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ABSTRACT

To accurately diagnose misfire faults in automotive engines, we propose a Channel Attention Convolutional Model,
specifically the Squeeze-and-Excitation Networks (SENET), for classifying engine vibration signals and precisely
pinpointing misfire faults. In the experiment, we established a total of 11 distinct states, encompassing the engine’s
normal state, single-cylinder misfire faults, and dual-cylinder misfire faults for different cylinders. Data collection
was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840 Hz. The collected
data were methodically divided into training and testing sets based on different experimental groups to ensure
generalization and prevent overlap between the two sets. The results revealed that, with a vibration acceleration
sequence of 1000 time steps (approximately 50 ms) as input, the SENET model achieved a misfire fault detection
accuracy of 99.8%. For comparison, we also trained and tested several commonly used models, including Long
Short-Term Memory (LSTM), Transformer, and Multi-Scale Residual Networks (MSRESNET), yielding accuracy
rates of 84%, 79%, and 95%, respectively. This underscores the superior accuracy of the SENET model in detecting
engine misfire faults compared to other models. Furthermore, the F1 scores for each type of recognition in the
SENET model surpassed 0.98, outperforming the baseline models. Our analysis indicated that the misclassified
samples in the LSTM and Transformer models’ predictions were primarily due to intra-class misidentifications
between single-cylinder and dual-cylinder misfire scenarios. To delve deeper, we conducted a visual analysis of the
features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding (T-SNE)
technology. The findings revealed that, in the LSTM model, data points of the same type tended to cluster together
with significant overlap. Conversely, in the SENET model, data points of various types were more widely and evenly
dispersed, demonstrating its effectiveness in distinguishing between different fault types.
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1 Introduction

The engine constitutes a vital component of the automotive construction system, serving as the
heart and power source of the automobile. Currently, the evolution of automotive engines towards
increased complexity and high automation has led to more intricate and demanding operating
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conditions. Consequently, the likelihood of encountering various faults is gradually rising. Among
these, engine misfire fault diagnosis stands out as a focal point of research in engine fault diagnosis.
Engine misfire occurs when the air-fuel mixture in the cylinder fails to undergo normal combustion
due to internal component malfunctions during engine operation [1]. This incomplete combustion not
only diminishes energy utilization efficiency but also results in the emission of substantial quantities
of harmful gases, thereby contaminating the air environment [2]. Additionally, insufficient power can
readily precipitate traffic accidents, posing a threat to human life. Therefore, systematically diagnosing
engine misfire faults is of paramount importance. Over the past three decades, fault diagnosis methods
have transformed from simplistic and uniform approaches to increasingly sophisticated and varied
ones. Based on research mechanisms, these methods can be broadly categorized into five common
diagnostic techniques [3]: expert systems, fault diagnosis grounded in analytical models, fault diagnosis
relying on signal analysis, artificial intelligence methods, and statistical analysis methods. Presently,
machine learning is the most prevalent diagnostic method employed by researchers in the realm of
artificial intelligence.

In recent years, deep learning, as a pivotal branch of machine learning, has been extensively
applied to various domains such as image recognition, facial recognition, speech recognition, computer
vision, signal processing, and intelligent control [4]. During the evolution of deep learning, numerous
researchers have employed neural network models for diagnosing and analyzing engine faults. Wang
leveraged wavelet analysis for signal denoising and neural networks for diagnosing and identifying
diesel engine faults [5]. Wang introduced a novel approach by adding a state feedback to the output
layer of the backpropagation (BP) neural network, enhancing the accuracy of engine misfire fault
diagnosis [6]. Zheng and colleagues integrated Fault Tree Analysis (FTA) with Support Vector
Machine (SVM) algorithms to elevate the efficiency and precision of vehicle engine fault identification
[7]. Wang et al. proposed the Parallel Online Sequential Regularized Extreme Learning Machine
(POS-RELM) model, which is well-suited for online monitoring of engine faults [8]. Wang developed
a fault diagnosis system for automotive engine misfires based on a probabilistic neural network.
Experimental results validated that the trained Principal Component Analysis-Genetic Algorithm-
Product-based Neural Networks (PCA-GA-PNN) method can precisely diagnose and locate single-
cylinder and double-cylinder misfires, boasting simplicity, economy, efficiency, and high accuracy [9].
Gao et al. introduced a vehicle engine misfire fault diagnosis system leveraging wavelet packet correla-
tion coefficient and Extreme Learning Machine (ELM), tailored for the non-stationary characteristics
of cylinder head vibration signals. This method effectively captures fault-induced differences and
accurately identifies single-cylinder misfires, characterized by high accuracy and short training time
[10]. Han et al. experimentally demonstrated that utilizing the optimal wavelet packet basis function
for feature extraction yields excellent results, and the Particle Swarm Optimization-Support Vector
Machine (PSO-SVM) approach is also effective for recognition and diagnosis [11]. Chen proposed
a diesel engine anomaly detection and fault diagnosis method based on Autoencoder depth feature
extraction, surpassing other traditional methods in accuracy [12]. Gao et al. through diesel engine
bench testing, proved that the Convolutional Neural Network (CNN)-based diesel engine misfire
real-time diagnosis system achieves high diagnostic accuracy across a wide range of speed and load
conditions [13].

