing tokens to each variable.
This approach also extends the scope of individual token information due to the patch embedding



1052 CMC, 2025, vol.82, no.1

method. Crossformer has been applied in practical power load forecasting tasks [39]. However,
the method of local channel mixing has limitations due to the different sampling frequencies of
multiple variables and the semantic gap between them. PatchTST [15] model adopts an independent
channel modeling approach, which enhances the robustness of the model by avoiding channel mixing.
PatchTST has accurately predicted the air quality index [40]. TimesNet [17] in the CNN model and
Dlinear [11] in the MLP model also use the independent channel approach for MTS prediction.
TimesNet and Dlinear are widely used in finance and energy domains, respectively [41,42]. TIDE
[43] completes the encoding and decoding work based on MLP. However, focusing solely on modeling
temporal dependencies while neglecting the dependencies among different variables does not optimally
analyze multivariate time series. iTransformer [7] treats individual variate as independent tokens and
uses self-attention to model dependencies among different variables. iTransformer is a global channel-
mixing approach.

2.2 Time Series Decomposition

Autoformer [10], PEDformer [12], and Dlinear [11], all separate long-term trends from cyclical
variations to achieve series decomposition. Autoformer and PEDformer utilize the decomposition
block as an internal operator and replace the self-attention mechanism with auto-correlation to
model the temporal dependencies in the series. Dlinear first decomposes the original series into
trend and seasonal components. Linear networks are used to predict the future information of each
component, and the prediction results are summed up to obtain the final forecasting result. However,
the aforementioned approaches neglect the different frequencies between the trend component and
seasonal component. They also disregard the potential impact that different combinations of trend
components and seasonal components among variables could have on forecast accuracy.

3 Methods

In MTS forecasting, our goal is to predict future values XT based on multivariate historical data
input X . Let X ∈ RL × C represent an MTS with C variables and a history window L of length. Similarly,
let XT ∈ RL × C represent a multivariate time series with C variables and a forecasting window T of
length. To achieve higher prediction accuracy, we propose a model called DecMamba.

3.1 Model Structure

The overall architecture of DecMamba is shown in Fig. 1. DecMamba uses Multivariate Adaptive
Decomposition (MAD) to perform adaptive decomposition operations on MTS. This process pro-
duces trend component Xtrend ∈ RL × C, which represents the inconsistent trend changes among different
variables, and seasonal component Xseasonal ∈ RL × C, which captures the inconsistent periodic changes
among variables. Aligned to the right margin:

Xtrend, Xseasonal = MAD(X) (1)

Due to the differences in frequency fluctuations between the trend component and seasonal
component, two distinct network structures were designed. The Seasonal Backbone (SB) is responsible
for forecasting the future values of the seasonal component, while the Trend Backbone (TB) is
dedicated to forecasting the future values of the trend component. The two distinct network structures
allow DecMamba to effectively predict the two underlying patterns separately.

X̂trend = TB(Xtrend) (2)



CMC, 2025, vol.82, no.1 1053

X̂seasonal = SB(Xseasonal) (3)

The final forecasting result output Y is obtained by summing.

Y = X̂seasonal + X̂trend (4)

Figure 1: Overall architecture of DecMamba, which consists of Multivariate Adaptive Decomposition,
Seasonal Backbone, and Trend Backbone for series decomposition, respectively

3.2 Multivariate Adaptive Decomposition

Previous series decomposition algorithms have often used series decomposition with a fixed
kernel. The process is as follows:

Xtrend = AvgPool(Padding(X)kernel (5)

Xseasonal = X − Xtrend (6)

Unlike traditional fixed kernel decomposition algorithms [10–12], MAD finds the optimal
combination of decomposition kernels for MTS during the training process with an adaptive search
method. The method is as follows:



1054 CMC, 2025, vol.82, no.1

3.2.1 Initialization

m kernels kernelall with varying sizes, Cost matrix CM and Count Matrix Count are initialized.
kernelall is used to represent the search space of kernels. CM records the cost during the training process.
Count records the frequency of each kernel selected by the variables during the training process.

3.2.2 Training

w ∗ C kernels are randomly selected in kernelall and divided into w group kernel combinations.
Each kernel combination contains C kernels, where w << batchsize. The same kernel can be repeatedly
selected. Input X of the original batch is divided into w mini-batches that are decomposed by the w
kernel combinations. The process is as follows:

X i,j
trend = AvgPool(Padding(X i,j)kernelirand

(7)

X i,j
seasonal = X i,j − X i,j

trend (8)

where X i,j, X i,j
trend, and X i,j

seasonal represent the original series, trend component, and seasonal component
for the ith sample in the jth combination, respectively. The kernels in the jth combination are denoted
as kernelj

rand. The value lc = {lc1, . . . , lcj, . . . , lcw} is used to estimate the effect of the kernel combinations
on the prediction results.

lcj = 1
bs
w

∑ bs
w

p=1

∣∣Y p,j − X p,j
T

∣∣ (9)

where Y p,j, and X p,j
T represent the predicted and true results of the future information for the pth sample

in the jth combination, respectively. CM is updated by lc, and the Mean-subtraction operation is used
to eliminate the influence of different sample batches.

