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ABSTRACT

A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and
numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom
spray code number recognition. In the coding number detection stage, Differentiable Binarization Network is used
as the backbone network, combined with the Attention and Dilation Convolutions Path Aggregation Network
feature fusion structure to enhance the model detection effect. In terms of text recognition, using the Scene
Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of
coding recognition errors caused by image color distortion due to variations in lighting and background noise. In
addition, model pruning and quantization are used to reduce the number of model parameters to meet deployment
requirements in resource-constrained environments. A comparative experiment was conducted using the dataset
of tank bottom spray code numbers collected on-site, and a transfer experiment was conducted using the dataset
of packaging box production date. The experimental results show that the algorithm proposed in this study can
effectively locate the coding of cans at different positions on the roller conveyor, and can accurately identify the
coding numbers at high production line speeds. The Hmean value of the coding number detection is 97.32%, and
the accuracy of the coding number recognition is 98.21%. This verifies that the algorithm proposed in this paper
has high accuracy in coding number detection and recognition.

KEYWORDS
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1 Introduction

The printed text on the bottom of aluminum cans contains crucial information about the product’s
identity. This information not only assists in control and maintenance during the production process
and enables future product traceability but also provides consumers with key details such as production
batch numbers and dates [1]. Currently, the production dates and batch numbers of most aluminum
cans are applied through spray coding on the can bottoms. Accurate recognition of these spray
codes is essential for ensuring product quality, safeguarding the company’s reputation, and preventing
counterfeit and substandard products from entering the market. However, existing detection systems
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for aluminum can spray codes are inadequate, often exhibiting low detection efficiency and high costs.
Additionally, factors such as high-speed production lines and varying lighting conditions in industrial
environments present significant challenges for the effective detection and recognition of spray codes
on can bottoms.

In industrial settings, character detection and recognition methods can generally be categorized
into two types: single-character recognition and sequence character recognition. In single-character
recognition, the string of characters in an image is first segmented into individual characters, which are
then recognized one by one and finally recombined. Traditional single-character recognition methods
often rely on manually designed features for character segmentation. For instance, Vandana et al. [2]
proposed an intelligent license plate correction and extraction method based on character features,
achieving adaptive detection of character contours. However, this method requires manual adjustment
of constraints for license plates with large tilt angles, which significantly increases the workload during
the preparation phase. The shape and size of characters can vary greatly in real-world scenarios,
and traditional sliding window methods can only handle horizontal characters, failing to accurately
detect and locate non-horizontal characters. On the other hand, deep learning-based single-character
recognition methods can automatically learn features through neural networks, demonstrating supe-
rior performance in large datasets and complex environments. For example, Ge et al. [3] addressed
the issue of motion distortion in dot-matrix characters on steel billet surfaces by proposing a multi-
directional line scanning method to determine the boundaries between adjacent dot-matrix characters.
They also employed a point cloud registration method to recognize characters that are prone to
deformation. However, this method requires a highly controlled lighting environment, leading to
instability in character matching accuracy. Veit et al. [4] utilized the Convolutional Recurrent Neural
Network (CRNN) algorithm to recognize identification codes on chip surfaces. Since their approach
does not involve character-level annotation and segmentation, it significantly reduces the labeling
workload during the preparation phase. However, this algorithm has certain limitations when handling
long character sequences and shows some shortcomings in the timeliness of character recognition.
Guan et al. [5] addressed the challenge of locating bent characters on metal parts in industrial
settings by proposing an optimized feature attention network, which significantly improved the quality
of character candidate regions. However, this method may not fully cover the complete area of
small targets within the candidate regions, potentially leading to missed detections. Niu et al. [6]
replaced the Visual Geometry 16-layer network (VGG16) network in the Connectionist Text Proposal
Network (CTPN) model with a Residual Network (ResNet) [7] network and incorporated an attention
mechanism to capture contextual information, thereby enhancing the robustness of the detection
algorithm in multilingual environments. However, this algorithm performs poorly when detecting
blurred text or large-font characters.