Apart from that, some researchers have proposed an engine misfire diagnosis method grounded
in torsional vibration and neural network analysis, capable of accurately diagnosing engine misfires
[14]. Others have introduced the Single-Valued Neutrosophic Sets (SVNS) method, which precisely
identifies the misfire fault state of engines [15]. Suda et al. discovered that combination classifiers can
be employed for automated diagnosis of engine misfire faults [16]. Additionally, some have established
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an engine misfire fault diagnosis model based on Probabilistic Neural Network (PNN), using the
vibration acceleration signal of the engine cylinder block surface as the diagnostic parameter, yielding
a highly accurate network model [17]. It is evident that current engine misfire fault diagnosis and
recognition trends towards deep learning, achieving remarkable results and contributing significantly
to this field.

Through a comprehensive literature review, we found that there has been a significant amount
of research in the field of diesel engine fault diagnosis. However, the research on machine learning
diagnosis and detection technology for engine misfire faults is still lacking. In addition, there are
few studies on using the SENET model with high generalization and efficiency to analyze engine
misfire faults. After a thorough review of relevant literature, it is clear that the SENET model
also holds a pivotal position within the field of deep learning. Ma et al. introduced a capacitance
tomography image reconstruction algorithm that harnesses the dual-path multi-scale feature fusion
capabilities of the SENET model [18]. This algorithm tackles the intricate challenge of extracting
complex and deep capacitance feature tensors from a solitary neural network. By adeptly capturing
multi-scale detailed features and deep features following feature response redistribution, the algorithm
exemplifies its proficiency in extracting bidirectional features. Huang et al. integrated the SENET
attention mechanism into a three-dimensional Convolutional Neural Network (3D CNN) [19]. By
modeling the interdependencies among feature map channels, they significantly enhanced the repre-
sentational quality of the 3D CNN, empowering it to generate optimal traffic signal control actions.
Chen et al. presented a SENET-optimized network model that demonstrates remarkable precision in
segmenting landslide edge details, with a notable reduction in misrecognition and missed recognition
instances [20]. In comparison to other models, this model exhibits superior recognition performance.
It facilitates rapid screening of geological hazards in power line corridors, thereby mitigating the
risk of landslides and other geological hazards in mountainous regions, and ensuring the vigilant
monitoring and protection of power grid safety along these corridors. Dong et al. proposed a Dynamic
Normalized Supervised Contrastive Network (DNSCN) that incorporates a multi-scale composite
attention mechanism for identifying unbalanced gearbox faults [21]. DNSCN achieved impressive
accuracies of 91.58% and 90.96% on two gearbox datasets characterized by extreme imbalance ratios,
further validating the superiority of this innovative approach.

The majority of research on machine learning diagnosis and detection of engine misfire faults
employs data-driven methodologies. A primary constraint in advancing such research stems from
the scarcity of data. Indeed,acquiring extensive measured data from diverse fault samples presents
considerable challenges. To mitigate this issue, researchers have devised effective strategies for data
augmentation. Gao et al., for instance, utilize a combination of numerical simulation and generative
adversarial networks to augment gear fault sample data [22]. Xiang et al. construct a finite element
model, decompose the vibration signal into multiple components using wavelet packet transform
(WPT), and compute specific time-domain characteristic parameters for all signal components to
generate training samples [23]. To secure sufficient research sample data, this article adopts an experi-
mental approach, wherein different engine misfire faults are artificially induced and the corresponding
data is recorded. Compared to acquiring actual measurement data, this experimental methodology
ensures the availability of a sufficient number of samples of various types, thereby circumventing the
issue of imbalanced samples during the training of machine learning models. Furthermore, the sample
data obtained through experiments is more comprehensive and controllable.