CMi
k = CMi

k +
(

lcj − 1
w

∑w

q=1
lcq

)
(10)

CMi
k represents the cost of the overall prediction outcome when the ith variable chooses the kth

kernel as part of the decomposition combination.

3.2.3 Inference

The optimal combination of kernel kernelbest is selected from kernelall according to CM. Because
CMi

k represents the cost of the prediction outcome for all variables rather than for individual variables.
The ith variable uses kmeanth kernel to decompose, which can minimize the overall prediction outcome
cost.

CMi
kmean

Counti
kmean

= min
(

CMi
1

Counti
1

, . . . ,
CMi

k

Counti
k

, . . . ,
CMi

w

Counti
w

)
(11)

Counti
k denotes the number of times the kth kernel is chosen by the ith variable. The original series

will be decomposed by kernelbest to obtain the combinations of trend and seasonal components that are
most conducive to modeling the dependencies among different variables. During inference, the process
is as follows:

Xtrend = AvgPool(Padding(X)kernelbest
(12)

Xseasonal = X − Xtrend (13)



CMC, 2025, vol.82, no.1 1055

3.3 Trend Backbone

Trend Backbone (TB) is composed of Embedding, Encoder (TE), and Future Prediction (FP).
TB uses the instance normalization operations and embedding block as same as iTransformer [7]. TB
embeds each time series of Xtrend as variate tokens htrend. For TE, given the embedded trend component
hidden variables htrend, the output is a feature map ĥtrend of the trend component.

ĥtrend = TE(htrend) (14)

TE uses Mamba to model the dependencies among different variables. The internal structure of
Mamba is shown in Fig. 2, where the left branch is a gated nonlinear layer, and the right branch
serves as a linear time-invariant (LTI) system (SSM). The temporal dependencies are modeled using a
feedforward network (FFN). For the lth layer, the input is hl−1

trend, and the output is hl
trend. The process of

TE can be formalized as:

hl
trend = FFN

(
SSM

(
Conv

(
Linear

(
hl−1

trend

))) + σ
(
Linear

(
hl−1

trend

)))
(15)

htrend is the input of layer 1, and ĥtrend is the output of the last layer. FP directly outputs the prediction
results of the trend component through a simple linear projection.

X̂trend = FP(ĥtrend) (16)

Figure 2: Mamba block

3.4 Seasonal Backbone

The Seasonal Backbone (SB) consists of the Dimension Extension Embedding (DEE), an Encoder
(SE), and the Gate Future Prediction (GFP) module.

3.4.1 Dimension Extension Embedding

DEE embeds the seasonal component by expanding its dimensions. To more effectively embed
the future map of the decomposed seasonal component, DEE achieves semantic segmentation of



1056 CMC, 2025, vol.82, no.1

seasonal components through dimension expansion. Given the inputs Xseasonal ε RL × C, the sampled
components are obtained based on sub-sampling according to a fixed time delay. Xseasonal ε RL × C is
expanded into an extended time series Xsample ε RLs × delay × C of length Ls and dimension delay × C. This
extended series Xsample ε RLs × delay × C is then embedded as separate tokens hseasonal to represent the hidden
variables of the seasonal component. Compared to trend embedding methods [7], DEE is better suited
for embedding high-frequency series like seasonal series, making the semantic information represented
by the embedded tokens clearer.

3.4.2 Seasonal Encoder

The encoder of the seasonal component SE is the same as TE.

ĥseasonal = SE(hseasonal) (17)

For the lth layer, the input is hl−1
seasonal, and the output is hl

seasonal. The process of SE can be formalized
as follows:

hl
seasonal = FFN

(
SSM

(
Conv

(
Linear

(
hl−1

seasonal

))) + σ
(
Linear

(
hl−1

seasonal

)))
(18)

hseasonal is the input of layer 1, and ĥseasonal is the output of the last layer. SB then outputs the prediction
results of the seasonal component through GFP, which acts as a decoder.

X̂seasonal = GFP(ĥseasonal) (19)

where X̂seasonal ε RT × C represents the prediction results of the Seasonal Backbone.

3.4.3 Gate Future Prediction

GFP introduces a gating mechanism to enhance the accuracy of the prediction results. This is
done by taking the embedded seasonal component representation, performing a matrix projection
through a linear layer to obtain the importance score matrix, and normalizing the score to a range
between 0 and 1 using a sigmoid activation function. The score matrix is then multiplied with the
seasonal component representation to obtain a more accurate representation. The final prediction of
the seasonal component is obtained through a linear projection, similar to the FP process in the Trend
Backbone.

X̂seasonal = Linear
(

sigmoid
(

Linear
(

ĥseasonal

))
∗ ĥseasonal

)
(20)

4 Experiments
4.1 Dataset

We conducted extensive experiments on seven real-world datasets [10], as shown in Table 1, includ-
ing ETT datasets (including four subsets: ETTh1, ETTh2, ETTm1, ETTm2), Weather, Electricity,
Traffic, and Exchange covering domains such as electricity, energy, transportation, weather, and
finance.