Based on the analysis above, this paper develops a recognition network specifically tailored to the
characteristics of can bottom spray codes on high-speed conveyor belts. We propose a detection and
recognition algorithm for can bottom spray codes, based on an improved Differentiable Binarization
Network (DBNet) [8] and the Scene Visual Text Recognition (SVTR) [9] algorithm. In the detection
phase, we enhance DBNet by integrating residual attention convolutions and dilated convolutions
to design an Attention and Dilation Convolutions Path Aggregation Network (AD-PAN) feature
pyramid structure. This approach addresses the challenges of small and multi-scale can bottom spray
code regions by fusing multi-scale features and expanding the receptive field, thereby improving
the robustness of the detection process. For the recognition phase, we employ the SVTR sequence
recognition network, creating an end-to-end model for training to enhance the accuracy of can bottom
spray code recognition. Additionally, spray code data was collected from a production line at a canned
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food factory, and a corresponding dataset was constructed. Comparative experiments conducted on
this dataset confirmed that the proposed algorithm achieves high recognition speed and accuracy.

2 Related Work

Can bottom spray code recognition is a form of Optical Character Recognition (OCR), specifically
focused on the OCR recognition of particular character texts. In this field, several methods utilizing
deep learning have already been developed and have achieved promising results.

2.1 Text Detection

Text detection is essentially a specialized form of object detection. In the field of object detection,
common models include You Only Look Once (YOLO) [10], Faster Region-based Convolutional
Neural Networks (Faster-RCNN) [11], and others. These models have undergone continuous opti-
mization and improvement, becoming quite mature and capable of handling most detection tasks.
However, their detection results are typically represented as horizontal rectangular boxes. For targets
such as inclined text strings, these rectangles often need to include a large amount of irrelevant
background to fully enclose the text, which not only increases the complexity of subsequent processing
but may also negatively impact the accuracy of text recognition. Liu et al. [12] used two Bezier curves
to form the top and bottom edges of the text box in Adaptive Bezier-Curve Network (ABCNet),
replacing the traditional text box. A Bezier curve can represent a curve through several control points,
allowing the curve to be located by predicting the coordinates of these points, thereby reducing the
interference of extraneous background in the results. Yao et al. [13] approached text localization
holistically, treating text detection as a semantic segmentation problem. They directly generated pixel-
level prediction results from the input image and obtained text detection results through further post-
processing. This method adapts well to curved and deformed text in natural scenes. Shi et al. [14]
defined text as two detectable elements, segments and links, where a segment is typically a word
or character. By aggregating the predicted segments based on the links, text lines can be obtained.
Liao et al. [15] proposed a rotation-sensitive regression detector that extracts rotation-sensitive features
through convolutional kernels in an active rotation regression branch. By pooling these rotation-
sensitive features, the classification branch can extract rotation-invariant features, thereby enhancing
the neural network’s ability to detect text at different angles and orientations. Liao et al. [16] also
proposed an end-to-end scene text detection method that does not require additional post-processing
beyond non-maximum suppression, thus improving the speed of text detection.

The literature [17] introduced an innovative Efficient and Accurate Scene Text Detection (EAST)
network model, which is capable of detecting quadrilateral text or text lines in any direction and
shape within an image. The EAST model simplifies the detection process, completing detection in
just two steps: using a fully convolutional network (FCN) and non-maximum suppression (NMS).
This effectively reduces detection time and eliminates redundant intermediate processes. However, the
model has lower accuracy in locating long text and multiple text instances, making it unsuitable for
the requirements of this study.

In the literature [8], the authors introduced DBNet, an innovative detection framework designed
to enhance the detection capabilities of targets in complex scenes by combining instance segmentation
and object detection methods. DBNet employs a multi-scale feature fusion mechanism that captures
target features across various resolutions and precisely locates target boundaries through efficient
instance segmentation. Additionally, the authors proposed a module called Differentiable Binarization
(DB), which performs binarization within the segmentation network. By optimizing the DB module,
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the segmentation network can adaptively set binarization thresholds, simplifying subsequent process-
ing steps and improving text detection performance.