Given the pressing need for prompt and precise detection of engine misfires, this study primarily
concentrates on the detection and identification of vehicle engine misfires, particularly in scenarios
involving misfires in different cylinder bodies of multi-cylinder engines. Prior research efforts typically
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leaned on traditional machine learning methods or more rudimentary neural network models to
execute engine misfire fault detection tasks. While these approaches have yielded some results,they
frequently rely heavily on manually crafted feature extraction processes, such as the extraction of
specific parameters like vibration frequency and amplitude. This process is not only cumbersome and
prone to subjective biases but also constrains the model’s capacity to autonomously learn intricate data
patterns. In response to this, this article introduces an innovative end-to-end deep learning solution:
the SENET model. It demonstrates that the channel self-attention convolution model achieves higher
detection accuracy in engine misfire faults compared to other baseline models. We have dispensed
with the cumbersome feature engineering steps inherent in traditional methods and directly fed the
originally collected vibration sequence data into a meticulously designed deep learning model. This
model is adept at automatically extracting hierarchical and abstract feature representations from raw
data, followed by in-depth analysis and learning. This process not only streamlines the workflow
but also significantly bolsters the model’s generalization ability and adaptability, empowering it to
more accurately capture subtle changes during engine misfires and delivering definitive classification
and recognition results. This end-to-end approach transcends the limitations of traditional methods,
ushering in more efficient and intelligent solutions to the realm of engine misfire fault detection.

2 Channel Self Attention Mechanism
2.1 Attention Mechanism

The attention mechanism finds its origins in the study of human vision. In Cognitive Science, faced
with the bottleneck of information processing, humans selectively concentrate on certain information
while disregarding other visible data. To efficiently utilize limited visual processing resources, humans
prioritize specific regions of their visual field.

The attention mechanism lacks a precise mathematical definition, and traditional techniques such
as local image feature extraction and sliding window methods can be seen as forms of attention. In
neural networks, the attention mechanism often takes the form of an auxiliary neural network that
either rigidly selects segments of the input or assigns varying weights to different parts of the input.
This mechanism effectively filters crucial information from vast datasets.

Multiple approaches exist for integrating the attention mechanism into neural networks. Con-
sidering convolutional neural networks as an example, the attention mechanism can be incorporated
into the spatial dimension, and specifically, the Squeeze-and-Excitation (SE) mechanism can be added
in the channel dimension. Additionally, there are hybrid dimensions, such as Convolutional Block
Attention Module (CBAM), which combines both spatial and channel dimensions to introduce
attention. This paper primarily focuses on the mechanism of enhancing attention in the channel
dimension.

2.2 SENET Attention Mechanism

Prior to 2017, researchers primarily concentrated on enhancing model performance in the spatial
domain. However, in 2017, the team headed by Hu et al. from Momenta Autonomous Driving
Company introduced SENET, which is grounded in the channel attention mechanism [24]. The core
novelty of this research was its emphasis on the interplay between channels and the establishment of
a channel attention mechanism, aiming to automatically ascertain the significance of each channel
feature via the model [25]. To accomplish this, SENET formulated the Squeeze and Excitation (SE)
module. This module captures global features at the channel level through squeezing operations,
learns the interdependencies among channels via excitation operations, computes the weights for
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each channel, and ultimately multiplies these weights with the original feature map to derive the final
attention-enhanced features [26]. Essentially, the SE module applies gating and attention mechanisms
along the channel dimension, allowing the model to prioritize channels with substantial information
while dampening less critical ones [27].

SE attention mechanisms, or Squeeze and Excitation Networks, integrate attention mechanisms
into the channel dimension. The pivotal operations within these mechanisms are Squeeze and
Excitation. Through automatic learning, a novel neural network determines the importance level of
each channel within the feature map and subsequently assigns a weight value to each feature based
on this importance. This enables the neural network to focus on specific feature channels, bolstering
those feature maps that are beneficial to the current task while suppressing those that are not.

The SE module mainly consists of two operations:squeezing and excitation, which can be applied
to any mapping. For example, in convolution,the convolution kernel is V = [v1, v2, ..., vc], where Vc

represents the c-th convolution kernel, and the output U = [u1, u2, . . . , uc]:

uc = vc ∗ X =
∑C′

s=1
vs

c ∗ xs (1)

Among them, ∗ denotes the convolution operation, s represents the channel of the two-
dimensional convolution kernel, and the spatial feature xs on the input channel will automatically learn
the relationships within the feature space. However, since the convolution results of each channel have
been summed, the channel feature relationship is intermingled with the spatial relationship learned by
the convolution kernel. The purpose of the SE module is to isolate and extract channel features from
these intertwined relationships, thereby enabling the model to directly learn the inter-channel feature
relationships [28].

