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ABSTRACT

Previous studies have shown that deep learning is very effective in detecting known attacks. However, when
facing unknown attacks, models such as Deep Neural Networks (DNN) combined with Long Short-Term Memory
(LSTM), Convolutional Neural Networks (CNN) combined with LSTM, and so on are built by simple stacking,
which has the problems of feature loss, low efficiency, and low accuracy. Therefore, this paper proposes an
autonomous detection model for Distributed Denial of Service attacks, Multi-Scale Convolutional Neural Network-
Bidirectional Gated Recurrent Units-Single Headed Attention (MSCNN-BiGRU-SHA), which is based on a Multi-
strategy Integrated Zebra Optimization Algorithm (MI-ZOA). The model undergoes training and testing with the
CICDDoS2019 dataset, and its performance is evaluated on a new GINKS2023 dataset. The hyperparameters for
Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm (MI-
ZOA). The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MI-
ZOA proposed in this paper is as high as 0.9971 in the CICDDoS2019 dataset. The evaluation accuracy of the new
dataset GINKS2023 created in this paper is 0.9386. Compared to the MSCNN-BiGRU-SHA model based on the
Zebra Optimization Algorithm (ZOA), the detection accuracy on the GINKS2023 dataset has improved by 5.81%,
precision has increased by 1.35%, the recall has improved by 9%, and the F1 score has increased by 5.55%. Compared
to the MSCNN-BiGRU-SHA models developed using Grid Search, Random Search, and Bayesian Optimization,
the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,
precision, recall, and F1 score.

KEYWORDS
Distributed denial of service attack; intrusion detection; deep learning; zebra optimization algorithm;
multi-strategy integrated zebra optimization algorithm

1 Introduction

Distributed Denial of Service (DDoS) attack [1] is one of the severe security threats. DDoS
attack is a Denial of Service (DoS) attack caused by attacks from multiple independent nodes [2].
DoS attacks are a one-to-one approach. Whereas DDoS attacks are in the form of many-to-one and
attack the attacked on a larger scale [3]. DDoS attacks are mainly divided into Application-Layer
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Attacks, Volumetric Attacks, and Low and Slow Attacks [4]. Nowadays, many tools are available on
the Internet to perform DDoS attacks on the target server. The attacker hides his identity by using
legitimate third-party components such as LOIC, HOIC, and Hping3 [4]. Low attack costs and high
traceability difficulty characterize DDoS attacks. Moreover, the frequency, scale, and complexity of
DDoS attacks have been showing an increasing trend. According to the “2023 DDoS Threat Report”
[5] written and published by NSFOCUS Information Technology, DDoS attacks are no longer limited
to traditional network-layer attacks but tend to complex application-layer attacks and new reflection
attacks. At the same time, with the gradual commercialization and service of attacks. Attack tools
are easier to acquire and don’t even require advanced technical skills. For example, in the well-known
DDoS attack platform stress.ru, any user can launch custom attacks through paid services [5]. In recent
years, DDoS attacks have not only been an individual action. In December 2023 [5], Brazil was hit by
a massive blanket DDoS attack. Approximately 8.8 million IP addresses were targeted, representing
12 percent of the overall IP address count in Brazil. The attack involved a wide range of industries,
covering government websites, communication operators, education sectors, financial institutions, and
other infrastructure. In October, the Internet Archive, along and its founder, Brewster Kahle, issued a
statement saying that the organization suffered a data breach and DDoS attack on Wednesday, leading
to the website running slowly and going offline intermittently [6]. DDoS attacks are now gradually
evolving as a precursor to Advanced Persistent Threats (APT) and ransomware attacks. Attackers
are increasingly using DDoS attacks to distract response teams from more serious security incidents.
Therefore, the purpose of DDoS attacks is no longer limited to network interference. DDoS attacks
can be used to confuse the public and mislead the focus of the defenders. Under the cover of DDoS
attacks, more covert APT attacks, data theft, malware injection, and other malicious behaviors are
implemented.

Currently, DDoS detection methods are mainly divided into four categories: the detection method
based on mathematical statistics, the detection method based on machine learning, detection methods
that simple sequential stacking deep learning models, and detection methods based on Metaheuristic
Algorithms. The detection method based on mathematical statistics [7] needs to formulate rules in
advance and has poor adaptability in the rapidly changing network environment. The detection
method based on machine learning mainly comprises feature selection and classifiers, such as Ref-
erences [8–10]. The prediction accuracy of the detection method is increased by improving the feature
selection. However, DDoS attack detection methods based on machine learning rely too much on
feature selection. As a new field of machine learning, deep learning has powerful feature extraction and
learning capabilities. For example, References [11–13] avoid excessive reliance on feature extraction,
while experiments show that it is also superior to traditional machine learning models in accuracy.
However, there is still room for improvement. In terms of datasets, acquiring DDoS attack data is
very difficult, as the publicly available datasets are obsolescent and imbalanced. In terms of models,
existing models only perform simple sequential stacking, leading to the loss of fine-grained features.
Moreover, selecting appropriate features and optimal hyperparameters for the model is challenging.
In response to these challenges, researchers have explored various algorithms for feature selection
and hyperparameter tuning to enhance the detection of DDoS attacks [14]. Therefore, in recent
years, researchers have focused on metaheuristics, introducing metaheuristics to select appropriate
features or hyperparameters. Metaheuristics are increasingly favored due to their proven ability to yield
superior solutions compared to other approaches, such as iterative methods, optimization algorithms,
or straightforward heuristics, all while requiring less computational effort [14].
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In summary, this paper proposes a novel model for autonomous detection of DDoS attacks,
termed MSCNN-BiGRU-SHA. It utilizes the ZOA to optimize the parameters of the MSCNN-
BiGRU-SHA model. The model is trained and tested based on the CICDDoS2019 dataset, and the
detection ability of the model for the untrained data set is evaluated on the newly generated DDoS
attack dataset GINKS2023 with the traditional DNN [15], CNN [16], Gated Recurrent Unit (GRU)
[17], and LSTM [18]. The MSCNN-BiGRU-SHA model uses an improved ZOA called MI-ZOA to
optimize the parameters further. Compared with the current most advanced methods, the experimental
results show that the detection ability of the MSCNN-BiGRU-SHA model based on the multi-strategy
integration zebra optimization algorithm is better than that of other models.

The main contributions are as follows:

1. A new deep learning model, named MSCNN-BiGRU-SHA, has been proposed to enhance
the detection accuracy of untrained DDoS attack datasets. The ZOA is employed to optimize the
parameters of the MSCNN-BiGRU-SHA model, aiming to search for the optimal hyperparameters
within continuous value ranges.

2. A new dataset, GINKS2023, has been created, and the CICDDoS2019 dataset and GINKS2023
dataset have preprocessing to enhance data quality. CICDDoS2019 is used for model training and
testing. The GINKS2023 dataset is used as an evaluation set to evaluate the detection performance
of the model on untrained DDoS attack datasets. Furthermore, the model is retrained using various
combinations of the CICDDoS2019 and GINKS2023 datasets to evaluate its learning capabilities.

3. An MI-ZOA is proposed to further optimize the parameters of MSCNN-BiGRU-SHA.
The models are trained using the CICDDoS2019 and GINKS2023 datasets, respectively, while
GINKS2023 and CICDDoS2019 serve as evaluation datasets to assess the detection capability of the
optimized MSCNN-BiGRU-SHA on previously unseen data.

