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ABSTRACT

This study investigates the application of Learnable Memory Vision Transformers (LMViT) for detecting metal
surface flaws, comparing their performance with traditional CNNs, specifically ResNet18 and ResNet50, as well as
other transformer-based models including Token to Token ViT, ViT without memory, and Parallel ViT. Leveraging
a widely-used steel surface defect dataset, the research applies data augmentation and t-distributed stochastic neigh-
bor embedding (t-SNE) to enhance feature extraction and understanding. These techniques mitigated overfitting,
stabilized training, and improved generalization capabilities. The LMViT model achieved a test accuracy of 97.22%,
significantly outperforming ResNet18 (88.89%) and ResNet50 (88.90%), as well as the Token to Token ViT (88.46%),
ViT without memory (87.18), and Parallel ViT (91.03%). Furthermore, LMViT exhibited superior training and
validation performance, attaining a validation accuracy of 98.2% compared to 91.0% for ResNet18, 96.0% for
ResNet50, and 89.12%, 87.51%, and 91.21% for Token to Token ViT, ViT without memory, and Parallel ViT,
respectively. The findings highlight the LMViT’s ability to capture long-range dependencies in images, an area where
CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction. The additional
transformer-based models also demonstrate improved performance in capturing complex features over CNNs,
with LMViT excelling particularly at detecting subtle and complex defects, which is critical for maintaining product
quality and operational efficiency in industrial applications. For instance, the LMViT model successfully identified
fine scratches and minor surface irregularities that CNNs often misclassify. This study not only demonstrates
LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based
architectures like Token to Token ViT, ViT without memory, and Parallel ViT in industrial scenarios where
complex spatial relationships are key. Future research may focus on enhancing LMViT’s computational efficiency
for deployment in real-time quality control systems.
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Nomenclature

LMViT Learnable Memory Vision Transformer
ViT Vision Transformer
CNN Convolutional Neural Network
t-SNE t-Distributed Stochastic Neighbor Embedding
Gradient Clipping Technique to prevent exploding gradients by limiting gradient values during

backpropagation
Label Smoothing Regularization technique that prevents the model from being overconfident

by softening the labels

1 Introduction

Object recognition, semantic segmentation, and image classification are fundamental tasks in
computer vision, with deep learning driving significant advancements in these areas. The evolution
of complex neural network architectures has markedly improved the speed and accuracy of these
tasks. Among these advancements, Vision Transformers (ViT) have emerged as a notable breakthrough
due to their innovative self-attention mechanisms, which excel at capturing long-range interactions in
images; something traditional CNNs often struggle with.

Recent developments have positioned the transformer architecture as a powerful neural net-
work paradigm, leveraging self-attention mechanisms to extract essential features from data [1–3].
Initially designed for natural language processing (NLP), where it has set new benchmarks [3–5],
the transformer has demonstrated significant potential in a range of AI applications. Self-attention-
based architectures, particularly transformers [3], have become the gold standard in NLP, benefiting
from pre-training on large texts and fine-tuning on specific tasks [4]. In the context of defect
detection, CNNs primarily excel in local feature extraction but struggle with long-range dependencies,
which are critical for accurately identifying subtle defects. In contrast, ViTs utilize self-attention
mechanisms to capture these long-range dependencies and contextual information effectively, making
them particularly suitable for surface defect detection.

In computer vision, the application of transformers has shown promising results. Chen et al. [6]
illustrated that sequence transformers could achieve competitive results with CNNs on image classifi-
cation tasks by predicting pixels autoregressively. The ViT model, introduced by Dosovitskiy et al. [7],
applies the transformer model directly to computer vision by treating images as sequences of patches,
demonstrating state-of-the-art performance on various image recognition benchmarks. This capability
to model complex relationships within the data addresses the limitations of CNNs in accurately
detecting steel surface defects.

Recent advancements in fine-tuning have also introduced techniques such as learnable memory
mechanisms to enhance their performance on specific tasks [8]. Incorporating learnable memory
modules allows for more effective adaptation of ViTs to task-specific data, further improving their
utility in practical applications. In addition to Learnable Memory Vision Transformers (LMViT),
other models such as Token to Token ViT, ViT without memory, and Parallel ViT have shown promise
in computer vision tasks and are included in this study as comparative models.