CMC, 2025, vol.82, no.1 1057

Table 1: Detailed dataset descriptions

Datasets Variate Timesteps

ETTh1 & ETTh2 7 17420
ETTm1 & ETTm2 7 69680
Electricity 321 26304
Weather 21 52696
Traffic 862 17544

4.2 Baselines and Metrics

To demonstrate the effectiveness of DecMamba on the MTS task, ten popular SOTA models were
selected for comparison. The baseline models include Autoformer [10], FEDformer [12], Stationary
[14], Crossformer [8], PatchTST [15], DLinear [11], TiDE [43], SCINet [34], TimesNet [17], iTrans-
former [7]. Crossformer and DLinear are SOTA models in the domain of energy [39,42]. Autoformer
and SCINet are SOTA models in the domain of transportation [35,36]. FEDformer and PatchTST
are SOTA models in the domain of weather [37,40]. Stationary and TimesNet are SOTA models in
the domain of finance [38,41]. To measure the prediction performance of multiple models on multiple
datasets, Mean Squared Error (MSE) and Mean Absolute Error (MAE) are used as evaluation metrics.

4.3 Implementation Details

Experiments were performed using the Adam optimizer [44] on two NVIDIA T4 16 GB GPUs.
The training was performed 10 times with early stopping using patience 3 to avoid overfitting.

4.4 Main Results

Comprehensive forecasting results are listed in Tables 2–9, with the best in bold and the second
underlined. The lower MSE/MAE indicates the more accurate prediction result. Overall, DecMamba
shows leading performance on most datasets, as well as on different prediction length settings, with
34 top-1 and 52 top-2 cases out of 56 in total. DecMamba performs even better on datasets with a
large number of variables like Weather, Electricity, and Traffic. In particular, DecMamba produces
all SOTA results on Electricity in MTS forecasting. The variable number of Exchange datasets in
finance is less and the time series of financial domains usually include irregular seasonal components
[38]. Under such extreme conditions, our model still achieves the 4 top-1 and 6 top-2 ranks across
8 evaluation metrics. The results on the Exchange dataset validate the model’s ability to generalize
for different types of time series. Compared to SOTA models in various domains, our model has
performed well. In the Electricity dataset, our model outperforms Crossformer and DLinear on all
metrics. In the Weather dataset, our model surpasses PatchTST on 87.5% of metrics. In the Traffic
dataset, our model exceeds Autoformer and SCINet in all metrics, while in the Exchange dataset,
it outperforms Stationary and TimesNet in all metrics. iTransformer is the previous best model on
MTS forecasting. Our model outperforms iTransformer on 83.93% of the evaluation metrics with all
prediction lengths in all datasets.



1058 CMC, 2025, vol.82, no.1

Table 2: Multivariate long-term series forecasting results on Electricity. All models employ a look-back
window length of L = 96

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.135 0.151 0.166 0.191 0.233 0.248 0.265 0.289
iTransformer 0.148 0.162 0.178 0.225 0.240 0.253 0.269 0.317
PatchTST 0.181 0.188 0.204 0.246 0.270 0.274 0.293 0.324
Crossformer 0.219 0.231 0.246 0.280 0.314 0.322 0.337 0.363
TiDE 0.237 0.236 0.249 0.284 0.329 0.330 0.344 0.373
TimesNet 0.168 0.184 0.198 0.220 0.272 0.289 0.300 0.320
DLinear 0.197 0.196 0.209 0.245 0.282 0.285 0.301 0.333
SCINet 0.247 0.257 0.269 0.299 0.345 0.355 0.369 0.390
FEDformer 0.193 0.201 0.214 0.246 0.308 0.315 0.329 0.355
Stationary 0.169 0.182 0.200 0.222 0.273 0.286 0.304 0.321
Autoformer 0.201 0.222 0.231 0.254 0.317 0.334 0.338 0.361

Table 3: Multivariate long-term series forecasting results on Weather. All models employ a look-back
window length of L = 96

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.166 0.215 0.272 0.346 0.213 0.255 0.298 0.347
iTransformer 0.174 0.221 0.278 0.358 0.214 0.254 0.296 0.347
PatchTST 0.177 0.225 0.278 0.354 0.218 0.259 0.297 0.348
Crossformer 0.158 0.206 0.272 0.398 0.230 0.277 0.335 0.418
TiDE 0.202 0.242 0.287 0.351 0.261 0.298 0.335 0.386
TimesNet 0.172 0.219 0.280 0.365 0.220 0.261 0.306 0.359
DLinear 0.196 0.237 0.283 0.345 0.255 0.296 0.335 0.381
SCINet 0.221 0.261 0.309 0.377 0.306 0.340 0.378 0.427
FEDformer 0.217 0.276 0.339 0.403 0.296 0.336 0.380 0.428
Stationary 0.173 0.245 0.321 0.414 0.223 0.285 0.338 0.410
Autoformer 0.266 0.307 0.359 0.419 0.336 0.367 0.395 0.428



CMC, 2025, vol.82, no.1 1059

Table 4: Multivariate long-term series forecasting results on Traffic. All models employ a look-back
window length of L = 96