This document is structured as follows:

Section 1 provides an introduction. Section 2 is a literature review. Section 3 describes the Zebra
Optimization Algorithm and the strategies used in the Multi-strategy Integrated Zebra Optimization
Algorithm; Section 4 explains our proposed model; Section 5 describes the dataset construction;
Section 6 evaluates the proposed model; and finally, concludes the paper.

2 Literature Review

For example, see Table 1.

Mishra et al. [7] proposed that entropy variation can reduce the computational overhead of DDoS
attacks. By comparing the entropy change of DDoS attack traffic and normal traffic, the occurrence of
attacks can be detected, and corresponding mitigation measures can be taken. Gu et al. [8] proposed
a semi-supervised weighted K-means Method using the SKM-HFS. This method combined the K-
means algorithm with the HFS to sort the traffic features to obtain a feature subset, which improved
the prediction accuracy. However, the algorithm has high complexity and poor real-time performance.
As a mainstream ensemble learning algorithm, Random Forest (RF) has the characteristics of
simplicity and strong generalization ability. Pande et al. [9] proposed a DDoS attack detection model
based on the RF, which has high accuracy for DDoS attack detection. The feasibility and efficiency
of the Random Forest Algorithm are proved. Xu et al. [10] proposed a random forest DDoS attack
detection method with feature selection. While improving the accuracy, the F1 score is also better
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than the traditional random forest detection scheme. However, machine learning-based methods for
identifying DDoS attacks rely too much on feature selection.

Table 1: DDoS attack detection studies, their methods and conclusions or results

Type Method Dataset Conclusions or results Year

Mathematical
statistics

Entropy
variation [7]

Mininet simulations
generate experimental
datasets

This paper proposes a
DDoS attack detection
and mitigation
technique based on
entropy variation, which
has low computational
overhead. Simulations
were carried out in the
Mininet simulator using
POX controllers and
open-flow switches.

2021

Machine learning SKM-HFS [8] DARPA DDoS
CICIDS2017

This method combined
the K-means algorithm
with the Hybrid Feature
Selection algorithm
(HFS) to sort the traffic
features to obtain a
feature subset, which
improved the prediction
accuracy.

2019

RF [9] KDD Cup 99
NSL-KDD

The DDoS attack
detection model, which
utilizes a Random
Forest (RF) algorithm,
exhibits high accuracy
in identifying DDoS
attacks. The feasibility
and efficiency of the
Random Forest
Algorithm are proved.

2021

GBDT_RF [10] CICIDS2017 Compared with the
traditional RF
detection scheme,
GBDT_RF is superior
to the traditional
random forest detection
scheme in recall rate
and F1 score.

2023

(Continued)
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Table 1 (continued)

Type Method Dataset Conclusions or results Year

GB [19] CICDDoS2019 Appropriate
hyperparameters can
enhance the model’s
performance. By
reducing the feature
space and tuning these
hyperparameters, this
paper has successfully
improved the accuracy
of the GB model.

2021

Deep learning DNN [11] CICIDS2017 A new DNN model
detection mechanism
that uses feedforward
backpropagation to
detect DDoS attacks
achieves better accuracy
on the CICIDS2017
dataset.

2020

DNN [12] CICDDoS2019 DNN model is used to
detect data flooding or
UDP flooding attacks
in MANET. This model
has a good detection
effect on data flooding
or UDP flooding
attacks in
CICDDoS2019 data.

2020

DNN [20] CICDDoS2019 The detection accuracy
of DDoS attacks based
on feedforward DNN is
improved on the
CICDDoS2019 dataset
However, the accuracy
of attack type is low and
there is no comparison
experiment with other
models.

2021

(Continued)



650 CMC, 2025, vol.82, no.1

Table 1 (continued)

Type Method Dataset Conclusions or results Year

SDNN [21] CICIDS2017
CICDDoS2019

This paper proposes an
innovative method for
detecting DDoS attacks
called the
encoder-stacked deep
neural network model.
This method utilizes
stacked/packed
Multilayer Perceptrons
(MLP) to achieve
accurate DDoS attack
detection.

2024

CNN-LSTM [22] CICIDS2017 Compared with SVM,
Bayesian, and RF,
CNN-LSTM has an
accuracy of 97.16% and
a recall rate of 99.1%,
which is better than
other models.

2019

CNN [13] CICIDS2017 Compared with RNN,
LSTM, and
Reinforcement
Learning (RL), the
CNN framework has
excellent detection
accuracy and low
computational cost.

2020

LSTM [23] CICDDoS2019 LSTM detects
distributed reflection
denial of service with
high accuracy.

2020

LSTM, GRU [24] CICIDS2017
CICDDoS2019

In this paper, RNN,
LSTM, and GRU
models are used for
training and validation
on the latest
CICDDoS2019 dataset
and comparative
analysis with the
CICIDS2017 dataset.

2023

(Continued)



CMC, 2025, vol.82, no.1 651

Table 1 (continued)

Type Method Dataset Conclusions or results Year

Swarm intelligence
optimization

CSA-RBP [25] NSL-KDD This research presents a
machine learning-based
approach to detect
application-layer
distributed denial of
service (App-DDoS)
attacks. This approach
is achieved by
combining Radial Basis
Function (RBF) neural
network and Cuckoo
Search Algorithm
(CSA).

2022

BIWSO3 [26] CICIDS2017, Bot-IoT
NSL-KDD,
CICDDOS2019,
CIRA-CICDosHBrw-
2020U, UNSW-NB15,
CIC-MalMem-2022,
CSE-CICIDS2018
Intrusion Detection
2018, Phishing
Legimate, LUFlow
Network,
KDDCup-99

The accuracy of
BIWSO3 is higher than
that of models KNN,
NB, RF, and DT on
multiple datasets.

2023

ISHO-HBA and
SE-ResNet152 [27]

UNSW-NB15
CSE-CICIDS2018
CICDDoS2019

This paper uses
Improved Spotted
Hyena Optimization
algorithm (ISHO) and
Honey Badger
Algorithm (HBA),
Squeeze-and-Excitation
network (SE) and a
SE-ResNet152 to
improve the detection
performance.

2024

In contrast, simple sequential stacking of deep learning models for detection methods can not only
extract complex nonlinear relationships. The model itself can not only perform feature extraction but
also classify the data [28]. Asad et al. [11] proposed a novel detection mechanism based on DNN. This
mechanism uses feedforward backpropagation to accurately discover a variety of application-layer
DDoS attacks. It is accurate accuracy on the CICIDS2017 dataset [29], but this method only targets