As illustrated in Fig. 1 below, the process begins with the Squeeze part, which utilizes a global
pooling layer to compress the two-dimensional features of the Convolutional Neural Network (CNN)
into a single real number per feature channel, maintaining the number of feature channels unchanged.
Following this compression, the width and height of each feature are reduced to 1 × 1. Subsequently,
the excitation part is employed to generate corresponding weight values for the multiple feature
channels. This is accomplished through a combined network structure comprising two fully connected
layers, followed by the RELU activation function and the sigmoid activation function. Notably, the
input and output features have the same number of weight values. Finally, the Scale part multiplies
the generated normalized weights by the features of each channel, effectively establishing the SENET
attention mechanism for channel dimensions [19].

3 Engine Misfire Fault Experiment and Data Preprocessing
3.1 Engine Misfire Fault Experiment

The testing system for this experiment consists of a Camry Sport vehicle and ECON acceleration
signal acquisition equipment, encompassing an ECON vibration analyzer and a PC platform, as
depicted in Fig. 2. The experimental setting is situated within the Training Room of the School of
Automobile and Transportation at Guangdong University of Technology. The subject of the test is
the engine of the Camry Sport vehicle.

To gather data on various engine misfire faults, we deliberately induced different types of
misfires. The experimental plan is outlined in Table 1. During the experiment,we conducted 10 fault
experiments, including 4 types of single-cylinder misfires (each involving a separate cylinder), 6 types
of dual-cylinder misfires (where 2 out of the 4 cylinders misfire simultaneously), and a normal state,
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totaling 11 types of conditions. A highly sensitive 3D acceleration sensor with a high sampling rate
was attached to the engine cylinder to capture vibration data during the experiment. This sensor, part
of the ECON vibration signal acquisition instrument, has a sampling rate of up to 20,840 Hz.

Figure 1: SENET attention mechanism

Figure 2: Engine misfire data collection site

Table 1: Engine misfire test scheme

No. Status Engine speed Sampling
duration

Remark

1 Normal 1. 1000 rpm 3 times each,
approximately
25 s each time

Sampling rate:
20,840 Hz1st cylinder misfire 2. 1500 rpm

2nd cylinder misfire 3. 2000 rpm
3rd cylinder misfire 4. 2500 rpm

(Continued)
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Table 1 (continued)

No. Status Engine speed Sampling
duration

Remark

4th cylinder misfire 5. Slow and
uniform
acceleration from
idle to 3000 rpm

2 1st and 2nd cylinders misfire 1. 1000 rpm
1st and 3rd cylinders misfire
1st and 4th cylinders misfire

3 2nd and 3rd cylinders misfire 2. 1500 rpm
2nd and 4th cylinders misfire

4 3rd and 4th cylinders misfire 3. 2000 rpm

After setting a specific state, the experimenter started the engine and adjusted the fuel pedal to
reach the designated value, maintaining it for 25 s. The vibration signal was then collected using the
ECON vibration signal acquisition instrument. To ensure comprehensive data collection, we set five
different speed scenarios for each experimental situation: 1000, 1500, 2000, 2500 rpm, and from idle
to 3000 rpm. For each speed scenario under each misfire fault, we conducted three tests,each lasting
approximately 25 s.

Throughout the entire experiment, the position and orientation of the sensor remained constant
and unaltered. This configuration allowed us to consistently obtain two sets of vibration feature
sequences (each comprising three XYZ directions) in each experiment,amounting to six independent
feature sequences in total. Fig. 3 illustrates the acceleration data of one sensor in the XYZ directions
under the condition of a 3-cylinder misfire at 1500 rpm. It is evident that the range of acceleration for
engine vibration in all three directions is approximately the same, primarily falling between −40 and
40 m/s2.

3.2 Data Preprocessing

3.2.1 Data Standardization

Prior to identifying engine misfire fault signal data, we undertake the following preprocessing
steps: data standardization and the partitioning of training and testing sets.

Standardization is a crucial data preprocessing technique aimed at transforming input data into a
specific distribution to better accommodate the training of deep learning models. In the realm of deep
learning, standardization typically involves converting data into a distribution with a mean of 0 and a
standard deviation of 1, a process also known as z-score normalization.

Specifically, for a given numerical vector X = (x1, x2, . . . , xn), where xi represents the value of
the i-th feature, the normalization calculation method is as follows: for each feature xi, Min-Max
normalization (also known as dispersion normalization) is performed, which scales the value range of
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feature xi to the range of [0, 1]. The calculation formula is:

x̂i = xi − min(X)

max(X) − min(X)
(2)

Figure 3: Acceleration data in three directions at a speed of 1500 rpm when the 3rd-cylinder misfires

Among them, x̂i represents the i-th feature value after Min-Max normalization, and min(X) and
max(X) represent the minimum and maximum values in vector X .