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.407 0.416 0.447 0.485 0.262 0.271 0.281 0.299
iTransformer 0.395 0.417 0.433 0.467 0.268 0.276 0.283 0.302
PatchTST 0.462 0.466 0.482 0.514 0.295 0.296 0.304 0.322
Crossformer 0.522 0.530 0.558 0.589 0.290 0.293 0.305 0.328
TiDE 0.805 0.756 0.762 0.719 0.493 0.474 0.477 0.449
TimesNet 0.593 0.617 0.629 0.640 0.321 0.336 0.336 0.350
DLinear 0.650 0.598 0.605 0.645 0.396 0.370 0.373 0.394
SCINet 0.788 0.789 0.797 0.841 0.499 0.505 0.508 0.523
FEDformer 0.587 0.604 0.621 0.626 0.366 0.373 0.383 0.382
Stationary 0.612 0.613 0.618 0.653 0.338 0.340 0.328 0.355
Autoformer 0.613 0.616 0.622 0.660 0.388 0.382 0.337 0.408

Table 5: Multivariate long-term series forecasting results on ETTm1. All models employ a look-back
window length of L = 96

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.329 0.373 0.396 0.460 0.366 0.390 0.409 0.447
iTransformer 0.334 0.377 0.426 0.491 0.368 0.391 0.420 0.459
PatchTST 0.329 0.367 0.399 0.454 0.367 0.385 0.410 0.439
Crossformer 0.404 0.450 0.532 0.666 0.426 0.451 0.515 0.589
TiDE 0.364 0.398 0.428 0.487 0.387 0.404 0.425 0.461
TimesNet 0.338 0.374 0.410 0.478 0.375 0.387 0.411 0.450
DLinear 0.345 0.380 0.413 0.474 0.372 0.389 0.413 0.453
SCINet 0.418 0.439 0.490 0.595 0.438 0.450 0.485 0.550
FEDformer 0.379 0.426 0.445 0.543 0.419 0.441 0.459 0.490
Stationary 0.386 0.459 0.495 0.585 0.398 0.444 0.464 0.516
Autoformer 0.505 0.553 0.621 0.671 0.475 0.496 0.537 0.561



1060 CMC, 2025, vol.82, no.1

Table 6: Multivariate long-term series forecasting results on ETTm2. All models employ a look-back
window length of L = 96

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.178 0.244 0.302 0.402 0.263 0.306 0.343 0.400
iTransformer 0.180 0.250 0.311 0.412 0.264 0.309 0.348 0.407
PatchTST 0.175 0.241 0.305 0.402 0.259 0.302 0.343 0.400
Crossformer 0.287 0.414 0.597 1.730 0.366 0.492 0.542 1.042
TiDE 0.207 0.290 0.377 0.558 0.305 0.364 0.422 0.524
TimesNet 0.187 0.249 0.321 0.408 0.267 0.309 0.351 0.403
DLinear 0.193 0.284 0.369 0.554 0.292 0.362 0.427 0.522
SCINet 0.286 0.399 0.637 0.960 0.377 0.445 0.591 0.735
FEDformer 0.203 0.269 0.325 0.421 0.287 0.328 0.366 0.415
Stationary 0.192 0.280 0.334 0.417 0.274 0.339 0.361 0.413
Autoformer 0.255 0.281 0.339 0.433 0.339 0.340 0.372 0.432

Table 7: Multivariate long-term series forecasting results on ETTh1. All models employ a look-back
window length of L = 96

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.381 0.434 0.478 0.490 0.398 0.428 0.451 0.480
iTransformer 0.386 0.441 0.487 0.503 0.405 0.436 0.458 0.491
PatchTST 0.414 0.460 0.501 0.500 0.419 0.445 0.466 0.488
Crossformer 0.423 0.471 0.570 0.653 0.448 0.474 0.546 0.621
TiDE 0.479 0.525 0.565 0.594 0.464 0.492 0.515 0.558
TimesNet 0.384 0.436 0.491 0.521 0.402 0.429 0.469 0.500
DLinear 0.386 0.437 0.481 0.519 0.400 0.432 0.459 0.516
SCINet 0.654 0.719 0.778 0.836 0.599 0.631 0.659 0.699
FEDformer 0.376 0.420 0.459 0.506 0.419 0.448 0.465 0.507
Stationary 0.513 0.534 0.588 0.643 0.491 0.504 0.535 0.616
Autoformer 0.449 0.500 0.521 0.514 0.459 0.482 0.496 0.512



CMC, 2025, vol.82, no.1 1061

Table 8: Multivariate long-term series forecasting results on ETTh2. All models employ a look-back
window length of L = 96

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.296 0.381 0.411 0.432 0.344 0.397 0.426 0.449
iTransformer 0.297 0.380 0.428 0.427 0.349 0.400 0.432 0.445
PatchTST 0.302 0.388 0.426 0.431 0.348 0.400 0.433 0.446
Crossformer 0.745 0.877 1.043 1.104 0.584 0.656 0.731 0.763
TiDE 0.400 0.528 0.643 0.874 0.440 0.509 0.571 0.679
TimesNet 0.340 0.402 0.452 0.462 0.374 0.414 0.452 0.468
DLinear 0.333 0.477 0.594 0.831 0.387 0.476 0.541 0.657
SCINet 0.707 0.860 1.000 1.249 0.621 0.689 0.744 0.838
FEDformer 0.358 0.429 0.496 0.463 0.397 0.439 0.487 0.474
Stationary 0.476 0.512 0.552 0.562 0.458 0.493 0.551 0.560
Autoformer 0.346 0.456 0.482 0.515 0.388 0.452 0.486 0.511