652 CMC, 2025, vol.82, no.1

application-layer DDoS attacks. Sbai et al. [12] introduced a DNN model to detect data flooding
or User Datagram Protocol (UDP) flooding attacks in MANETs, demonstrating effective detection
performance on these types of attacks within the CICDDoS2019 dataset [30]. However, the authors
have only worked on data flooding or UDP flooding attacks in the CICDDoS2019 dataset. There
is a lack of comprehensiveness for other types of attacks. Haider et al. [13] proposed an integrated
framework of deep CNN for efficiently detecting of DDoS attacks in SDN. Compared to existing
detection methods, the accuracy of the CICIDS2017 dataset was improved. Shurman et al. [23]
employed LSTM to detect Distributed Reflection Denial of Service attacks, achieving high accuracy.
However, the evaluated performance of the model only uses the reflection-based CICDDoS2019
dataset, which is unclear for other types of DDoS attack detection. The types of DDoS attacks
are variable, and it is not enough to detect only one type of DDoS attack. Roopak et al. [22]
proposed a hybrid CNN-LSTM model, which achieved 97.16% accuracy and 99.1% recall compared
to Supported Vector Machine (SVM), Bayesian, and RF. However, the model was trained on the
CICIDS2017 dataset, containing incomplete attacks. Cil et al. [20] proposed a feedforward-based
deep neural network to detect DDoS attacks, and the accuracy is improved on the CICDDoS2019
dataset. The classification of attack types is not very precise, and there is no comparison experiment
with other models. Ramzan et al. [24] proposed a new LSTM and GRU model architecture with
better accuracy and efficiency on the CICDDoS2019 dataset. Benmohamed et al. [21] proposed
stacked/packed Multilayer Perceptron (MLP) to achieve accurate DDoS attack detection, but the
algorithm is too complex, and the model training is time-consuming. Batchu et al. [19] found that
suitable hyperparameters can improve the performance of models. Batchu et al. [19] improved the
model performance by reducing the feature space and hyper-parameter tuning, resulting in a Gradient
Boosting (GB) model accuracy of 99.97%. However, the effectiveness of this method has not been
validated on deep learning models, as experiments were limited to machine learning models.

Metaheuristic algorithms are a method to realize optimization by simulating the behavior of
social animals [31]. It usually possesses characteristics such as strong global optimization ability,
strong adaptability, simple structure, strong parallelism, and strong robustness. In recent years,
metaheuristic algorithms have become a reliable method to solve a variety of complex optimization
problems [31]. Its applications involve almost all fields of science, engineering, and industry [31].
Beitollahi et al. [25] suggested a method for detecting application layer DDoS attacks utilizing a
Cuckoo Search Algorithm-trained Radial Basis Function. Its accuracy is better than common machine
learning models. However, it only aims at application-layer DDoS attacks. Alawad et al. [26] proposed
a binary improved whale algorithm for an intrusion detection system. The improved whale algorithm
was used to solve the feature selection problem. Saikam et al. [27] proposed an ISHO and a HBA
to address the issues of data imbalance and overfitting. By utilizing SE-ResNet52 to eliminate less
significant features and employing a list of decision trees at each iterative stage to monitor the
classifier’s performance, overfitting is prevented. This method demonstrates favorable performance on
the UNSW-NB15, CSE-CICIDS2018, and CICIDS2019 datasets compared to traditional algorithms
such as Recurrent Neural Network (KNN), RF, and SVM. Although the DDoS attack detection
technology has innovated, the dataset quality and model performance still to be improved.

3 Zebra Optimization Algorithm and Multi-Strategy Integrated Zebra Optimization Algorithm
3.1 Zebra Optimization Algorithm

The ZOA [32] is a novel approach within the field of Meta-Heuristic Algorithms. Its implementa-
tion is relatively straightforward, requiring minimal complex parameter tuning [32]. ZOA is suitable
for a wide range of optimization problems [32]. Each zebra symbolizes a possible solution to a problem,



CMC, 2025, vol.82, no.1 653

and the domain in which the zebra is located outlines the search space for that problem. The Zebra
Optimization Algorithm comprises two processes: exploration and exploitation.

3.1.1 Initialization

During the initialization phase, the specific numerical value of the decision variables is determined
by the position of each zebra in the search space. Therefore, each zebra belonging to the ZOA member
can be modeled as a vector, with each element of the vector representing the numerical value of the
problem variable. A matrix can mathematically represent the total number of zebras. In the search
space, the initial position of each zebra is randomly assigned. Each zebra corresponds to a potential
solution to the optimization problem. Thus, the objective function is evaluated using the values
proposed by each zebra for the problem’s variables. The representation of the ZOA population matrix
is shown in Eq. (1), and the outcomes from the objective function are depicted as an array in Eq. (2).

X =

⎡⎢⎢⎢⎢⎢⎣
X1

...
Xi

...
XN

⎤⎥⎥⎥⎥⎥⎦
N×m

=

⎡⎢⎢⎢⎢⎢⎣
x1,1 . . . x1,j . . . x1,m

...
. . .

...
. . .

...
xi,1 . . . xi,j . . . xi,m

...
. . .

...
. . .

...
xN,1 . . . xN,j . . . xN,m

⎤⎥⎥⎥⎥⎥⎦
N×m

(1)

F =

⎡⎢⎢⎢⎢⎢⎣
F1

...
Fi

...
FN

⎤⎥⎥⎥⎥⎥⎦
N×1

=

⎡⎢⎢⎢⎢⎢⎣
F (X1)

...
F (Xi)

...
F (XN)

⎤⎥⎥⎥⎥⎥⎦
N×1

(2)

In this context, X denotes the population of zebras, where Xi denotes the ith individual zebra,
xi,j corresponds to the value of the jth problem variable associated with the ith zebra. The total count
of members within the population (zebras) is N, while m signifies the number of decision variables
involved. F is the objective function value vector, with Fi representing the objective function value of
the ith zebra.

3.1.2 Phase 1: Foraging Behavior (Exploration)

The exploration phase of ZOA is inspired by zebras’ behavior when searching for food. Zebras
with better objective function values are considered as leaders and guiding the remaining members to
their positions in the population. The positions of zebras during the foraging phase are represented
mathematically through Eqs. (3) and (4).

xnew,P1
i,j = xi,j + r · (

PZj − I · xi,j

)
(3)

Xi =
{

X new,P1
i , Fnew,P1

i < Fi;
Xi, else,

(4)

where X new,P1
i denotes the updated state of the ith zebra in first phase, xnew,P1

i,j represents its value in the
jth dimension, Fnew,P1

i corresponds to its objective function value. PZ refers to the pioneer zebra, the
best-performing member, with PZj indicating the jth dimension. The variable r is a random number
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in interval [0, 1], I = round (1 + rand), where rand is also a random value from [0, 1]. Consequently, I
can take values in the set {1, 2}. If the parameter I = 2, it implies that there will be a greater degree of
variation in the population’s movement.

3.1.3 Phase 2: Predator-Targeted Defense (Exploitation)

In the second phase, the ZOA imitates the defense strategies of zebras against predators to update
the distribution positions of ZOA population members within the search space. In the concept of
the ZOA, zebras have two equal-probability reactions when facing an attack: one is to take evasive
action when a lion launches an attack, and the other is to choose to counterattack when facing other
predators.

In the first strategy, when zebras are attacked by lions, they will choose to dodge nearby and avoid
the lion’s attack. Thus, this strategy can be mathematically represented using the model S1 in Eq. (5).
In the second strategy, when a zebra encounters an attack from other predators, other members of the
zebra group will move closer to the attacked companion and attempt to form a defensive line to deter
or confuse the opponent. This zebra strategy is mathematically represented by the model S2 in Eq. (5).
When updating the zebras’ positions, a new position is accepted if the objective function produces a
better value at that point. This criterion for updating positions is formulated by Eq. (6).

xnew,P2
i,j =

⎧⎨⎩S1 : xi,j + R · (2r − 1) ·
(

1 − t
T

)
· xi,j, Ps ≤ 0.5;

S2 : xi,j + r · (
AZj − I − xi,j

)
, else,

(5)

Xi =
{

X new,P2
i , Fnew,P2

i < Fi;
Xi, else,

(6)

where X new,P2
i represents the new state of the ith zebra in the second phase, xnew,P2

i,j denotes its value in
the jth dimension, Fnew,P2

i corresponds to its objective function value, t is the current iteration, T is the
maximum number of iterations, R is a constant set to 0.01. Ps denotes the probability, within the range
of [0, 1], of opting for one of the two strategies that are randomly selected. AZ refers to the status of
the zebra that has been targeted for an attack, and AZj signifies the value in the jth dimension of this
attacked zebra.