Perform z-score normalization for each feature x̂i, which converts feature x̂i to a distribution with
a mean of 0 and a standard deviation of 1. The calculation formula is:

x̂i = x̂i − μ

σ
(3)

Among them, x̂i represents the i-th feature value after standardization, while μ and σ represent
the mean and standard deviation of vector X̂ = (

x̂1, x̂2, . . . , x̂n

)
, respectively.

By standardizing the input data for deep learning, we can align its distribution more closely
with the assumptions of the deep learning model. This enhances the model’s generalization ability
and robustness, which in turn facilitates faster training speeds and higher accuracy. We apply data
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standardization to all components of the signal data, specifically the three data channels comprising
vibration acceleration in the XYZ directions.

3.2.2 Divide Training and Testing Sets

We utilized the set-aside method to partition the dataset into training and testing sets. According
to the experimental scheme, there are 11 states, each associated with a distinct speed. Therefore, for
each state and each speed, one experimental data point was chosen for the testing set, while the
remaining two were allocated to the training set. Consequently, the ratio of the training set to the
testing set is 2:1, with the training set comprising 2/3 of the data and the testing set making up the
remaining 1/3. This partitioning ensures no overlap between the training and testing sets, thereby
allowing for a more accurate assessment of the model’s generalization ability, preventing overfitting,
and facilitating the discovery of optimal adjustment parameters.

4 Comparison between Methods
4.1 The Method of LSTM

4.1.1 Introduction of Model

RNN models enable more effective processing of sequence data. In these models,the output of
neurons at a particular time can be reconsidered as input, allowing the RNN’s network structure to
fully capture dependencies in time series data. However, traditional RNN models are plagued by issues
such as gradient vanishing and gradient explosion. To overcome these challenges, Hochreiter et al. [29]
introduced the LSTM (Long Short-Term Memory) network, which represents a significant improve-
ment over traditional RNN. Compared to RNN, LSTM models feature more complex hidden
units. Furthermore, LSTM have a broader range of applications and are more effective as sequence
models. During operation, LSTM can selectively add or delete information through the use of linear
interventions. The structural diagram of an LSTM is illustrated in Fig. 4. In this article, we utilized a
2-layer LSTM with 128 cells per layer.

Figure 4: Calculation process of LSTM model
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4.1.2 The Analysis Results of Model

The confusion matrix depicting the LSTM model’s prediction results on the test set, with an input
sequence length of 1000, is illustrated in Fig. 5. It is evident that the detection and recognition rate for
single-cylinder misfire in the fourth cylinder is the lowest, at 0.75, while the accuracy rates for other
single-cylinder misfires and double-cylinder misfires are below 90%. The overall accuracy rate for all
cases stands at 0.84.

Figure 5: LSTM model predicts the confusion matrix in the test set, where “i” refers to the single
cylinder misfire with number i, and “ij” refers to the simultaneous misfire of two cylinders with
numbers i and j

Upon analyzing the LSTM model’s prediction results, we noted that the recognition accuracy for
single-cylinder misfires is relatively low. This is primarily attributed to the frequent misclassification
among the four distinct types of single-cylinder misfires and the normal condition. Specifically,
11% of samples misidentified as the second cylinder misfiring were actually the third cylinder
misfiring, and vice versa, with an equivalent proportion (11%) of samples experiencing this reciprocal
misidentification. Additionally, there were instances of mutual misrecognition among samples with
simultaneous misfiring in two cylinders, underscoring the model’s challenges in distinguishing between
different misfire patterns.

These results highlight significant differences in vibration characteristics between single-cylinder
and double-cylinder misfires, which theoretically should facilitate more accurate classifications by the
model. However, the current model performance indicates that there is still room for improvement in
capturing and distinguishing these subtle yet crucial feature differences.



CMC, 2025, vol.82, no.1 853

Furthermore, we computed the F1 scores for 11 distinct categories, as presented in Table 2. The
average F1 score for the four types of single-cylinder misfires is 0.79, whereas the average F1 score for
double-cylinder misfires is 0.87.