This study proposes an LMViT model that outperforms traditional CNNs in steel surface defect
detection, achieving 97.22% accuracy compared to 88.90% for ResNet50. Additionally, it provides
a comparative analysis of the Token to Token ViT, ViT without memory, and Parallel ViT models
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alongside conventional CNN architectures, specifically ResNet18 and ResNet50, for surface defect
detection, which is a critical application in industrial settings where precision is crucial.

Key aspects of this study include:

• Dataset: We utilized the NEU surface defect detection dataset [9], which is commonly used
for evaluating models on metal surface flaw detection tasks. This dataset contains six types of
defects: rolled-in scale, patches, crazing, pitted surface, inclusion, and scratches. Further details
about the dataset are described in Section 3.1, where we explain the dataset characteristics,
preprocessing steps, and augmentation techniques employed.

• Methodology: Use of data augmentation, customized dataset adjustments, and t-SNE visual-
ization for feature analysis.

• Fine-Tuning: Application of advanced techniques such as gradient clipping, label smoothing,
and learnable memory mechanisms [8].

• Learnable ViT: The ViT model utilized in this research incorporates learnable memory mech-
anisms, as introduced in [8]. This advanced approach enhances the ViT’s ability to adapt to
specific tasks by integrating a memory module that facilitates more effective fine-tuning. By
leveraging these learnable memory mechanisms, the ViT model captures long-range dependen-
cies and contextual information, improving its adaptability to task-specific data and leading to
superior performance in image classification and surface defect detection.

The study’s findings reveal that the LMViT model achieved a test accuracy of 97.22%, out-
performing ResNet18 (88.89%), ResNet50 (88.90%), Token to Token ViT (88.46%), ViT without
memory (87.19%), and Parallel ViT (91.03%). The LMViT also demonstrated superior performance in
training and validation accuracy, with a validation accuracy of 98.2% compared to ResNet18’s 91.0%,
ResNet50’s 96.0%, and the results of the other ViT models (89.12%, 87.51%, and 91.21%, respectively).
This research contributes to the ongoing discussion about the effectiveness of these models in practical
computer vision tasks, highlighting their advantages and limitations compared to conventional CNNs
and other transformer-based models in industrial surface defect detection.

This paper has been formulated as follows: The authors discuss the literature review in Section 2.
Then, Section 3 introduces the architecture of the model with a proper explanation of each subsection.
Additionally, the authors discuss the dataset in Section 4, the experimental setup, and the result
analysis in Section 5. Finally, the authors conclude the paper with limitations and future scope in
Section 6.

2 Related Works

Steel defect detection is a critical area of focus in manufacturing, where ensuring product quality is
paramount. Traditional methods, often based on manual inspection or conventional image processing
techniques, have limitations in terms of accuracy and efficiency [10,11]. Recent advancements in
deep learning have led to the development of automated systems that address these shortcomings
[12,13]. CNNs have been widely adopted for this purpose [14–16]. For example, Bouguettaya et al. [16]
demonstrated that CNNs could effectively classify surface defects in steel, highlighting their potential
in industrial applications. Similarly, another research conducted by Yang et al. [17] focuses on
lightweight architectures and proposes a model based on YOLOV5, MobilenetV2, and convolutional
block attention module that achieves high accuracy in detecting various types of steel defects.

Despite their success, CNNs have certain limitations, particularly in capturing long-range depen-
dencies within images [18–20]. This has led to exploring alternative architectures, such as ViTs, which
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have shown promise in overcoming these challenges [21]. Authors Vaswani et al. [3] introduced ViTs as
a powerful tool for image classification tasks, and subsequent studies, such as those by Luo et al. [22],
Zhou et al. [23], and Wang et al. [24], have explored their application in steel defect detection.
Furthermore, different variations of ViTs have been used for steel defect detection. For instance, a
study conducted by Üzen et al. [25] proposes a Swin Transformer-based model called Multi-Feature
Integration Network that uses a pre-trained InceptionNet as a feature extractor of the encoder block
and a Swin Transformer as a feature extractor of the decoder block. The proposed model has obtained
a mean Intersection over Union (IoU) score of 81.37%, surpassing several CNN alternatives. Another
study that suggests a different variation of the Swin Transformer, called the LSwin Transformer, was
conducted by Zhu et al. [26]. It incorporates an effective window shift strategy and a depth multilayer
perceptron module, achieving an average precision score of 81.2%. Moreover, a study by authors
Feng et al. [27] proposes a hybrid ViT model that has the fully connected layers of VGGNet and
achieves 5.64% higher accuracy than the original ViT. These studies suggest that ViTs can offer a
more nuanced understanding of defect patterns by capturing local and global features in the images.