Table 9: Multivariate long-term series forecasting results on Exchange. All models employ a look-back
window length of L = 96

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.082 0.175 0.326 0.851 0.201 0.298 0.412 0.694
iTransformer 0.086 0.177 0.331 0.847 0.206 0.299 0.417 0.691
PatchTST 0.088 0.176 0.301 0.901 0.205 0.299 0.397 0.714
Crossformer 0.256 0.470 1.268 1.767 0.367 0.509 0.883 1.068
TiDE 0.094 0.184 0.349 0.852 0.218 0.307 0.431 0.698
TimesNet 0.107 0.226 0.367 0.964 0.234 0.344 0.448 0.746
DLinear 0.088 0.176 0.313 0.839 0.218 0.315 0.427 0.695
SCINet 0.267 0.351 1.324 1.058 0.396 0.459 0.853 0.797
FEDformer 0.148 0.271 0.460 1.195 0.278 0.315 0.427 0.695
Stationary 0.111 0.219 0.421 1.092 0.237 0.335 0.476 0.769
Autoformer 0.197 0.300 0.509 1.447 0.323 0.369 0.524 0.941

4.5 Model Efficiency

We analyze the computational complexity of our models and baseline models. In Table 10, C
represents the number of variables, L is the sequence length, P refers to the patch size, and Lseg

denotes the segment length in Crossformer. Models like Autoformer, Stationary, FEDformer, and
SCINet, which embed variables into tokens at each time step, have complexity dependent only on



1062 CMC, 2025, vol.82, no.1

L. However, excessively local receptive fields may reduce prediction accuracy. Channel-independent
models like TiDE, DLinear, TimesNet, and PatchTST scale linearly with C. Crossformer also shows
linear complexity in C, while iTransformer is quadratic. Due to the linear complexity of Mamba, the
token of DecMamba aggregates the global representations but is only linearly with L.

Table 10: Computational complexity analysis

Methods Computational complexity

Ours O (C × delay)

iTransformer O
(
C2

)
Crossformer O

(
C(

Lseg

)2 ×
(

L
P

)2
)

PatchTST O

(
C ×

(
L
P

)2
)

TiDE O (C × L)

TimesNet O (C × L)

DLinear O (C × L)

SCINet O (L)

FEDformer O (L)

Stationary O
(
L2

)
Autoformer O (LlogL)

FEDformer, PatchTST, and iTransformer in Transformer are representative models of three
modeling methods, respectively. We compare the running time and memory consumption of our model
with these models on traffic and ETTh2 datasets. As shown in Fig. 3, on the ETTh2 dataset with fewer
variables, FEDformer has the highest memory and training time. Our model’s memory usage is similar
to iTransformer and PatchTST, with a slightly longer training time. However, on the Traffic dataset
(with more variables), iTransformer and PatchTST show significant increments in memory and time,
while the complexity increment of our model is not evident compared to these models. These results
show that Mamba is more efficient compared to Transformer, and our model has better scalability
and applicability in real-world applications.

4.6 Visualize the Optimal Combination of Kernels

As shown in Fig. 4, the sizes of optimal decomposition kernel combinations are obtained by MAD
on ETTh1 and Exchange datasets. The sizes on ETTh1 are different from Exchange. MAD tends to
select larger sizes of decomposition kernel combinations to decompose original series on Exchange.
Compared with ETTh1, Exchange exhibits more complex or irregular seasonality. The decomposition
kernel combinations with larger sizes can make trend components with clearer trend information
and seasonal components with more original information. So better prediction performance can be
obtained. The kernel sizes assigned to each variable in ETTh1 and Exchange datasets differ. These
kernel sizes are adjusted with the prediction results during the training process. MAD adaptively selects
suitable decomposition kernel combinations according to the characteristics of datasets. Accurate



CMC, 2025, vol.82, no.1 1063

prediction results can be obtained by optimizing decomposition with a better generalization ability
for various types of multivariate time series.

Figure 3: Comparison of our model and three baselines on Training Time, and GPU Memory. All
versions employ a look-back window length of L = 96 and a predicted length of T = 96 on Traffic and
Etth2 datasets

Figure 4: Visualization of the optimal combination of kernels

4.7 Impact of the Number of Variables on Model Performance

In this section, we analyze how the number of variables affects the performance of our model. We
conducted a controlled experiment using the Electricity dataset. The number of input variables is set to
20%, 60%, and 100% of the original variables. The number of output variables is uniformly set to 20%
of the original variables. Table 11 shows that increasing the number of input variables improves pre-
diction accuracy. Memory consumption increases with the increment of input variables, but training
time remains stable. These results indicate that our model effectively captures the dependencies among
additional and output variables. Our model demonstrates scalability and robustness in scenarios with
varying numbers of variables.