3.2 Multi-Strategy Integrated Zebra Optimization Algorithm

The ZOA algorithm has the characteristics of simple structure, easy implementation, and strong
optimization ability. It has achieved good test results in engineering design problems such as tension/-
compression spring design optimization, welding design optimization, reducer design optimization,
and pressure vessel design optimization [32]. However, the ZOA also has problems, such as poor
convergence accuracy and being prone to falling into local optimums.

This paper proposes the Multi-strategy Integrated Zebra Optimization Algorithm (MI-ZOA) to
solve the problem of the ZOA algorithm being prone to falling into local optimums, improve its global
exploration ability, and enhance its performance in solving complex problems.

3.2.1 Tent Chaotic Map

The ZOA uses random numbers as the initial population information, which is large and random
and makes it difficult to retain the diversity of the population. As a result, the population gathers in
some areas of the search space and cannot fully explore the whole search space. The Tent Chaotic
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Map is a simple one-dimensional nonlinear dynamic system that exhibits chaotic behavior. The x-
axis represents the control parameter u of the Tent map, which determines the shape of the mapping
function, and the y-axis represents the values of the state variable x produced by the iteration of the
Tent map at each fixed u value. In the long term, the points on the y-axis show the steady state or
periodic behavior that x may be achieved. When the control parameter u is large enough to exhibit
chaotic behavior, it is called a Tent chaotic map. In this case, the points on the y-axis densely fill
certain areas, demonstrating irregular behavior. As shown in Fig. 1, Sanliang et al. have demonstrated
that the Tent Chaotic Map can generate relatively uniform initial values within the interval [0, 1] while
also improving the optimization speed of algorithms. Therefore, this paper adds the Tent Chaotic
Map to the ZOA population initialization stage to increase the population’s diversity and improve the
algorithm’s exploration ability in the global search stage. The specific equations are (7) and (8).

TentMap (xn+1) =
{ xn

a
, 0 < xn < a

(1 − xn)/(1 − a), a < xn ≤ 1
(7)

Xi =

⎡⎢⎢⎣
xi1

xi2

...
xin

⎤⎥⎥⎦ , xij = TentMap
(
xij−1

)
, j = 1, 2, . . . , n (8)

Figure 1: Tent map

Xi represents the position of the ith individual in the population, and xij represents the position of
the jth dimension of the ith individual. TentMap (xn+1) is a mapping function. For each individual Xi

in the population, by independently applying the Tent map to each dimension, an initial position for
each individual in the population can be generated in each dimension. This allows for the creation of
a diverse initial population with a good foundation for exploration.

3.2.2 Lévy Flight Strategy

The ZOA algorithm focuses on the defense phase against predators. As a result, the new variables
identified by ZOA often converge to local values, making the algorithm more suitable for addressing
smaller and less complex problems. Therefore, the Lévy Flight Strategy is added to the ZOA in
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the foraging behavior (exploration) and predator defense (exploitation) phases. This can enhance
the ability of the algorithm to optimize nonlinear functions and jump out of local optimal. Lévy
flight, based on the Ryan distribution, is commonly employed to improve optimization algorithms.
Its formula is shown in Eq. (9).

σ =
Γ (1 + β) sin

(
πβ

2

)
[
Γ

(
1 + β

2

)
β2

β−1
2

] 1
β

(9)

Among them, σ is a proportional factor used to control the step size in Lévy flight. This value
is determined based on the characteristics of the distribution, ensuring that the step size of the Lévy
flight has an appropriate proportion. Γ is the Gamma function, a function that extends the concept
of factorial to all complex and real numbers.

The position formula of the ZOA with the Lévy Flight Strategy introduced are as follows (Eqs. (10)
and (11)):

xnew,P1
i,j = xnew,P1

i,j + Lévy (dim) (10)

xnew,P2
i,j = xnew,P2

i,j + Lévy (dim) (11)

where xnew,P2
i,j represents its jth dimension value, and dim is the initialized dimension.

3.2.3 Random Walk Strategy

The Random Walk Strategy is a mathematical model. It characterizes the random trajectory of an
object moving continuously over time without a specific direction or endpoint. For multidimensional
spaces, each random walk step can be carried out independently in multiple directions. In order to
enhance the ZOA’s ability to escape local optima more efficiently and avoid premature convergence.
The ZOA adds a Random Walk Strategy after executing the foraging behavior (exploration) and
predator defense (exploitation) phases at each iteration. That is, the optimal position of each iteration
is perturbed, which is convenient for the algorithm to jump out of the local optimal solution to explore
new areas and enhance the global search ability. The pseudocode for the Random Walk Strategy is
shown in Algorithm 1.

Algorithm 1: Pseudo-code for random walk initialization
Start Random Walk Initialization.
1.Input: Dimension (dim), Maximum Iterations (itermax), Lower Bound (lb), Upper Bound (ub), Initial
Position (position), Current Iteration (itercurrent).
2. Set Coefficient I to 1.
3. Adjust I based on the progress of iterations:

a. If itercurrent, set I = 1 + 100 ∗
(

itercurrent

itermax

)
.

b. If itercurrent >
itermax

2
, set I = 1 + 1000 ∗

(
itercurrent

itermax

)
.

(Continued)
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Algorithm 1 (continued)

c. If itercurrent > 3 ∗ itermax

4
, set I = 1 + 10000 ∗

(
itercurrent

itermax

)
.

d. If itercurrent > 0.9 ∗ itermax, set I = 1 + 100000 ∗
(

itercurrent

itermax

)
.

e. If itercurrent > 0.95 ∗ itermax, set I = 1 + 1000000 ∗
(

itercurrent

itermax

)
.

4. Update search range based on I :
a. Divide lb and ub by I .
b. Transpose lb and ub.

5. Shift range towards the target:
a. If random number < 0.5, add position to lb, otherwise, subtract lb from position.
b. If random number >= 0.5, add position to ub, otherwise, subtract ub from position.

6. Initialize output array out to a zero matrix of size [1, dim].
7. For each dimension i in dim:

a. Create an array A of size [itermax, 1] with random binary values mapped to [−1, 1].
b. Calculate the cumulative sum of A transposed (X ).
c. Normalize X based on the bounds [a, b, c, d] which correspond to the min and max of A and the

updated bounds lb and ub.
d. Assign the value of X at itercurrent to the ith dimension of out.

8. Return the modified position(out).
End Random Walk Initialization.

3.2.4 The Detail of Our Proposed MI-ZOA

This paper proposes an improved MI-ZOA by combining the three strategies introduced in
Sections 3.2.1 to 3.2.3 with ZOA. In the population initialization phase, the MI-ZOA algorithm
adds the Tent Chaotic Map introduced in Section 3.2.1. In the foraging behavior (exploration) and
the predator defense (exploitation) phases, the MI-ZOA algorithm adds the Lévy Flight Strategy
of Section 3.2.2. During the algorithm iteration, the MI-ZOA adds the Random Walk Strategy of
Section 3.2.3. The pseudocode is shown in Algorithm 2. The flowchart is for one example, see Fig. 2.