Furthermore, Qiu et al. [28] presented an enhanced YOLOv5 model incorporating deformable
convolution, a bidirectional feature pyramid network, and Wise IoU loss function alongside optimized
anchor box parameters via K-means clustering. This approach significantly improved detection
accuracy to 78.1% on the NEU-DET dataset, surpassing the original YOLOv5 by 8.8% and the Faster
R-CNN by 6.8%, with a minimal increase in inference time. However, the model’s performance is
still constrained by the complexity of real-world steel surface defects, indicating a need for further
refinement to handle diverse and intricate defect patterns effectively. Another novel research by
Yi et al. [29] proposes an improved YOLOX model for detecting defects on hot-rolled steel strips,
addressing existing methods’ low efficiency and accuracy issues. Enhancements include the MobileViT
block for better feature extraction, Efficient Channel Attention (ECA) modules for emphasizing
essential features and the efficient IOU loss function for improved accuracy. The model achieved 80.67
mean average precision on the NEU-DET dataset and 75.69 on the Xsteel dataset, showing significant
improvements over the original YOLOX model.

As deep learning models like ViTs become more complex, the need for interpretability has grown.
XAI techniques are increasingly used to make these models more transparent [30–32]. For instance, a
study by Bordekar et al. [33] utilized Support Vector Machine and Density-Based Spatial Clustering
to classify and cluster defects from CT images, achieving an impressive area under the curve score
of 0.94. However, the method’s reliance on high-quality photos could be improved, particularly in
noisy data environments. Another notable study by Arreche et al. [34] presents a framework that
integrates XAI with Intrusion Detection Systems (IDS). The authors aim to improve the transparency
and interpretability of IDS models, making it easier for security professionals to understand and
trust the system’s decisions. Using XAI techniques, the framework provides explanations for detected
intrusions, enhancing the effectiveness and reliability of network security measures.

Integrating XAI into steel defect detection has recently garnered significant interest among
researchers. A comprehensive study by Aboulhosn et al. [35] explores the application of SHapley
Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) for
enhancing the interpretability of deep learning models used in steel surface defect detection. The results
indicate that SHAP and LIME effectively highlight the features contributing to defect detection,
with SHAP providing more consistent global explanations and LIME offering localized, instance-
specific insights. Despite their effectiveness, the methods face computational complexity and scalability
challenges. Future research directions include optimizing these techniques for real-time applications,
developing hybrid approaches to combine global and local interpretability, and improving scalability
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and user interfaces for industrial applications. While previous studies have made notable progress
in steel defect detection, most have focused on CNN architectures or standard ViT models. Our
work introduces a novel approach by incorporating learnable memory mechanisms into the ViT
architecture, specifically designed for steel defect detection. This enhancement overcomes the challenge
of capturing long-range dependencies in images, which is critical for identifying subtle defect patterns
across extensive surface areas. In another notable study, the authors Yi et al. [36] utilize saliency maps
to enhance the defect detection process. Saliency maps highlight the most critical regions of the steel
strip images, allowing the CNN to focus on these areas for more accurate defect classification. This
approach improves the interpretability of the model by visually indicating which parts of the image
contribute most to the detection of defects. The use of saliency maps, combined with CNNs, results in
a robust and efficient system for identifying various types of steel strip defects, ultimately contributing
to better quality control in steel production. Table 1 summarizes some of the works on steel defect
detection.

Table 1: Comparison of studies on steel defect detection approaches

Study Approach Limitations

[10,11] Traditional methods based on manual
inspection and conventional image
processing techniques for steel defect
detection.

Limited accuracy and efficiency due to
human errors and inability to handle
complex defect patterns.

[12,13] Developed automated steel defect
detection systems using deep learning
techniques.

Dependence on large datasets and high
computational resources.

[14–16] Used CNNs for classifying surface
defects in steel, demonstrating their
potential for industrial applications.

Inability to capture long-range
dependencies within images; may not
generalize well to diverse defect types.

[17] Proposed a lightweight architecture
combining YOLOv5, MobileNetV2,
and Convolutional Block Attention
Module for defect detection.