Table 2: Comparison of F1 scores of various models under 1000 time step input

Status

Models LSTM MSRESNET Transformer SENET

Normal 0.86 0.96 0.87 0.99
1st cylinder misfire 0.87 0.96 0.73 0.99
2nd cylinder misfire 0.75 0.90 0.64 0.99
3rd cylinder misfire 0.76 0.93 0.70 0.99
4th cylinder misfire 0.79 0.94 0.71 1.00
1st and 2nd cylinders misfire 0.87 0.97 0.87 0.99
1st and 3rd cylinders misfire 0.88 0.97 0.85 1.00
1st and 4th cylinders misfire 0.84 0.96 0.83 0.98
2nd and 3rd cylinders misfire 0.86 0.96 0.81 0.98
2nd and 4th cylinders misfire 0.88 0.97 0.86 0.98
3rd and 4th cylinders misfire 0.89 0.96 0.85 0.98

4.2 The Method of Transformer

4.2.1 Introduction of Model

In 2017, Google introduced the Transformer model in its seminal paper “Attention is All You
Need,” replacing the conventional RNN network structure in NLP tasks with a Self-Attention
mechanism. The primary advantage of the Transformer over RNN architectures is its capability for
parallel computing. This deep learning model, rooted in the self-attention mechanism, boasts higher
training and inference speeds, as well as a flexible architecture, compared to RNN and LSTM models.

In this paper, we leverage the Encoder component of the Transformer model to extract features
from sequence data. Following this, we append a fully connected layer to serve as the final classification
output.

Regarding the hyperparameter configuration of our Transformer model, we have implemented
the following settings: We established an embedding dimension of 128, enabling the model to employ
128-dimensional vectors for embedding input feature data during both input and output processing.
Additionally, we incorporated eight attention heads, harnessing the multi-head attention mechanism
to capture diverse and pertinent information in parallel from the input sequence. To further enhance
the model’s comprehension and representation of input data, we set the number of encoder layers to
four, thereby increasing the model’s depth.

4.2.2 The Analysis Results of Model

The prediction outcomes for the Transformer model are illustrated in Fig. 6, which depicts an
input sequence length of 1000. The results indicate a relatively low prediction accuracy for both
single-cylinder and dual-cylinder misfires. Specifically, the highest accuracy achieved is 0.88 in normal
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conditions, whereas the lowest accuracy observed is 0.60 during a single-cylinder misfire involving the
second cylinder. Overall, the Transformer model attains an accuracy of 0.79.

Figure 6: The confusion matrix of Transformer model, where “i” refers to single cylinder misfire with
number i, and “ij” refers to simultaneous misfire of two cylinders with numbers i and j

Analogous to the prediction results of the LSTM model, the Transformer model also experiences
notable misclassifications in single-cylinder and double-cylinder misfire scenarios, with some normal
conditions mistakenly identified as single-cylinder misfires. When compared to double-cylinder mis-
fires, the accuracy for detecting single-cylinder misfires is lower, with an average accuracy of 69.7% for
single-cylinder misfires vs. 84.7% for double-cylinder misfire recognition.

Table 2 further reveals that, in the prediction results of the Transformer model, the average F1
score for single-cylinder misfires is 0.695, whereas the average F1 score for double-cylinder misfires is
0.845.

4.3 The Method of MSRESNET

4.3.1 Introduction of Model

In the realm of deep learning, enhancing the depth of a network structure can potentially
yield superior fitting performance for a model. However, incessantly augmenting the number of
network layers not only diminishes the model’s generalization capability to unfamiliar data but also
introduces challenges such as gradient vanishing or model degradation. As the network expands to
a certain number of layers, the overall model accuracy plateaus; further increases in depth lead to
the accumulation of training errors, impeding improvements in model accuracy [30]. To address these
issues, He et al. [31] introduced the deep residual network, which not only transcends the limitation of
layer count in neural networks but also effectively taps into the deep feature information of data by
overlaying shallow and deep features, thereby facilitating network convergence.
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Traditional CNN fall short in fully harnessing the multi-scale information embedded in facial
images [32,33], as each layer is confined to extracting feature information of a single scale. To acquire
a richer feature set, the conventional approach involves deepening the network layers, which is prone
to overfitting and necessitates substantial computational resources,thereby complicating network
training optimization. To mitigate these challenges, multi-scale residual networks (MSRESNET) are
employed to streamline network training and optimization [34].

In the MSRESNET model, we initiate the feature extraction process using a convolutional block
equipped with 64 filters and a kernel size of 3 (comprising a convolutional layer, a BatchNorm layer,
and a RELU layer). Subsequently, the feature maps are distributed into three convolutional blocks of
varying scales, featuring kernel sizes of 3, 5, and 7 (with output channel numbers of 64 and 128). These
blocks undergo adaptive average pooling and are concatenated. Ultimately, the concatenated features
are fed into a fully connected layer for classification and recognition tasks.

4.3.2 The Analysis Results of Model

The prediction outcomes of the MSRESNET model, depicted in Fig. 7 (with an input sequence
length of 1000), reveal impressive results. The model attains detection accuracies exceeding 0.87 for
the normal state, single-cylinder misfire, and double-cylinder misfire scenarios. Notably, even in the
fault state involving the simultaneous misfire of the second and third cylinders, the recognition rate
remains as high as 0.98. The lowest accuracy, observed in the case of a “2” cylinder single-cylinder
misfire, is still commendable at 0.87. Overall, the MSRESNET model boasts an impressive accuracy
of 0.95.