Algorithm 2: Pseudo-code for MI-ZOA
Start ZOA.
1. Input: Provide the necessary information related to the optimization problem.
2. Set Parameters: Define the number of iterations (T) and the population size (N) of Zebras.
3. Initialization: Use the Tent map to initialize the positions of the zebra population.
4. Loop: For each iteration t = 1 to T :
5. Update the pioneer zebra (PZ).
6. For each Zebra i = 1 to N:
7. Phase 1: Foraging Behavior:
8. Calculate the new state of the ith zebra using Eq. (3).
9. Update the position of the ith zebra using Eq. (4).
10. Phase 2: Defense Strategies Against Predators:

(Continued)
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Algorithm 2 (continued)
11. If Ps < 0.5, assign a random value to Ps = rand.
12. Strategy 1: Defending Against Lion:
13. Calculate new status of the ith zebra using mode S1 in (5).
14. Apply Lévy flight strategy.
15. Else:
16. Strategy 2: Defending Against Other Predators:
17. Calculate new status of the ith zebra using mode S2 in (5).
18. Apply Lévy flight strategy.
19. End if.
20. Update the ith zebra using (6).
21. End for each zebra i.
22. Apply Random Walk strategy.
23. Record the best solution found so far.
24. End for each iteration t.
25. Output: Provide the optimal solution achieved by the ZOA for the specified optimization problem
End ZOA.

4 Deep Learning Model Framework
4.1 Multi-Scale Convolutional Neural Network

The multi-scale CNN performs feature extraction on the previous input in parallel through
convolutional layers with different convolutional scales, extracting visual information in different
scales. The multi-scale convolutional neural network has achieved excellent results in fields such as
medicine, remote sensing, and chemistry.

However, it has been less applied in the field of network security. Therefore, a Multi-Scale
Convolutional Neural Network (MSCNN) is designed in this paper to extract features from input data
at multiple scales. Using convolution scales of 7, 5 and 3, MSCNN performs convolution operations on
multiple scales and can capture feature information from coarse-grained to fine-grained. This allows
the model to detect both macro-level patterns of DDoS attacks and identify subtle abnormal patterns,
thereby enhancing the robustness of the model.

4.2 Bidirectional Gated Recurrent Units

GRU is a variant of Recurrent Neural Networks. They aim to solve the vanishing gradient problem
of traditional RNNs on long sequences. GRUs introduce two types of gate mechanisms: the Update
Gate and the Reset Gate. These two gates control the flow of state information, allowing the model to
better capture long-distance dependencies in the sequence. The computation formulas for each part
are as follows:

zt = σ (Wz × [ht−1, xt] + bz) (12)

rt = σ (Wr × [ht−1, xt] + br) (13)

ĥt = tanh (W × [rt � ht−1, xt] + b) (14)

ht = (1 − zt) � ht−1 + zt � ĥ (15)

where xt represents the input data at time step t; ht−1 denotes the hidden state from the previous time
step t − 1; zt is the update gate’s activation value; rt is the reset gate’s activation value; ĥt corresponds
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to the candidate hidden state; ht refers to the final hidden state at time step t; Wz, Wr, W are the
corresponding weight matrices; bz, br, b are the corresponding bias vectors; � represents element-wise
multiplication (Hadamard product).

Figure 2: The flowchart of MI-ZOA
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Bidirectional Gated Recurrent Units (BiGRU) is a combination of bidirectional RNNs and GRUs.
The idea behind using a bidirectional structure is to capture both forward and backward information
in the input sequence.

In this paper, a BiGRU is added after the MSCNN. BiGRU uses two GRU layers to extract the
features of the time dimension of the input data from the forward and backward respectively. At
the same time, BiGRU learns long-distance dependence information through structures such as the
update gate and reset gate to avoid the information loss problem of unidirectional GRU. The output
bidirectional sequential feature vector is [H0, H1, . . . , Hn].

4.3 Single Headed Attention

A language model architecture called Single Headed Attention-RNN (SHA-RNN) was proposed,
which outperforms models like Transformers in byte-level compression tasks. It uses a Single Attention
Head, reducing memory usage, avoiding large matrix multiplications within each time step, and
speeding up training and inference time.

Therefore, this paper adds a Single Headed Attention after the BiGRU to enhance its ability to
focus on key features in long input sequences. It also reduces memory pressure. For one example, see
Fig. 3 below, the Single Headed Attention receives the bidirectional temporal features [H0, H1, . . . , Hn]
outputted by the BiGRU. These bidirectional temporal features are assigned to Q (query), K (key),
and V (value). Then, the attention scores QKT are computed. These scores are converted to weights
multiplied by V by the softmax function to input the Boom layer. In the Boom layer, the input tensor’s
dimensions are first expanded, then split and summed. The calculation formula for the attention
mechanism is as follows:

Attention Scoreij = QiKT
j (16)

WAij = exp
(
Attention Scoreij

)∑
k exp (Attention Scoreik)

(17)

Outputi =
∑

j

WAij × Vj (18)

Output = [Output1, Output2, · · · , Outputn] (19)

Figure 3: Single headed attention structure diagram
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For one example, see Fig. 4, the model consists of four modules, as shown in Fig. 3, the MSCNN
module, the BiGRU module, the Single Headed Attention (SHA) module, and the output module.
The data is input into the MSCNN module, where parallel multi-scale convolutional layers and
pooling layers are utilized to extract spatial features from the input data. Simultaneously, weight
sharing is utilized to decrease the total number of parameters and reduce the model’s complexity.
The BiGRU module utilizes two GRU layers to extract temporal dimension features from the data
in forward and backward directions. Additionally, the update and reset gates enable the model to
learn long-distance dependencies more effectively. In this way, the unidirectional GRU information
loss problem is avoided. The DDoS attack has a long time span, and the recurrent neural network
will lose information and have a low ability to distinguish important features when dealing with
information that has a long time to transfer. Therefore, adding a Single Headed Attention module not
only improves the model’s attention to the key features but also reduces the influence of low correlation
features on the detection results. For one example, see Table 2, the model framework details are shown
in Table 2.

Figure 4: MSCNN-BiGRU-SHA model structure

Table 2: MSCNN-BiGRU-SHA model framework

Layer Type Parameter description

Inputs Input input_shape
conv1, conv2, conv3 Conv1D filters = Conv_filter, activation = ‘relu’, padding = ‘same’
pool1, pool2, pool3 MaxPooling1D pool_size = 2
merged Add (pool1, pool2, pool3)
context_vector SHA_BiGRU units = GRU_filter
flattened Flatten
drop Dropout rate = 0.5
dense Dense units = 10, activation = ‘relu’
outputs Dense units = 1, activation = ‘sigmoid’
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4.4 Parameter Setting

Deep learning models contain hyperparameters that need to be adjusted, and these hyperparame-
ters affect the model’s performance. Sometimes, the hyperparameter selection is even more important
than the model itself. Common hyperparameters selection methods include random search, grid
search, and Bayesian optimization. However, the hyperparameter range searched by these methods is
discrete, and the problem is that the optimal parameters are missing. The metaheuristic optimization
algorithm can find optimal parameter values on continuous spaces, so it has been widely used in
hyperparameter optimization of models in recent years. The ZOA is a new approach within the
field of Metaheuristic Algorithms. Its implementation is relatively straightforward, requiring minimal
complex parameter tuning. Therefore, this paper utilizes the ZOA to select Conv_filter and GRU_unit.
Where Conv_filter refers to the convolutional filters, GRU_unit refers to the number of GRU units in
the BiGRU layer.