High accuracy achieved but struggles
with long-range dependencies and
computational efficiency.

[3,21] Introduced ViTs as an alternative
architecture to capture long-range
dependencies in images for defect
detection.

Requires extensive training data and
computational power; potential
overfitting on small datasets.

[22–24] Applied ViTs in steel defect detection
to capture both local and global
features more effectively than CNNs.

High computational complexity and
demands on resources.

[25] Developed a Swin Transformer-based
model (Multi-Feature Integration
Network) with InceptionNet and Swin
Transformer for encoding/decoding.

Computationally intensive, with limited
interpretability.

(Continued)
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Table 1 (continued)

Study Approach Limitations

[26] Proposed LSwin Transformer with a
window shift strategy and Depth
Multilayer Perceptron Module for
improved precision.

High computational complexity and
moderate scalability issues.

[27] Introduced a hybrid ViT model
incorporating fully connected layers of
VGGNet to enhance accuracy over the
original ViT.

Higher model complexity and
computational cost.

[28] Enhanced YOLOv5 with deformable
convolution, bidirectional feature
pyramid network, and optimized
anchor box parameters.

Still constrained by real-world
complexity of diverse and intricate
defect patterns.

[29] Proposed an improved YOLOX model
with MobileViT block, ECA module,
and efficient IOU loss function for
defect detection.

Potential limitations in generalizability
and scalability to different datasets and
real-world applications.

[33] Used SVM and Density-Based Spatial
Clustering for classifying and
clustering defects in CT images.

Reliance on high-quality images; less
effective in noisy data environments.

[34] Integrated XAI with Intrusion
Detection Systems (IDS) for enhanced
transparency and interpretability.

Not specifically tailored for steel defect
detection; focused on IDS applications.

[35] Explored SHAP and LIME to improve
the interpretability of deep learning
models for steel surface defect
detection.

Computational complexity and
scalability challenges; requires
optimization for real-time applications.

[36] Employed saliency maps to enhance
the defect detection process by
highlighting critical image regions.

Limited generalization to diverse types
of defects and challenges with
real-world application scenarios.

3 Proposed Methodology

Our study builds on the Vision Transformer (ViT) by introducing a learnable memory module
to enhance surface defect detection. The ViT model, as introduced in [7], divides an input image x ∈
R

h×w×c into fixed-size patches, linearly embeds these patches, adds position embeddings, and processes
the resulting sequence with a standard Transformer encoder.

The input to the ViT model is defined as:

z0
vit := [xcls, Ex1, . . . , ExN] + Epos (1)

where E is a learnable linear transformation into the encoder’s embedding space, Epos represents the
positional embeddings, and xcls is a special learnable token for classification.
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To introduce memory into the ViT model, we concatenate m learnable embeddings Emem ∈ R
m×D,

where D is the dimensionality of the input tokens:

z0
mem := [z0

vit; E0
mem] (2)

The transformer then processes N + 1 + m tokens, with only the original N + 1 tokens retained
after the self-attention layer. This process is repeated across layers, with each layer output yl acting as
input for the next:

zl
mem := [yl−1; El

mem] (3)

We modify the standard ViT by introducing learnable memory tokens Emem. These tokens allow
the model to store and update task-specific information throughout the network, enhancing its ability
to capture complex defect patterns.

During fine-tuning, the memory tokens are randomly initialized, and gradient descent is used to
learn the memory tokens, classifier head, and class token xcls. We also implement attention masking to
maintain model performance on the original task while fine-tuning for new tasks, enabling multi-task
learning.

This method offers flexibility for multi-task learning by fine-tuning memory tokens and class
tokens for different tasks without task interference.

Fig. 1 illustrates the proposed model architecture.

3.1 Dataset

This research utilizes the NEU-DET [9], a widely used dataset for detecting and classifying surface
defects in steel materials. The NEU-DET dataset includes 1800 images distributed equally among six
prevalent types of surface defects. Each defect category contains 300 images with a 200 × 200 pixels
resolution. These images were captured under controlled conditions to focus on typical defect patterns
in steel materials. The NEU-DET dataset includes images of hot-rolled steel strips with six types of
defects:

• Crazing: Fine cracks appearing on the surface.
• Inclusion: Non-metallic particles embedded in the metal surface.
• Patches: Surface areas with an irregular texture.
• Pitted Surface: Small depressions or cavities on the surface.
• Rolled-in Scale: Oxide layers or scale rolled into the surface during milling.
• Scratches: Linear marks caused by abrasion.