When text occupies a small portion of the image, a text detection step is necessary. In this
experiment, using a simple rectangular bounding box to locate the text is sufficient to meet the
requirements.

2.2 Text Recognition

The current Encoder-Decoder framework is the mainstream approach in the field of text recog-
nition. In the ASTER deep learning model, its recognition module is built based on this framework.
During the encoding stage, convolutional neural networks (CNN) work in tandem with bidirectional
long short-term memory networks (Bi-LSTM) to extract features and capture contextual information
from the text. In the decoding stage, long short-term memory networks (LSTM) and attention
mechanisms further refine these features to generate the final recognition results. By utilizing recurrent
neural networks (RNN) and their improved variants, the contextual relationships within the text can
be effectively exploited, significantly improving text recognition accuracy [18]. However, the length
of the text string can impact the model’s recognition performance, as evidenced by the test results
from the An Attentional Scene Text Recognizer (ASTER) network. When the string length exceeds
11 characters, accuracy tends to decline. Specifically, when the string length reaches 14 characters, the
accuracy drops significantly, down to around 50%.

In recognition tasks, another approach is to segment the image containing the text into individual
characters, using methods like object detection to separately locate and classify each character. This
method has certain advantages when dealing with irregular text, as it does not require text rectification;
instead, it directly classifies each character and combines the results into a string according to specific
rules. Shi et al. [19] proposed a spatial transformation method that can convert distorted text lines into
a form that is easier for subsequent networks to process, reducing the difficulty of text recognition
and improving the network’s robustness in handling distorted text. Baek et al. [20] demonstrated
the feasibility of using only a small amount of real data for natural scene text recognition tasks.
They explored the improvement of traditional training methods for natural scene text recognition
through semi-supervised and self-supervised approaches, while also experimenting with various data
augmentation strategies to make the most of the limited real data. Du et al. [21] used certain techniques
to enhance model performance while limiting model size, proposing a very lightweight character
recognition model capable of recognizing most Chinese characters, letters, and numbers. Hu et al. [22]
proposed an attention-guided CTC model to learn better feature representations. This method retains
the fast inference speed of the CTC model while also achieving good robustness in natural scene text
recognition tasks. The convolutional character networks (CharNet) [23] network is an end-to-end
text detection and recognition model that integrates both tasks. This algorithm demonstrates strong
robustness in text detection and recognition within complex scenes and has achieved several state-of-
the-art (SOTA) results on various datasets. CharNet first employs a 50-layer residual network from
Reference [7] and two Hourglass structures [24] as the backbone to extract features from the input
image. The network then splits into two major branches: one branch detects the bounding box of the
text string, while the other detects and recognizes individual characters. Finally, the network combines
all the detected characters within the same bounding box to form a complete string and outputs the
result. Although end-to-end scene text recognition methods were implemented in studies [25], they still
lack practicality due to the complex training process and slow computation speed [26]. Moreover, these
methods generally rely on manually designed network architectures, and even experienced researchers
often find it challenging to design a reasonable neural network structure in a short amount of time.
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In summary, there are two methods for recognizing can bottom spray codes. The first method
involves text localization, where the target text is extracted from the original image, and the relevant
region is cropped out. The text is then recognized using a method based on recurrent convolutional
networks. The second method uses object detection algorithms for character-level localization and
classification, after which the characters are arranged according to their coordinates to form the
recognized result string. Since can bottom spray codes typically consist of two lines of text in a single
image, this paper adopts an improved localization-based recognition method.

3 The Whole Structure of Can Bottom Coding Detection and Recognition Algorithm

In this paper, we improve the DBNet model and use the enhanced algorithm to output the
bounding box containing the spray code in each can bottom image. After cropping, the spray code
image is input into the SVTR network, which then recognizes the characters it contains. Finally, the
original image, bounding box location, and recognized character content are output simultaneously.
The structure of the can bottom spray code detection and recognition algorithm is shown in Fig. 1.