1064 CMC, 2025, vol.82, no.1

Table 11: Impact of the number of variables on the model’s performance. All versions employ a look-
back window length of L = 96 and a predicted length of T = 96 on Electricity

Number of variables MSE MAE Training time (ms/iter) Memory (GiB)

100% 0.104 0.200 0.1245 2.000
60% 0.105 0.202 0.1181 1.400
20% 0.114 0.212 0.1110 0.7832

4.8 Ablation Studies and Analyses

4.8.1 Component Ablation

We removed the corresponding modules to perform ablation studies on the Electricity. W/O-MAD
uses a traditional decomposition that is a fixed decomposition kernel instead of MAD. The embedding
method of W/O-DEE is similar to itransformer [7] instead of DEE. W/O-GFP replaces GFP in the
original decoder [7,15]. As shown in Table 12, the prediction performance of W/O-MAD and W/O-
DEE is significantly lower than our original model. Especially in the long series tasks, performance
degradation is very obvious. This experiment can demonstrate that MAD can decompose original
series into the trend and seasonal component combinations, which are more suitable for modeling the
dependencies among different variables. DEE is more conducive to the representation and prediction
of seasonal components. GFP is more robust than the original decoder [7,15], resulting from focusing
on the valid information of the high-frequency seasonal components by ignoring noise information.

Table 12: Ablation of different components on Electricity

Predicted length MSE MAE

96 192 336 720 96 192 336 720

Ours 0.135 0.151 0.166 0.191 0.233 0.248 0.265 0.289
W/O-MAD 0.135 0.154 0.167 0.198 0.232 0.250 0.265 0.291
W/O-DEE 0.141 0.158 0.173 0.208 0.238 0.253 0.270 0.302
W/O-GFP 0.137 0.153 0.167 0.196 0.233 0.250 0.264 0.293

4.8.2 Study on Hyperparameter Sensitivity

delay is an important parameter of DEE, and the length of delay directly affects the complexity
of semantic information in a single seasonal component. We set the length of delay to 4, 6, and 8,
respectively, to evaluate the performance of our models on Electricity. As shown in Table 13, with
delay length 6, the best performance can be obtained.



CMC, 2025, vol.82, no.1 1065

Table 13: Results with different delay lengths on Electricity

Predicted length MSE MAE

96 192 336 720 96 192 336 720

delay = 4 0.136 0.152 0.175 0.194 0.233 0.248 0.275 0.292
delay = 6 0.135 0.151 0.166 0.191 0.233 0.248 0.265 0.289
delay = 8 0.134 0.150 0.167 0.201 0.231 0.246 0.266 0.297

5 Conclusion

We propose a model called DecMamba for multivariate time series (MTS) forecasting. Dec-
Mamba addresses the limitations of previous series decomposition algorithms with MAD searching
for kernels adaptively. DEE, a new embedding method, overcomes the shortcomings of previous
methods struggling to capture the semantic information in high-frequency seasonal components. A
decoder called GFP with a gating mechanism is designed to minimize the impact of unnecessary
information from the seasonal component. The experiment results show that MAD better resolves
complex trend and period dependencies among variables, DEE enhances the ability to extract semantic
information in seasonal components by improving prediction performance, and GFP improves
robustness. Additionally, the main architectural structure with Mamba throughput is increased, and
the complexity of excessive time is reduced. DecMamba excels in capturing the dependencies among
different variables compared to seven real-world datasets. Varying in prediction lengths and metrics,
DecMamba ranks first among the ten models in 34 out of 56 settings and achieves the top 2 in 52
of them.

Acknowledgement: We thank the members of the Communication and Network Key Laboratory for
their contributions to this work.

Funding Statement: This work was supported in part by the Interdisciplinary Project of Dalian
University (DLUXK-2023-ZD-001).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Jianxin Feng and Jianhao Zhang; data collection: Jianhao Zhang; analysis and interpretation
of results: Jianxin Feng and Jianhao Zhang; draft manuscript preparation: Jianxin Feng, Jianhao
Zhang, Ge Cao, Zhiguo Liu and Yuanming Ding. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: All datasets are collected by Reference [10], and they are openly
available at https://github.com/thuml/Autoformer (accessed on 10 September 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

https://github.com/thuml/Autoformer


1066 CMC, 2025, vol.82, no.1

References
[1] W. Yin, Z. L. Chen, X. X. Luo, and B. Kirkulak-Uludag, “Forecasting cryptocurrencies’ price with the

financial stress index: A graph neural network prediction strategy,” Appl. Econ. Lett., vol. 31, no. 7, pp.
630–639, 2024. doi: 10.1080/13504851.2022.2141436.

[2] J. Wang and J. Wang, “A new hybrid forecasting model based on SW-LSTM and wavelet packet decompo-
sition: A case study of oil futures prices,” Comput. Intell. Neurosci., vol. 2021, no. 1, 2021, Art. no. 7653091.
doi: 10.1155/2021/7653091.

[3] Q. Y. Luo, S. L. He, X. Han, Y. H. Wang, and H. F. Li, “LSTTN: A long-short term transformer-based
spatiotemporal neural network for traffic flow forecasting,” Knowl.-Based Syst., vol. 293, no. 2, 2024, Art.
no. 111637. doi: 10.1016/j.knosys.2024.111637.

[4] J. H. Chen, L. Yang, C. Qin, Y. Yang, L. Peng and X. T. Ge, “Heterogeneous graph traffic prediction
considering spatial information around roads,” Int. J. Appl. Earth Obs. Geoinf., vol. 128, 2024, Art. no.
103709. doi: 10.1016/j.jag.2024.103709.