For one example, see Fig. 5. The flowchart for hyperparameter selection of the MSCNN-BiGRU-
SHA model based on the ZOA is shown in Fig. 5. After initializing the ZOA parameters, the Loss value
of the MSCNN-BiGRU-SHA model is used as the fitness of the ZOA. It is convenient for ZOA to
search the optimal hyper-parameters Conv_filter and GRU_unit of the MSCNN-BiGRU-SHA model.
After generating the initial optimal fitness, Conv_filter and GRU_unit, each population individual
performs foraging behavior and defense behavior against predators to explore the best fitness in the
given space. Then, update the fitness, Conv_filter and GRU_unit. The updated individual fitness is
reordered to compare the optimal fitness with the initial optimal fitness, and the two are selected
as the best. The Conv_filter and GRU_unit corresponding to the optimal fitness are the optimal
hyperparameters.

5 Dataset Construction

When applying existing classification models, the dataset is seriously unbalanced. In this paper,
the CICDDoSS2019 dataset [21] is oversampled with attack data to obtain the CICDDoS2019
dataset which consists of CICDDoS2019, benign, DoS, and DDoS flows. The GINKS2023 dataset
was collected using independent methods and tools. Therefore, to assess the model’s detection
capabilities on untrained DDoS attack datasets, this paper generates the GINKS2023 dataset for
model evaluation.

5.1 GINKS2023 Dataset

For one example, Fig. 6 illustrates a simple attack diagram. While capturing new data, a DDoS
attack script is written using the Python Scapy module. Host H8 runs Wireshark, while H3 runs Cobalt
Strike to control H4–H7 to execute the Python script. Multiple IP addresses are spoofed to carry out
TCP, UDP and HTTP flood attacks against H8. However, the script does not set the range of the
number of packets, packet size, window size, and port number. This holds in a really life environment
where the attacker can change the attack mode frequently. At the same time, hosts H1 and H2 send
legitimate requests to host H8. The generated ‘.pcap’ raw data is processed using the CICFlowMeter
[33] traffic analyzer and converter, converting the captured data into ‘.csv’ files.
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Figure 5: Flowchart of parameter selection for the MSCNN-BiGRU-SHA model based on ZOA

5.2 Dataset Preprocessing

5.2.1 Removing Unnecessary Features

Due to the differences in the performance of these feature values in different networks and the high
similarity between attackers’ and normal users’ IP addresses, the model may rely too much on these
specific features during training. The CICDDoS2019 dataset and the GINKS2023 dataset contain
88 features. Training a model using socket-related features can lead to overfitting [15]. In this paper,
we remove all unnecessary socket-related features such as ‘Unnamed: 0’, ‘Flow ID’, ‘Destination IP’,
‘Destination Port’, ‘SimillarHTTP’, ‘Source IP’, ‘Source Port’, ‘Timestamp’, ‘Inbound’, ‘Fwd Header
Length.1’ [15]. To make the model training and performance evaluation more representative and
robust, we have ensured 78 features. The feature set can not only improve the model’s generalization
ability but also help it better adapt to the data differences in different network environments, which
helps improve the practicability and transferability of the model.
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Figure 6: Schematic diagram of DDoS attack on new data

5.2.2 Data Clearing

Missing data or noise impacts the accuracy of the model. So, we replace “Infinity” in our data with
0. Type conversion for columns such as “Flow Packets/s”. Part of the data is filled with data, data label
encoding as well as temporal hashing processing. Such cleaning operations will help improve the data’s
accuracy and usability, making it more suitable for model training and testing. At the same time, in
order to speed up the model reading and convergence speed, “max-min” normalization is used to map
the data to [−1, 1], Xstd refers to the normalized eigenvalue, X refers to the original eigenvalue, Xmin

refers to the minimum value of the eigenvalue, Xmax refers to the maximum value of the eigenvalue, and
the mapping function is shown in Eq. (20).

Xstd = X − Xmin

Xmax − Xmin

(20)

For example, see Tables 3 and 4. The tables provide a detailed analysis of the number and
percentage of benign data and attack data instances in the CICDDoS2019 dataset and GINKS2023
dataset in this paper.

Table 3: Data statistics of CICDDOS2019

Class Number of instances Percentage (%)

BENIGN 220,717 55.59
DrDoS_DNS 17,010 4.28
DrDoS_LDAP 8060 2.03

(Continued)
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Table 3 (continued)

Class Number of instances Percentage (%)

DrDoS_MSSQL 10,030 2.53
DrDoS_NTP 71,825 18.09
DrDoS_NetBIOS 8535 2.15
DrDoS_SNMP 7535 1.90
DrDoS_SSDP 3815 0.96
DrDoS_UDP 10,785 2.72
Syn 1960 0.49
TFTP 18,260 4.60
UDP-lag 18,501 4.66
WebDDoS 24 0.01
Total 397,057

Table 4: Data statistics of GINKS2023

Class Number of instances Percentage (%)

BENIGN 50761 17.89
DDoS attack 233,022 82.11
Total 283,783

6 Experimental Setup and Model Evaluation

We use TensorFlow for model building, and the model is set with three parameters: Conv_filter,
GRU_unit and input_shape. Where Conv_filter refers to the number of convolutional filters,
GRU_unit refers to the number of GRU units in the BiGRU layer, and input_shape refers to the
shape of the input data. Through the ZOA algorithm, Conv_filter is selected as 7 and GRU_unit as
57. Through the MI-ZOA algorithm, Conv_filter is selected as 4 and GRU_unit as 15. The training
batch is set to 256 and the learning rate is set to 0.001 for all models. To further prevent overfitting,
we stop training when the error between adjacent epochs is less than 0.01 or when the upper limit on
the number of epochs is reached. For one example, see Table 5.

Table 5: MSCNN-BiGRU-SHA parameters

Parameters MSCNN-BiGRU-SHA

Activator ReLu, Sigmoid
Optimizer Adam
Learning rate 0.001
Loss Binary cross entropy
Conv_filter 7
GRU_unit 57

(Continued)
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Table 5 (continued)

Parameters MSCNN-BiGRU-SHA

Batch size 256
Epochs 50

Experimental hardware: a server with RTX 3080 Ti (12 GB) GPU, 12 vCPU Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40 GHz. A computer with 16 GB RAM, 12th Gen Intel(R) Core (TM) i7-
12700 2.10 GHz running 64-bit Microsoft Windows® 11 operating system.

Software Environment: Python 3.8 Ubuntu20.04, CICFlowmeter-V4.0, TensorFlow 2.9.0, Cuda
11.2.

6.1 Evaluation Metrics

In this paper, accuracy, precision, recall, and F1 score are used to evaluate the model classification
performance. The calculation formula is shown in Eqs. (21)–(24).

Accuracy = TP + TN
TP + TN + FP + FN

(21)

Precision = TP
TP + FP

(22)

Recall = TP
TP + FN

(23)

F1 Score = 2 × Precision × Recall
Precision + Recall

(24)

TP (True Positives) represents the number of instances accurately identified as positive, while TN
(True Negatives) refers to those correctly classified as negative. FP (False Positives) counts the instances
mistakenly identified as positive, and FN (False Negatives) refers to those incorrectly classified as
negative. A higher value for the evaluation metric indicates better classification performance.