Figure 7: The confusion matrix of MSRESNET model, where “i” refers to the single cylinder misfire
with number i, and “ij” refers to the simultaneous misfire of two cylinders with numbers i and j
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When compared to LSTM and Transformer models, the MSRESNET model demonstrates
a marked improvement in recognition accuracy. However, a discernible difference persists in the
distribution of misclassified samples between single-cylinder and double-cylinder misfires.

Furthermore, the MSRESNET model’s prediction results showcase average F1 scores of 0.933
for single-cylinder misfires and 0.965 for double-cylinder misfires, respectively, underscoring its robust
performance in both scenarios.

4.4 The Method of SENET

The model structure of the SENet utilized in this article is depicted in Fig. 8a. Initially, the
model employs a convolutional layer to extract features from the input sequence. Subsequently, it
progressively delves deeper into these features through four SE blocks. Ultimately, a fully connected
layer serves as the model’s final classifier. The configuration of the SE block is illustrated in Fig. 8b.
Here, the input feature x traverses two convolutional layers before the channel weights are derived
using the squeeze module and extraction model. These weights are then scaled with the convolutional
output feature. Lastly, the residual is summed with the downsampled feature map of x′ to yield the SE
block’s output.

Figure 8: (a) The structure diagram of SENET model, (b) The structure of SE block

When the input sequence spans 1000 units, the model’s prediction accuracy is presented in Fig. 9.
Across all experimental scenarios, the model’s recognition rate surpasses 0.98. The overall accuracy of
the model, encompassing all experimental contexts, stands at 0.99.

Remarkably, the SENET model maintains a prediction accuracy exceeding 98% in all instances,
thereby precluding significant misidentifications within the individual categories of single-cylinder and
double-cylinder misfires. The results further indicate that the F1 scores for all misfire types predicted
by the SENET model also exceed 0.98.
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Figure 9: The confusion matrix of SENET model, where “i” refers to single cylinder misfire with
number i, and “ij” refers to simultaneous misfire of two cylinders with numbers i and j

5 Discussion

In order to conduct a thorough comparison of the performance capabilities of the SENET model
vs. the three baseline models, namely LSTM, MSRESNET, and Transformer, we analyzed input
sequences of differing lengths. The results of this comparison in terms of accuracy are depicted
in Fig. 10. It is evident that, regardless of the length of the input sequences, the SENET model
consistently demonstrates superior prediction accuracy compared to the three baseline models.
Specifically, for input sequences of 300 in length, the SENET model achieves a fault type recognition
accuracy of 0.9, closely followed by MSRESNET with 0.846, while LSTM and Transformer exhibit
lower accuracies of 0.674 and 0.680, respectively. As the length of the input sequences increases, the
fault type recognition accuracy of both the SENET model and the baseline models experiences gradual
improvement. Notably, when the input sequence length reaches 2000, the accuracy of MSRESNET
approximates that of SENET, while a notable discrepancy persists between LSTM and Transformer.

Furthermore, we assessed the F1 scores of each model across 11 distinct scenarios with an input
length of 1000, as presented in Table 2. In this assessment, we employed precision, recall, and F1 score
as the evaluative metrics, which were computed using established formulas.

precision = TP
TP + FP

(4)

recall = TP
TP + FN

(5)
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F1 = 2 × precision × recall
precision + recall

(6)

where TP (True Positives) represents the count of samples that the model correctly predicts as
belonging to the positive class, aligning with the actual ground truth. Conversely, FP (False Positives)
denotes the count of samples that the model erroneously predicts as positive, despite being negative
in the actual ground truth. Additionally, FN (False Negatives) signifies the count of samples that the
model incorrectly predicts as negative, whereas they are actually positive in the ground truth.

Figure 10: Accuracy of each model under different length input sequences

Our analysis reveals that across all eleven scenarios considered, the F1 score of the SENET model
surpasses that of the other models, achieving a remarkable value exceeding 0.98. This indicates the
SENET model’s superior discriminative ability and robustness in fault-type recognition tasks.

In our prior analysis, we observed a noteworthy phenomenon: the LSTM and Transformer models
exhibited relatively low predictive accuracy, particularly in the context of mutual misclassification
between the fault categories of single-cylinder misfire and double-cylinder misfire. This finding implies
that, while these two models can effectively differentiate between the broader categories of single-
cylinder and double-cylinder misfires, they struggle to accurately identify specific instances within
each category. Conversely, the SENET model demonstrated exceptional recognition performance,
consistently maintaining an accuracy rate above 98% without manifesting the aforementioned mis-
classification issues, thereby highlighting its robust classification capabilities.