[5] H. Balti, A. B. Abbes, and I. R. Farah, “A Bi-GRU-based encoder-decoder framework for multivariate time
series forecasting,” Soft Comput., vol. 28, no. 9–10, pp. 6775–6786, 2024. doi: 10.1007/s00500-023-09531-9.

[6] S. Smyl, G. Dudek, and P. Pelka, “Contextually enhanced ES-dRNN with dynamic attention for short-term
load forecasting,” Neural Netw., vol. 169, no. 2, pp. 660–672, 2024. doi: 10.1016/j.neunet.2023.11.017.

[7] Y. Liu et al., “iTransformer: Inverted transformers are effective for time series forecasting,” in Twelfth Int.
Conf. Learn. Represent., Kigali, Rwanda, 2024.

[8] Y. H. Zhang and J. C. Yan, “Crossformer: Transformer utilizing cross-dimension dependency for multi-
variate time series forecasting,” in Eleventh Int. Conf. Learn. Represent., Kigali, Rwanda, 2023.

[9] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL: A seasonal-trend decomposition
procedure based on loess,” J. Off. Stat., vol. 6, no. 3, pp. 3–73, 1990.

[10] H. X. Wu, J. H. Xu, J. M. Wang, and M. S. Long, “Autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting,” in Adv. Neural Inf. Process. Syst., Montreal, QC, Canada,
2021, vol. 34, pp. 22419–22430.

[11] A. L. Zeng, M. X. Chen, L. Zhang, and Q. Xu, “Are transformers effective for time series forecasting?,”
Proc. AAAI Conf. Artif. Intell., vol. 37, no. 9, pp. 11121–11128, 2023. doi: 10.1609/aaai.v37i9.26317.

[12] T. Zhou, Z. Q. Ma, Q. S. Wen, X. Wang, L. Sun and R. Jin, “FEDformer: Frequency enhanced decomposed
transformer for long-term series forecasting,” in Proc. 39th Int. Conf. Mach. Learn., Baltimore, MD, USA,
2022, vol. 162, pp. 27268–27286.

[13] Vaswani et al., “Attention is all you need,” in Adv. Neural Inf. Process. Syst., Long Beach, CA, USA, 2017,
vol. 30.

[14] Y. Liu, H. X. Wu, J. M. Wang, and M. S. Long, “Non-stationary transformers: Exploring the stationarity
in time series forecasting,” in Adv. Neural Inf. Process. Syst., Long Beach, CA, USA, 2022, vol. 35, pp.
9881–9893.

[15] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, “A time series is worth 64 words: Long-term
forecasting with transformers,” in Eleventh Int. Conf. Learn. Represent., Kigali, Rwanda, 2023.

[16] H. Y. Zhou et al., “Informer: Beyond efficient transformer for long sequence time-series forecasting,” Pro-
ceedings AAAI Conf. Artifi. Intell., vol. 35, no. 12, pp. 11106–11115, 2021. doi: 10.1609/aaai.v35i12.17325.

[17] H. X. Wu, T. G. Hu, Y. Liu, H. Zhou, J. M. Wang and M. S. Long, “TimesNet: Temporal 2D-variation
modeling for general time series analysis,” in Eleventh Int. Conf. Learn. Represent., Kigali, Rwanda, 2023.

[18] K. Vo, M. El-Khamy, and Y. Choi, “PPG to ECG signal translation for continuous atrial fibrillation
detection via attention-based deep state-space modeling,” 2023, arXiv:2309.15375.

[19] S. Moontaha, B. Arnrich, and A. Galka, “State space modeling of event count time series,” Entropy, vol.
25, no. 10, 2023, Art. no. 1372. doi: 10.3390/e25101372.

[20] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state spaces,” 2023,
arXiv:2312.00752.

[21] O. Lieber et al., “Jamba: A hybrid Transformer-Mamba language model,” 2024, arXiv:2403.19887.

https://doi.org/10.1080/13504851.2022.2141436
https://doi.org/10.1155/2021/7653091
https://doi.org/10.1016/j.knosys.2024.111637
https://doi.org/10.1016/j.jag.2024.103709
https://doi.org/10.1007/s00500-023-09531-9
https://doi.org/10.1016/j.neunet.2023.11.017
https://doi.org/10.1609/aaai.v37i9.26317
https://doi.org/10.1609/aaai.v35i12.17325
https://doi.org/10.3390/e25101372


CMC, 2025, vol.82, no.1 1067

[22] L. L. Ren, Y. Liu, Y. D. Lu, Y. L. Shen, C. Liang and W. Z. Chen, “Samba: Simple hybrid state space models
for efficient unlimited context language modeling,” 2024, arXiv:2406.07522.

[23] M. H. Erol, A. Senocak, J. Feng, and J. S. Chung, “Audio Mamba: Bidirectional state space model for
audio representation learning,” 2024, arXiv:2406.03344.

[24] J. T. Zhang, K. Bian, P. Cheng, W. B. An, J. N. Liu and J. Zhou, “Vim-F: Visual state space model benefiting
from learning in the frequency domain,” 2024, arXiv:2405.18679.