The defect types are illustrated in Fig. 2.
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Figure 1: Visualization of learnable ViT

We divided the dataset into three subsets: training, validation, and testing, to maintain an equal
representation of all defect classes and ensure class balance throughout the model development phases.
The training set comprises 92% of the total data, while the validation and testing sets each account
for 4%. Each subset includes images from all six defect types: Crazing, Inclusion, Patches, Pitted
Surface, Rolled-in Scale, and Scratches. Specifically, the training set contains 276 images per defect
type, totaling 1656. Both the validation and testing sets contain 12 images per defect type, resulting in
72 images each. This distribution was intended to provide adequate samples per class for the model to
learn from, validate, and test.



CMC, 2025, vol.82, no.1 507

Figure 2: Types of defects

While the NEU-DET dataset is comprehensive, it is limited to six defect types and may not
represent all possible steel surface defects. Additionally, all images are of the same size (200 × 200
pixels), which may not reflect the variety of scales encountered in real-world inspections. These
limitations could affect the model’s generalizability to other defect types or image scales. Models
trained on this dataset may require further fine-tuning or adaptation when applied to datasets with
more varied defect types and image resolutions.

3.2 Data Preprocessing and Augmentation

We applied a series of preprocessing and augmentation techniques using the PyTorch library to
enhance the model’s ability to generalize to unseen data. The transformations applied to the training
set include:

1. Resizing: All images were resized to 224 × 224 pixels to meet the input requirements of our
deep learning model.

2. Color Jittering: A random adjustment of brightness and contrast, each with a magnitude of
up to 0.08, was applied to simulate variations in lighting conditions.

3. Gaussian Blur: A Gaussian blur with a kernel size of 3 was added to introduce noise and
simulate surface irregularities.

4. Random Rotation: Each image was randomly rotated within a range of −15 to +15 degrees to
ensure the model’s robustness to orientation changes.

5. Normalization: The images were normalized using their mean and standard deviation values
calculated for each channel. This standardization step ensures that the pixel values are centered
around zero and scaled to a consistent range, which facilitates effective training of the deep
learning model.

For testing, the images were transformed as follows:

• Resizing: Images were resized to 224 × 224 pixels.
• Normalization: The images were normalized using the previously calculated mean and standard

deviation values.
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A denormalization function was employed during the visualization of images to convert them
back to their original form during prediction and visualization. Fig. 3 illustrates the dataset after the
preprocessing phase is completed.

Figure 3: Preprocessed dataset

3.3 t-SNE

In this study, we employ t-SNE to visualize high-dimensional representations of the dataset.
t-SNE, a nonlinear dimensionality reduction technique developed by van der Maaten et al. [37],
effectively embeds high-dimensional data into a lower-dimensional space (typically two or three
dimensions), preserving local data structures to facilitate human interpretation.

We chose t-SNE because it effectively captures the complex relationships inherent in the data
used for steel defect detection. Unlike traditional linear dimensionality reduction techniques such as
Principal Component Analysis (PCA) [38], t-SNE is designed to focus on preserving the local structure
of the data, making it particularly effective for visualizing clusters or groupings in data that are not
linearly separable.

In steel defect detection, where different defects might share subtle similarities or differences, t-
SNE allows for more precise separation of these types, thus aiding in more intuitive data analysis
and better model understanding [39]. Moreover, t-SNE provides an intuitive visual tool that can
help evaluate different models’ performance, compare their outputs, and understand the underlying
features that contribute most significantly to model decisions [40,41].

We have moved the detailed derivations of t-SNE’s functions to the supplementary material,
providing a concise explanation here. t-SNE begins by calculating a conditional probability pj|i that
represents the similarity of data points in high-dimensional space. For each point xi, a Gaussian
distribution centered on xi is computed, yielding a conditional probability:

pj|i = exp(−‖xi − xj‖2/2σ 2)∑
k �=i exp(−‖xi − xk‖2/2σ 2)

(4)
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where σ is the bandwidth of the Gaussian distribution. The conditional probability pj|i measures the
similarity of data point xj to data point xi.

Next, t-SNE constructs a joint probability distribution pij over the dataset by symmetrizing the
conditional probabilities:

pij = pj|i + pi|j
2N

(5)

where N is the total number of data points.