6.2 Training Models

In order to test whether the model is effective on the untrained DDoS attack dataset, the DNN
[15], CNN [16], GRU [17], LSTM [18], and MSCNN-BiGRU-SHA (MBS) models are trained and
tested on the CICDDoS2019 dataset. After each training session, the model’s performance is evaluated
on the GINKS2023 dataset. Data 1 is the data listed in Table 2. Data 2, for the GINKS2023 dataset
in Table 3, random oversampling is performed with the ratio set to balance the benign data and attack
data to 1:1. Data 3, the data collection of the CICDDoS2019 dataset where the ratio of benign data
to attack data is close to 1:1, and the GINKS2023 dataset where the ratio of benign data to attack
data is close to 1:1. Data 4, the data listed in Table 4. Data 5, the data collection of the CICDDoS2019
dataset, where the ratio of benign data to attack data is close to 1:1, and the GINKS2023 dataset,
where the ratio of benign data to attack data is close to 2:8. For one example, see Table 6. Detailed
data descriptions are provided in Table 6.
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Table 6: Description of the evaluation model performance dataset

Data Description Total Benign data (%) Attack data (%)

Data 1 CICDDoS2019 397,057 55.59 44.41
Data 2 Part of GINKS2023 121,793 41.62 58.38
Data 3 Data 1 + Data 2 518,850 52.31 47.69
Data 4 Part of GINKS2023 283,783 17.89 82.11
Data 5 Data 1 + Data 4 680,840 39.87 60.13

6.3 Experimental Results and Analysis

The datasets are divided into 80% training data and 20% test data using the ‘train_test_split’
function from sklearn. ‘Test’ data and ‘evaluation’ data refer to two distinct datasets used for testing
and assessing the models’ performance. For one example, see Tables 7 and 8.

Table 7: Test results of five models

Experiment Train and test
dataset

Evaluation
dataset

Test dataset accuracy (%)

DNN CNN LSTM GRU MBS

Case 1 Data 1 Data 2 97.83 98.32 98.91 99.31 99.71
Case 2 Data 2 Data 1 95.17 94.40 99.30 99.16 99.59
Case 3 Data 3 Data 1 96.65 97.91 99.70 99.39 99.78

Data 2
Case 4 Data 5 Data 1 95.27 98.02 99.61 99.58 99.70

Data 2

Table 8: Evaluation results of five models

Experiment Train and test
dataset

Evaluation
dataset

Evaluation dataset accuracy (%)

DNN CNN LSTM GRU MBS

Case 1 Data 1 Data 2 64.36 63.03 69.82 83.33 88.05
Case 2 Data 2 Data 1 58.84 67.70 76.64 77.42 84.50
Case 3 Data 3 Data 1 97.82 92.56 99.67 99.30 99.74

Data 2 93.12 94.51 99.54 99.36 99.55
Case 4 Data 5 Data 1 94.74 84.55 99.59 99.39 99.67

Data 2 93.89 95.75 99.55 98.95 99.68

For Case 1, training tests with the Data 1 dataset and evaluating model detection capabilities
on the Data 2 dataset. The MBS test accuracy is 99.87%, the evaluation accuracy is 88.05%, the GRU
accuracy is 99.31%, and the evaluation accuracy is 83.33%. The LSTM test accuracy is 98.91%, and the
evaluation accuracy is 69.82%. The CNN test accuracy is 98.32%, the evaluation accuracy is 63.03%.
The DNN test accuracy is only 97.83%, and the assessment accuracy is 64.36%. The accuracy of all
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five models on the evaluation dataset is lower than the test accuracy, indicating that the models are
not as accurate as the known dataset for the untrained DDoS attack dataset. However, MBS achieves
88.05% accuracy for the untrained DDoS attack dataset compared to the other models.

For Case 2, training tests with the Data 2 dataset and evaluating model detection capabilities on
the Data 1 dataset. The MBS test accuracy is 99.58%, and the evaluation accuracy is 84.50%. The GRU
test accuracy is 99.16%, and the evaluation accuracy is 77.42%. The LSTM test accuracy is 99.30%,
and the evaluation accuracy is 76.64%. The CNN test accuracy is only 94.40%, the evaluation accuracy
is 67.70%. The DNN test accuracy is 95.17%, the evaluation accuracy is 58.84%. The accuracy of all
five models on the evaluation dataset is lower than the test accuracy, indicating that the models are
not as accurate as the known dataset for the untrained DDoS attack dataset. However, MBS achieves
84.50% accuracy for the untrained DDoS attack dataset compared to the other models.

For Case 3, when a partial evaluation set is added to the training set, the DNN Data 1
evaluation accuracy is 97.82%, and the DNN Data 2 evaluation accuracy is 93.12%. The CNN Data
1 evaluation accuracy is 92.56%, and the CNN Data 2 evaluation accuracy is 94.51%. LSTM Data1
evaluation accuracy is 99.67%, and LSTM Data 2 evaluation accuracy is 99.54%. Moreover, the GRU
Data 1 evaluation accuracy is 99.30%, the GRU Data 2 evaluation accuracy is 99.36%. The MBS Data
1 evaluation accuracy is 99.74%, and the MBS Data 2 evaluation accuracy is 99.55% Compared to the
Case 1 and Case 2 experimental results, five models have better accuracy than Case 1 and Case 2 for
the same evaluation dataset. When the evaluation data is added to the training set to train the models,
the models can recognize the attack patterns in the evaluation dataset, which results in high evaluation
accuracy.

For Case 4, when the evaluation dataset without data balancing processing is added to the training
set, the accuracy of the MBS model on the Data 1 evaluation set is 99.67%. The accuracy of the Data
2 evaluation set is 99.68%, which is 0.07% lower than that of the MBS model Data 1 evaluation set in
Case 3, and 0.13% higher than that of the Data 2 evaluation set. The accuracy of the GRU model on
the Data 1 evaluation set is 99.39%, and the accuracy of the Data 2 evaluation set is 98.95%, which is
0.09% higher than that of the GRU model Data 1 evaluation in Case 3, and 0.41% lower than that of
the Data 2 evaluation set. The accuracy of the LSTM Data 1 evaluation set is 99.59%, and the accuracy
of the Data 2 evaluation set is 99.55%, which is 0.08% lower than that of the Case 3 Data 1 evaluation
set and 0.01% higher than that of the Case 3 Data 2 evaluation set. The accuracy of the CNN Data
1 evaluation set is 84.55%, and the accuracy of the Data 2 evaluation set is 95.75%. Compared with
Case 3, the accuracy of the Data 1 evaluation set is reduced by 8.01%. The accuracy of the DNN
Data1 evaluation set is 94.74%, which is 3.08% lower than that of the Case 3 Data 1 evaluation set.
The accuracy of the DNN Data 2 evaluation set is 93.89%, which is 0.77% higher than that of Case 3
Data 2. Due to the unbalanced proportion of benign data and attack data in the added evaluation data
set. The model learns during training, and cannot correctly learn the characteristics of the evaluation
dataset, resulting in the accuracy of the evaluation dataset being lower than the accuracy of the test
dataset. However, MBS is still more accurate than the other five models.

6.4 Parameter Optimization

The filters of the convolutional layer of the model refer to the filter used to extract features, and the
number of filters affects the capacity and expression ability of the network. The number of units in each
GRU layer of the BiGRU layer affects the model’s transmission and memory of sequence information.
Increasing the number of convolution kernels and GRU units helps to learn more complex features. It
makes the model better able to capture more complex sequential relationships, but it also increases the
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computational and training costs of the model. The Conv_filter and GRU_unit parameters selected
based on experience often cannot make the model achieve optimal performance. Therefore, this paper
utilizes the ZOA algorithm and MI-ZOA to optimize Conv_filter and GRU_unit. For one example, see
Table 9. In this paper, Data 1 is used as the training set, and Data 2 is used as the evaluation set. Grid
Search, Random Search, Bayesian Optimization, ZOA, and MI-ZOA are used respectively to select
the Conv_filter and GRU_unit of the MBS model. The MBS model is optimal regarding accuracy,
precision, recall, and F1 score.