Input Detection(DB)

Image preprocessing

Recognition(SVTR)

Figure 1: Overall structure of can bottom coding detection and recognition algorithm

4 Method
4.1 Improved the Detection Algorithm of DBNet Can Bottom Code

Considering that the spray code characters occupy a relatively small portion of the captured
image, approximately 6%, and that the conveyor belt operates at high speed, this task falls under
the category of small object detection at high speed. Therefore, this section introduces an A-PAN
(attention and dilation convolutions path aggregation network) structure, designed using residual
attention convolutions and dilated convolutions, to enhance multi-scale localization capabilities and
expand the receptive field. The improved DBNet algorithm for can bottom spray code detection is
illustrated in Fig. 2.

According to the DBNet model’s processing flow, the captured can bottom spray code image is
processed through the A-PAN structure to generate four feature maps, each with dimensions that are
1/4, 1/8, 1/16, and 1/32 of the input image’s height and width. These feature maps are then upsampled
to 1/4 of the input image’s height and width, and their features are fused to produce a feature map that
is 1/4 the size of the original image. This 1/4 feature map is then used to generate the Probability map
and Threshold map. The Probability map and Threshold map undergo a differentiable binarization



1114 CMC, 2025, vol.82, no.1

operation to produce an Approximate binary map. Finally, the loss function is computed based on the
binarized map generated by the model, and model training is conducted through backpropagation.

Figure 2: Improved DBNet can bottom coding detection algorithm structure diagram

As illustrated in Fig. 2 and detailed in Fig. 3, the A-PAN structure primarily serves to enhance
and aggregate the image feature pathways, thereby facilitating the propagation of low-level localization
information. The input image is processed by the backbone network to generate feature maps at five
different scales: {C1, C2, C3, C4, C5}. To address the issue of insufficient feature representation
capacity in the backbone network’s output, a residual squeeze excitation (RSE) mechanism was
introduced, and the convolutional layers in the model’s lateral connections were replaced with residual
attention convolutions. Feature map C5 is transformed into feature map P5 through residual attention
convolutions and then fused with other lower-level features via a top-down propagation pathway to
produce {P2, P3, P4, P5}. The newly generated feature maps corresponding to {P2, P3, P4, P5} are
denoted as {N2, N3, N4, N5}, where N2 is identical to P2. Additionally, Path Aggregation Network
(PANet) [27] shortens the information pathway between low-level and high-level features.

Figure 3: A-PAN structure diagram

The residual attention convolution structure in Fig. 3 is detailed in Fig. 4. In the A-PAN structure,
due to the different convolution kernel sizes used during upsampling and downsampling, a 1 × 1
convolution is applied to Ci to obtain a consistent channel dimension (256). Pi is then processed with a
3 × 3 convolution, resulting in a channel dimension of 256 as well. Subsequently, the feature map
passes through a sequence of layers: a 1 × 1 convolution layer, a ReLU activation layer, another
1 × 1 convolution layer, and a Sigmoid activation layer, generating corresponding spatial weights
for each feature map. The resulting weight maps are multiplied with the feature maps that have
been merged by channels, and the resulting feature maps are added back to the input feature
maps to produce the final feature map. This final feature map, enriched with multi-scale contextual
information, helps mitigate the information loss that can occur due to the reduction in the number of
channels.
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Figure 4: Residual attention convolution structure diagram

In this section, a tree-structured hierarchy, as shown in Fig. 5, is designed within the A-PAN
structure to integrate multi-scale and contextual information. The tree-structured hierarchy utilizes
dilated convolutions to provide different receptive fields for the input feature maps. It then employs the
add operation to merge the feature information from the three parallel branches, thereby enhancing the
model’s multi-scale image prediction capability. In this structure, the dilated convolutions in the three
parallel branches have the same convolution kernel size but different dilation rates. Specifically, each
dilated convolution has a kernel size of 3 × 3, and the dilation rates d for the different branches are 1, 3,
and 5, respectively. The multi-branch dilated convolution feature fusion helps the model more quickly
extract the target’s edge features, enhancing the clarity and accuracy of boundaries, and speeding up
target localization, which is particularly critical for the detection of small targets.