In the lower-dimensional space, t-SNE aims to create a corresponding joint probability distribu-
tion qij based on a Student’s t-distribution with one degree of freedom (Cauchy distribution):

qij = (1 + ‖yi − yj‖2)−1∑
k �=l(1 + ‖yi − yk‖2)−1

(6)

The t-SNE algorithm iteratively optimizes the Kullback-Leibler divergence between the two
distributions p and q:

C =
∑

i �=j

pij log
(

pij

qij

)
(7)

Minimizing this divergence ensures that the low-dimensional map accurately reflects the similarity
relationships of the original high-dimensional data. The lower the KL divergence, the better the
preservation of local data structures in the low-dimensional embedding.

To achieve this minimization, t-SNE employs gradient descent, an iterative optimization method
that continuously adjusts the positions of data points in the low-dimensional space to reduce the
divergence. This optimization is sensitive to several hyperparameters, including the perplexity, which
controls the balance between local and global aspects of the data, and the learning rate, which affects
the convergence speed and stability of the algorithm.

4 Experiments

This section presents our experiments comparing our LMViT, Token to Token ViT, ViT without
memory, and Parallel ViT models to conventional CNNs like ResNet18 and ResNet50 for surface
defect detection. The experiments evaluated the models’ performance using confusion matrices,
loss patterns, test accuracy, and training and validation accuracy. The models were trained for
100 epochs using a batch size of 16. We utilized the AdamW optimizer with a learning rate of
0.001, with adjustments for different ViT-based models to ensure optimal training. The learning rate
was adjusted dynamically using the ReduceLROnPlateau scheduler to ensure optimal convergence.
Gradient clipping was applied with a maximum norm of 1 to prevent gradient explosion.

The models were evaluated based on key metrics, including accuracy, precision, recall, and F1-
score, ensuring a comprehensive assessment of their performance throughout the training duration
of 100 epochs. The experiments were conducted on a system equipped with an NVIDIA TITAN X
GPU and 64 GB of DDR4 RAM, running Ubuntu 20.04 LTS as the operating system. All models
were implemented using PyTorch version 1.10.0 and trained on the above hardware configuration.
The performance of the models was validated against a held-out test set to ensure the consistency and
reliability of the results. We observed that LMViT achieved the highest test accuracy and F1-score,
while the other ViT-based models also demonstrated improvements over ResNet18 and ResNet50.
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4.1 Evaluation Metrics

Multiple evaluation metrics assess the proposed architecture’s performance. Eqs. (8)–(11) present
the calculations for accuracy, recall, precision, and F1-score. Additionally, the architecture’s effective-
ness is examined using a confusion matrix. In these equations, TP (true positive), TN (true negative),
FP (false positive), and FN (false negative) represent correctly and incorrectly classified instances of
positive and negative images.

Accuracy = TP + TN
TP + TN + FP + FN

(8)

Recall = TP
TP + FN

(9)

Precision = TP
TP + FP

(10)

F1-score = 2 × TP
2 × TP + FP + FN

(11)

4.2 Result Analysis with t-SNE

We monitored the training and validation accuracy of the models over 100 epochs. The LMViT,
Token to Token ViT, ViT without memory, and Parallel ViT models showed a steady increase in
validation accuracy, as shown in Fig. 4, eventually surpassing both ResNet18 and ResNet50. In
contrast, the ResNet models exhibited clear signs of overfitting during the later epochs, with validation
accuracy decreasing significantly or plateauing.

Figure 4: Training and validation accuracy

Table 2 compares the final training and validation accuracies of the models after 100 epochs.
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Table 2: Training and validation accuracy

Model Training accuracy (%) Validation accuracy (%)

LMViT 99.4 98.2
Token to Token ViT 88.4 89.12
ViT without memory 87.18 87.51
Parallel ViT 91.03 91.21
ResNet18 85.0 91.0
ResNet50 89.0 96.0

Following the training phase, each model was assessed on the test set. The LMViT model demon-
strated a test accuracy of 97.22%, surpassing both ResNet18 (88.89%) and ResNet50 (88.90%), as well
as showing an improvement over the other ViT-based models. The test accuracies are summarized in
Table 3.