[25] G. Y. M. Fu, F. C. Xiong, J. F. Lu, and J. Zhou, “SSUMamba: Spatial-spectral selective state space model
for hyperspectral image denoising,” 2024, arXiv:2405.01726.

[26] Z. Y. Zhang, A. Liu, I. Reid, R. Hartley, B. Zhuang and H. Tang, “Motion Mamba: Efficient and long
sequence motion generation with hierarchical and bidirectional selective SSM,” 2024, arXiv:2403.07487.

[27] T. Zhang, X. T. Li, H. B. Yuan, S. P. Ji, and S. C. Yan, “Point Could Mamba: Point cloud learning via state
space model,” 2024, arXiv:2403.00762.

[28] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–
1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

[29] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks
on sequence modeling,” 2014, arXiv:1412.3555.

[30] G. K. Lai, W. Chang, Y. M. Yang, and H. X. Liu, “Modeling long- and short-term temporal patterns with
deep neural networks,” in 41st Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, 2018,
pp. 95–104.

[31] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR: Probabilistic forecasting
with autoregressive recurrent networks,” Int. J. Forecast, vol. 36, no. 3, pp. 1181–1191, 2020. doi:
10.1016/j.ijforecast.2019.07.001.

[32] J. h. Wen and Z. J. Wang, “Short-Term power load forecasting with hybrid TPA-BiLSTM predic-
tion model based on, CSSA,” Comput. Model. Eng. Sci., vol. 136, no. 1, pp. 749–765, 2023. doi:
10.32604/cmes.2023.023865.

[33] S. J. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling,” 2018, arXiv:1803.01271.

[34] M. H. Liu et al., “SCINet: Time series modeling and forecasting with sample convolution and interaction,”
in Adv. Neural Inf. Process. Syst., Long Beach, CA, USA, 2022, vol. 35, pp. 5816–5828.

[35] K. Gong et al., “TrafficSCINet: An adaptive spatial-temporal graph convolutional network for traffic flow
forecasting,” in Adv. Intell. Comput. Technol. Appl., Singapore, 2023, pp. 628–639.

[36] S. Luo and Q. Li, “Application of Autoformer to short-term traffic flow prediction,” Int. J. Scientif. Adv.,
vol. 5, no. 1, pp. 85–87, 2024. doi: 10.51542/ijscia.v5i1.15.

[37] Y. N. Cao, Q. Zhou, J. L. Tang, and Z. H. Liu, “Research on haze prediction method of Xianyang city
based on STL decomposition and FEDformer,” in Third Int. Conf. Algorithms Microchips Netw. Appl.,
Xi’an, China, 2024, vol. 13171. doi: 10.1117/12.3031964.

[38] C. Y. Gou, R. Zhao, and Y. H. Guo, “Stock price prediction based on non-stationary transformers model,”
in 2023 9th Int. Conf. Comput. Commun., 2023, pp. 2227–2232. doi: 10.1109/ICCC59590.2023.10507459.

[39] S. T. Li and H. F. Cai, “Short-term power load forecasting using a VMD-Crossformer model,” Energies,
vol. 17, no. 11, 2024, Art. no. 2773. doi: 10.3390/en17112773.

[40] W. Y. Cao, R. F. Zhang, and W. X. Cao, “Multi-site air quality index forecasting based on spatiotemporal
distribution and PacthTST-enhanced: Evidence from Hebei province in China,” IEEE Access, vol. 12, no.
83, pp. 132038–132055, 2024. doi: 10.1109/ACCESS.2024.3460187.

[41] Y. L. Huang, C. J. Zhou, K. Cui, and X. P. Lu, “A multi-agent reinforcement learning framework for
optimizing financial trading strategies based on TimesNet,” Expert. Syst. Appl., vol. 237, no. 2, 2024, Art.
no. 121502. doi: 10.1016/j.eswa.2023.121502.

[42] Y. J. Zhao, S. F. Cen, J. G. Hur, and C. Lim, “Energy demand and renewable energy generation forecasting
for optimizing dispatching strategies of virtual power plants using time decomposition-based Dlinear,” in
Adv. Syst. Eng., Wroclaw, Poland, 2023, pp. 3–11.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.ijforecast.2019.07.001
https://doi.org/10.32604/cmes.2023.023865
https://doi.org/10.51542/ijscia.v5i1.15
https://doi.org/10.1117/12.3031964
https://doi.org/10.1109/ICCC59590.2023.10507459
https://doi.org/10.3390/en17112773
https://doi.org/10.1109/ACCESS.2024.3460187
https://doi.org/10.1016/j.eswa.2023.121502


1068 CMC, 2025, vol.82, no.1

[43] A. Das, W. Kong, A. Leach, S. Mathur, R. Sen and R. Yu, “Long-term forecasting with TIDE: Time-series
dense encoder,” 2023, arXiv:2304.08424.

[44] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd Int. Conf. Learn.
Represent., Kigali, Rwanda, 2015.


	DecMamba: Mamba Utilizing Series Decomposition for Multivariate Time Series Forecasting
	1 Introduction
	2 Related Works
	3 Methods
	4 Experiments
	5 Conclusion
	References