Figure 5: Hierarchical tree structure diagram
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4.2 SVTR End-to-End Coding Recognition Algorithm

In the process of can bottom spray code recognition, various factors such as lighting conditions
and the instability of the spray coding equipment can result in issues like low character contrast,
blurred characters, or connected characters (as shown in Fig. 6). These challenges significantly
complicate accurate code recognition. To address these issues, this paper introduces a SPIN correction
network based on convolutional neural networks, which transforms the spray code character images in
the color space. This network is integrated with the spray code recognition network to form the SPIN-
SVTR end-to-end network. During model training, this integration allows the model to adaptively
extract the necessary features from the input images, thereby improving the overall performance of
spray code recognition. The structure of the SPIN network is shown in Fig. 7.

Figure 6: Inkjet characters of different types of images. (a) A blurry image taken due to changes in
lighting; (b) Conjoined characters caused by the inkjet device; (c) Inkjet characters with stains

Figure 7: SPIN network structure diagram

The improved DBNet model can segment the bounding boxes of spray codes from images captured
on a high-speed conveyor. Additionally, the SPIN correction network learns the mapping function of
the input images to adjust the color of the spray code character images. The SPIN correction network
represents all pixels with the same brightness in the spray code character image as a structural pattern.
This network consists of two parts: the Structure Preserving Network (SPN) and the Auxiliary Inner-
offset Network (AIN). The SPN component addresses color distortion issues caused by variations in
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text brightness due to lighting conditions in the spray code images. The AIN is an auxiliary network
that distinguishes between color shifts caused by noise patterns such as connected characters and
blurred characters resulting from spray coding equipment issues.

The Structure Preserving Network (SPN) essentially preserves the image structure by filtering the
brightness levels of the input image. In the transformed image, all pixels with the same brightness
level in the original image maintain the same brightness level. In this section, the structural pattern
is defined as the set of pixels in the image where the brightness level is l: {(i, j)|x (i, j) = l}. The SPN
transforms the pixel brightness of the image on a per-pixel basis into different intensity levels, thereby
separating text patterns from non-text patterns while mapping the text patterns to similar brightness
levels. This process aggregates different text patterns. In the SPN structure, given an input image x ∈ I ,
let x′ ∈ I ′ represent the transformed image. The transformation T from I to I ′ can be defined as shown
in Eq. (1).

x′ (i, j) = T [x (i, j)] (1)

In the equation, x(i, j) and x′(i, j) represent the brightness of the input and output images at the
coordinate point (i, j), respectively. The image transformation by the SPN is specifically described by
Eq. (2).

x′ = T (x) = sigmoid

(∑
i

W S
(i)HSPN (x) xβi

)
(2)

In the equation, W S and HSPN() represent the partial weights and feature extractor of the final fully
connected layer in the SPN, respectively. wsHSPN() is the (2K+1) dimensional feature vector output by
the final fully connected layer.

Since the SPN does not consider that the brightness of noise patterns might be similar to that of
text patterns, it can lead to pattern confusion. However, the AIN can generate a color offset xoffset(i, j)
at each coordinate point (i, j) to mitigate this issue. Specifically, the AIN first segments the image and
then calculates the offset value for each individual block. It is important to note that all offset values
are activated by a sigmoid function and are mapped to the size of the input image using an upsampling
operation. In the AIN, the SPN generates the color offset at each coordinate point as shown in Eq. (3).

g (x) = (1 − α) ⊗ x + α ⊗ xoffsets

α = sigmoid
(
W ZHSPN (x)

)
xoffsets = W αHAIN (x) (3)

In the equation, WZ is the partial weight of the last fully connected layer in SPN, Wα is the weight
parameter of AIN, HAIN() is the feature extractor, ⊗ is the Hadamard product. α is a learnable update
gate that receives information from the SPN and senses the difficulty of different tasks. It balances the
input image x with the predicted color offset. g(x) is the updated image. With the assistance of AIN,
the enhanced transformation of the updated image is performed as shown in Eq. (4).

x′ = T (x) = sigmoid

(∑
i

ωi (g (x)) β i

)
(4)

As shown in Table 1, after SPIN preprocessing, the pixel brightness of the image characters has
been effectively enhanced, while the background brightness has been suppressed. This results in a
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narrower grayscale range for the target area and a broader grayscale range for the background area,
making the brightness contrast between the background and the target more pronounced.