Table 3: Test accuracy comparison

Model Test accuracy (%)

LMViT 97.22
Token to Token ViT 88.46
ViT without memory 87.18
Parallel ViT 91.03
ResNet18 88.89
ResNet50 88.90

Confusion matrices were generated to understand the classification performance across different
defect categories. The confusion matrix for the LMViT model is shown in Fig. 5, depicting fewer
misclassifications compared to the CNN-based models.

The LMViT model showed particular improvement in distinguishing between ‘Rolled-in Scale’
and ‘Patches’ defects, which were often confused by the CNN models. However, it still occasionally
misclassified ‘Crazing’ as ‘Scratches’, suggesting room for improvement in detecting fine-grained linear
defects.

Tables 4–6 summarize the confusion matrix metrics for Token to Token ViT, ViT without memory,
and Parallel ViT, respectively, providing precision and recall comparisons with LMViT and the CNN
models. Table 7 below shows the different matrices with different ablation.



512 CMC, 2025, vol.82, no.1

Figure 5: Confusion matrix for LMViT model

Table 4: Confusion matrix metrics—Token to Token ViT

Model Precision (%) Recall (%)

Token to Token ViT 89.12 88.14

Table 5: Confusion matrix metrics—ViT without memory

Model Precision (%) Recall (%)

ViT without memory 87.51 87.20

Table 6: Confusion matrix metrics—Parallel ViT

Model Precision (%) Recall (%)

Parallel ViT 91.21 90.49

Table 7: Evaluation performance with accuracy split ratio ablation

Model Epochs Batch size Splitting ratio Accuracy

Token to Token ViT 50 16 70:30 85.54
Token to Token ViT 100 16 80:20 88.46
ViT without memory 50 16 70:30 85.45
ViT without memory 100 16 80:20 87.18

(Continued)
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Table 7 (continued)

Model Epochs Batch size Splitting ratio Accuracy

Parallel ViT 50 16 70:30 90.02
Parallel ViT 100 16 80:20 91.03
ResNet18 50 16 70:30 88.65
ResNet18 100 16 80:20 91.0
ResNet50 50 16 70:30 95.22
ResNet50 100 16 80:20 96.0
LMViT 50 16 70:30 89.22
LMViT 100 16 80:20 97.22

t-SNE visualizations were used to examine the feature representations learned by each model over
multiple epochs. The ViT-based models produced more distinct clusters for each defect class compared
to CNNs, indicating improved feature space separation. Fig. 6 illustrates t-SNE visualizations for
the LMViT model at different epochs, showing the progressive refinement in clustering defect classes
over time.

To further evaluate the performance of our models, randomly selected images from the test set were
fed into each model to predict their corresponding labels. Fig. 7 shows a visual comparison of actual
vs. predicted labels, providing insight into cases where the models performed correctly or encountered
misclassifications.

4.3 Ablation Study on Model Components

We also conducted additional experiments to analyze the impact of the learnable memory mech-
anism and other key modules. Specifically, we investigated how variations in memory configurations
and architectural designs affect the validation accuracy of our proposed model.

Fig. 8 illustrates a comparative analysis of different model configurations, including baseline
models (ResNet18, ResNet50, and variations of ViT without memory) and advanced configurations
incorporating the learnable memory mechanism. The LMViT, our proposed lightweight design,
achieves the highest validation accuracy of 97.22%, outperforming standard Vision Transformers
(ViTs) and other variants.

Key findings from this analysis are as follows:

• Effect of Learnable Memory: Models incorporating learnable memory (e.g., LMViT) demon-
strate a significant improvement in accuracy compared to counterparts without memory tokens
(e.g., ViT without Memory and Reduced Memory Tokens).

• Lightweight Design: Despite its reduced complexity, LMViT achieves superior performance,
confirming its effectiveness in extracting meaningful representations while maintaining a
lightweight architecture.

• Comparative Performance: LMViT surpasses state-of-the-art architectures like ResNet50 and
Standard ViT, emphasizing the importance of the proposed memory mechanism and design
optimizations.
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These results provide a comprehensive ablation study, highlighting the critical role of the learnable
memory mechanism and supporting the overall contributions of the proposed model.