To further investigate the underlying differences in feature representation that account for this
phenomenon, we innovatively applied the T-Distributed Stochastic Neighbor Embedding (T-SNE)
technique for visually analyzing the key features extracted by the LSTM and SENET models.
Specifically, we extracted input features from the classification layers (i.e., the final fully connected
layers) of these two models and subsequently utilized the T-SNE algorithm to effectively reduce the
high-dimensional feature space to two dimensions. Finally, we presented the insights gained from this
dimensionality reduction through graphical visualizations (as depicted in Fig. 11).
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Figure 11: LSTM model and SENET model extract feature T-SNE visualization graph

The T-SNE visualization results for the LSTM model revealed significant overlap in the distribu-
tion of data points between normal operating conditions and the four single-cylinder misfire states.
This phenomenon directly explains the limited recognition ability of the LSTM model in distinguishing
between these five sample types. Conversely, the data points representing double-cylinder misfires
exhibited a more independent distribution range, indicating a higher degree of inter-class separability.

In contrast, the T-SNE plot of the SENET model presents a starkly different scenario: the
data points of various types are more widely and evenly dispersed, suggesting a richer and more
discriminative feature representation. Notably, unlike the LSTM model, the data points of the
same type in the SENET model do not solely cluster into a single group but may form multiple
relatively independent sub-clusters. This characteristic potentially enables the model to maintain
greater flexibility and accuracy when dealing with complex and varied fault patterns. In summary, the
SENET model, with its superior feature extraction and representation capabilities, has demonstrated
immense potential and advantages in the realm of engine fault diagnosis.

6 Conclusion

This article proposes the application of the SENET model for identifying various types of car
engine misfire faults. We artificially induce four types of single-cylinder misfires and six types of dual-
cylinder misfires in automotive engines, combined with normal operational conditions, yielding a
comprehensive dataset encompassing 11 distinct scenarios. During data acquisition, a high-precision
acceleration signal collector with a high sampling rate is employed to obtain vibration acceleration
information from the engine in three orthogonal directions across multiple experimental trials. The
SENET model, upon analysis, attains a fault type recognition accuracy of 0.99 when the input
sequence length is set to 1000 (approximately 50 ms in duration). When compared to baseline models
such as LSTM, MSRESNET, and Transformer, the SENET model demonstrates the highest accuracy
in fault type identification across varying input sequence lengths. The analytical results further indicate
that the SENET model’s F1 score surpasses those of the three baseline models. Across all 11 scenarios,
the SENET model achieves an F1 score exceeding 0.98. Notably, the LSTM and Transformer models
exhibit a significant issue of mutual misclassification between single-cylinder and dual-cylinder misfire
fault categories, whereas the SENET model does not encounter this challenge. Visualization of features



860 CMC, 2025, vol.82, no.1

extracted by the LSTM and SENET models using the T-SNE technique reveals that in the LSTM
model, data points of the same type tend to cluster together, with notable overlap between data points
representing normal operational conditions and single-cylinder misfire scenarios. Conversely, the data
points of various types in the SENET model are more widely and uniformly dispersed.

This article primarily leverages deep learning technology to develop an efficient and reliable
automatic detection system, addressing the limitations of traditional detection methods, which often
suffer from insufficient accuracy and slow response speeds. By conducting a thorough analysis of
engine misfire vibration characteristics, we employ an end-to-end approach utilizing the SENET
model. This approach involves acquiring vibration characteristics of the engine through acceleration
signal acquisition devices and utilizing these characteristics to train a deep learning model, thereby
achieving accurate classification and recognition of engine misfires.

The objective of this article is to collect vibration sequence data under various misfire scenarios by
installing vibration sensors in specific engine components. This data is then utilized to achieve precise
identification of misfire fault types using deep learning models. However, the successful application
of this technology in practical engineering fields necessitates further exploration of several key issues.
Primarily, there is a need to identify optimal sensor placement points that are both easy to install
repeatedly and ensure relatively stable vibration characteristics. Additionally, while this article covers
several types of engine misfires, the research scope must be expanded to encompass more potential
misfire scenarios and other types of engine failures, to comprehensively enhance the diagnostic system’s
generalization ability. Furthermore, future research will extend to additional Camry models and other
vehicle brands, deeply analyzing the changes in vibration characteristics induced by engine misfires,
thereby laying a solid foundation for the widespread application of this technology.
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