Table 9: Performance comparison of Conv_filter and GRU_unit parameters of MBS model selected
by different algorithms

Algorithm Parameters Accuracy (%) Precision (%) Recall (%) F1 score (%)

Grid search (128, 64) 58.62 95.83 30.45 46.22
Random search (8, 32) 57.87 90.45 30.58 45.71
Bayesian
optimization

(32, 64) 58.04 94.12 29.99 45.49

ZOA (7, 57) 88.05 95.81 83.17 89.05
MI-ZOA (4, 15) 93.86 97.16 92.17 94.60

This paper compares the MBS model’s floating-point operations per second (FLOPs) and the total
number of parameters to be trained in the model under different algorithms for selecting Conv_filter
and GRU_unit parameters.

The number of parameters and FLOPs are two important metrics to measure the algorithm’s
performance. In general, more parameters and a more complex model may achieve better perfor-
mance, but at the same time, it is more computationally expensive. FLOPs is directly related to the
computational efficiency of the algorithm, the higher the FLOPs, the longer the time it may take for
the algorithm to execute. For one example, see Fig. 7, MI-ZOA performs relatively well in terms of the
number of parameters and computational complexity and is a more efficient algorithm.

In order to further prove that the hyperparameters selected by the improved algorithm can improve
the detection ability of the MSCNN-BiGRU-SHA model for untrained DDoS attack datasets. In this
paper, the MI-ZOA_MBS model is compared with the most advanced detection models LSTM [25],
GRU [25], SDNN [26], and CNN-LSTM [34]. For one example, see Table 10.

For Case 5, Case 5.1 training tests with Data 1 dataset and evaluating model detection capabilities
on Data 2 dataset. Case 5.2 training tests with Data 2 dataset and evaluating model detection
capabilities on Data 1 dataset. The evaluation accuracy of SDNN model on Data 1 is 42.30%, and
the evaluation accuracy on Data 2 is 44.89%. The evaluation accuracy of CNN-LSTM model on
Data1 is 58.84%, and the evaluation accuracy on Data 2 is 47.98%, which is significantly improved
compared with the SDNN model. The evaluation accuracy of LSTM model on Data 1 is 41.66%,
and the evaluation accuracy on Data 2 is 44.75%. Compared with other models, the detection rate is
the lowest. The evaluation detection rate of the GRU model on Data 1 is 59.89%, and the evaluation
accuracy rate on Data 2 is 44.75. The evaluation accuracy of MI-ZOA_MBS model on Data 1 is
93.86%, and the evaluation accuracy on Data 2 is 89.37%. Compared with SDNN, LSTM, GRU,
and CNN-LSTM models, MI-ZOA_MBS has better detectability for the untrained training set than
other models. Compared with the ZOA-MBS model, the detection accuracy of the untrained DDoS
attack dataset is increased by 5.81% and 4.87%. It is proved that the hyperparameters selected by the
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improved algorithm can improve the detection ability of the MBS model for untrained DDoS attack
datasets.

Figure 7: Comparison of parameter counts and FLOPs for different algorithms

Table 10: The evaluation results of the models SDNN, LSTM, GRU, CNN-LSTM, and MI-
ZOA_MBS

Experiment Train
dataset

Evaluation
dataset

Evaluation dataset accuracy (%)

SDNN CNN-LSTM LSTM GRU MI-ZOA_MBS

Case 5
Case 5.1 Data 1 Data 2 42.30 58.84 41.66 59.89 93.86
Case 5.2 Data 2 Data 1 44.89 47.94 44.75 56.51 89.37

Case 6 Data 3
Data 1 55.51 96.98 87.48 91.44 99.64
Data 2 42.40 99.40 86.09 81.41 99.57

Case 7 Data 5
Data 1 45.13 96.46 75.34 88.90 99.66
Data 2 58.69 98.77 84.49 88.75 99.60

For Case 6 and Case 7, Data 3 and Data 4 are used for the model training data sets, respectively.
The evaluation accuracy of the trained models SDNN, CNN-LSTM, LSTM, and GRU on Data 1 and
Data 2 is lower than that of the MI-ZOA_MBS model.

7 Conclusion

This paper proposes a new automatic DDoS attack detection model called MSCNN-BiGRU-
SHA. We did hyperparameter optimization through the Multi-strategy Integrated Zebra Optimization
Algorithm to improve the model’s accuracy in detecting untrained DDoS attack datasets. Firstly,
the CICDDoS2019 dataset is subjected to a data balancing process. Avoid models that focus too
much on features of attack data and ignore the features of benign data when there is a significant
difference between the amount of benign and attack data. Secondly, the GINKS2023 dataset is
generated as an evaluation set to evaluate the model’s detection performance for untrained DDoS
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attack datasets. Thirdly, the optimal hyperparameters Conv_filter and GRU_unit values are selected
by the Zebra Optimization Algorithm to improve the model MSCNN-BiGRU-SHA performance.
On this basis, it carried out comparative experiments with traditional models such as DNN, CNN,
LSTM, and GRU. Three sets of experiments, Case 1, Case 2, Case 3, and Case 4, demonstrate
that the MSCNN-BiGRU-SHA model based on Zebra Optimization Algorithm optimization has a
higher accuracy than other models for untrained DDoS attack datasets. Adding different proportions
of evaluation sets to the model training set, proves that the detection accuracy of the MSCNN-
BiGRU-SHA model in the evaluation set can reach up to 99.78%. Finally, the MSCNN-BiGRU-SHA
hyperparameters Conv_filter and GRU_unit are further optimized using the Multi-strategy Integrated
Zebra Optimization Algorithm. The comparison experiment with the most advanced method is carried
out. Compared to the MBS models based on Random Search, Grid Search, Bayesian Optimization,
and ZOA, the MBS model based on MI-ZOA is optimal in terms of accuracy, precision, recall,
F1 score, number of parameters, and FLOPs. Case 5, Case 6, and Case 7 prove that the MSCNN-
BIRGRA-SHA model based on the Multi-strategy Integrated Zebra Optimization Algorithm further
improves the accuracy of the model for untrained DDoS attack datasets. At the same time, relying on
the school platform, the method is deployed in the network outlet. In HW action, it plays an early
warning function for DDoS attacks, and the average detection time is 23.44 s.

This study acknowledges several limitations that should be addressed. Firstly, the dataset used for
training the model is limited in size, which may affect the generalizability of the results. Secondly,
the model is currently limited to handling binary classification tasks, which restricts its potential
application in more complex classification problems. Thirdly, the hyperparameter tuning process is
based on heuristic methods and is dependent on the dataset used for model training, making the
optimal configuration of hyperparameters not unique. Fourthly, although the model shows excellent
performance in attack detection, the current research is limited to the detection phase and lacks a
defense mechanism against attacks.

To address these limitations, we propose several directions for future work. Firstly, larger and
more diverse datasets should be used to train and evaluate the model, ensuring its robustness and
generalizability. Secondly, more efficient algorithms and optimization strategies should be explored to
reduce the model training time, enabling the model to handle more complex classification tasks and
improving its performance and efficiency. Additionally, models that integrate detection and defense
functions should be developed to achieve rapid identification and effective defense against attacks,
enhancing the overall effectiveness of network security protection.
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