Figure 6: (Continued)
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Figure 6: t-SNE visualization of feature representations at various epochs

Figure 7: Visualization of predicted and true labels for sample images from the test set. Green boxes
indicate correct predictions, while red boxes show misclassifications
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Figure 8: Validation accuracy comparison across various model configurations

4.4 Computational Efficiency

While the LMViT model achieved higher accuracy, it required 1.5× the training time of ResNet50
on the same hardware. However, inference time was comparable, with LMViT processing 100 images
in 2.3 s compared to ResNet50’s 2.1 s.

5 Discussion

The results of this study highlight the impressive capabilities of the LMViT model in comparison
to traditional CNNs. The LMViTmodel achieved 8.33% and 8.32% higher test accuracies than
ResNet18 and ResNet50, respectively. Moreover, it outperformed these CNNs in validation accuracy,
achieving 7.2% higher than ResNet18 and 2.2% higher than ResNet50. These findings underscore
the effectiveness of transformer-based models in complex tasks requiring nuanced understanding and
contextual awareness.

In addition to LMViT, this study also examined the performance of three other transformer-based
models: Token-to-Token ViT, ViT without memory, and Parallel ViT. Preliminary results indicate
that these models demonstrated competitive performance, with Token-to-Token ViT achieving a test
accuracy of 88.46%, ViT without memory achieving 87.18%, and Parallel ViT achieving 91.03%. While
each model displayed distinct strengths, LMViT generally outperformed the other transformer-based
models, showcasing the benefit of a learnable memory mechanism in this context.

The advantages of transformer-based models, particularly LMViT, over traditional CNN archi-
tectures suggest that transformer-based models possess significant potential to advance image analysis
applications, especially in industrial settings where precision is crucial. For instance, the 8.32%
accuracy improvement of the highest-performing transformer model, LMViT, over ResNet50 could
significantly reduce false positives in a production environment. For a steel mill producing 500,000 tons
annually, this could potentially prevent misclassification of 41,600 tons of product, saving considerable
reprocessing costs and improving overall product quality.
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However, while the results are promising, deploying transformer-based models like LMViT,
Token-to-Token ViT, ViT without memory, and Parallel ViT in real-world settings may face challenges
such as integrating with existing inspection systems, handling variable lighting conditions, and
processing high-speed production lines. Further research is needed to assess the models’ performance
under these dynamic conditions.

Overall, the results of this study are inspiring and open up new possibilities in the field,
emphasizing the need for continued exploration of transformer-based models in diverse applications
and environments.

6 Conclusion

Looking forward, several avenues for future research are suggested. One potential direction is
exploring hybrid architectures that combine the strengths of CNNs and transformers to balance com-
putational costs and accuracy. Additionally, applying the ViT model, along with Token-to-Token ViT,
ViT without memory, and Parallel ViT, to a broader range of industrial tasks could test their versatility
and robustness. Future research should investigate the LMViT’s performance on a wider range of
steel defects, including less common types not present in the NEU-DET dataset. Improving data
efficiency through self-supervised learning or advanced data augmentation techniques may reduce
reliance on large labeled datasets. Optimizing ViT models, as well as the newly introduced Token-
to-Token ViT, ViT without memory, and Parallel ViT, for deployment on edge devices with limited
computational resources is another critical area, which could involve model pruning, quantization,
and knowledge distillation. Scaling these approaches to larger datasets or real-time defect detection
may require optimizing the model architectures for speed. Techniques such as model pruning and
knowledge distillation could be explored to create more lightweight versions of these transformer
models suitable for edge deployment in manufacturing environments. Enhancing the interpretability
of ViT models, particularly by developing methods to visualize and understand their self-attention
mechanisms, is also critical for fostering trust and adoption in safety-critical applications.

Despite these advances, the study has some limitations. The ViT model’s significant computational
requirements pose challenges for real-time or resource-constrained deployments. Its dependency on
large labeled datasets can limit its utility in scenarios where data is scarce or expensive to obtain.
Overfitting remains a risk, particularly with small or imbalanced datasets, necessitating careful
regularization and hyperparameter tuning. Moreover, the complexity of self-attention mechanisms
can reduce model interpretability, which is essential in industrial decision-making. Finally, while the
study focused on surface defect detection, further validation is needed to generalize ViT’s performance,
as well as Token-to-Token ViT, ViT without memory, and Parallel ViT, across different industrial
tasks and datasets. Addressing these limitations and pursuing the proposed research directions will
be essential for further advancing the application and effectiveness of transformer-based models in
various domains. The need for further research is urgent, and the potential benefits are significant.
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