Table 1: SPIN preprocessed image comparison effect

Number Inkjet image original After SPIN pretreatment

1

2

3

In the code recognition network, the SVTR algorithm is used, which was introduced in Pad-
dleOCRV3 [28] as a character recognition network based on transformer encoding and Connectionist
TemPoral Classification (CTC) decoding. This network acquires multi-scale features through multi-
stage down-sampling and processes and fuses these features using a self-attention mechanism and a
multi-layer perceptron. The structure of the SVTR algorithm is shown in Fig. 8.

Figure 8: SVTR algorithm structure diagram

In the encoding process illustrated in Fig. 8, the spray code images corrected by the SPIN network
first undergo feature extraction through a Patch Embedding layer. The feature information is then
progressively transmitted and aggregated through multiple stacked Mix Blocks. Within these Mix
Blocks, Merging downsampling operations are performed to reduce the height of the feature maps,
thereby decreasing computational complexity. The Mix Blocks are divided into two parts: Local
Mix Block and Global Mix Block. The Local Mix Block utilizes a sliding window approach for
self-attention computation, which is used to capture the morphological features of the spray code
characters as well as the related features between different parts of the characters. On the other hand,
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the Global Mix Block employs a global self-attention mechanism to assess the dependencies among all
character features and to mitigate the influence of non-character features. Finally, the fully connected
layer outputs the character features processed by the Mix Blocks as a feature sequence. During the
subsequent CTC decoding process, consecutive duplicate labels in the feature sequence are merged
into a single label, blank labels are removed, and the character sequence with the highest confidence
is selected as the output.

4.3 Model Compression Method

Complex models are conducive to improving model performance, but also lead to some redun-
dancy of parameters in the model. The method of model compression can not only solve the problem
of deploying large models on resource-limited devices, but also improve model reasoning speed, reduce
storage and computing costs while reducing the number of model parameters, and maintain high
performance. In this study, considering that the future model will be deployed in some resource-
constrained scenarios, PaddleSlim under PaddlePaddle deep learning suite is adopted for model
quantification and model pruning to reduce the number of model parameters.

Model pruning improves the energy efficiency and storage of the neural network by finding the
right connections, reducing the amount of storage space and computation required by the neural
network by learning only the important connections without compromising accuracy. The method
produces the final network by pruning unimportant connections and then retraining the remaining
sparse network. The comparison of model neurons before and after pruning is shown in Fig. 9.

Before pruning After pruning

Pruning 

synapses

Pruning 

neurons

Figure 9: Comparison of neuron pruning results

Model quantization is to convert floating-point algorithm of neural network to fixed-point
number to reduce the redundancy, reduce the computational complexity of the model and improve the
inference performance of the model. Through model quantization, the model size can be significantly
reduced with a certain loss of accuracy, which is convenient for deployment in limited resource devices.
Model quantization provides online quantization and offline quantization, which can be selected
according to the actual scene. The model quantization flow chart is shown in Fig. 10.
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Figure 10: Model quantization flow chart

5 Experimental Results and Analysis

The proposed algorithm is implemented using the PaddlePaddle-gpu 2.5.1 framework, with the
programming language version being Python 3.7.16. The operating environment is the Linux Ubuntu
20.04 operating system, with a CPU model of Intel(R) Core(TM) i7-10700K running at a base
frequency of 3.80 GHz. The server is equipped with 64 GB of DDR4 RAM and a Nvidia RTX A5000
graphics card with 24 GB of VRAM.

5.1 Datasets

Since the can bottom spray coding character dataset (CPS dataset) is not publicly available at
present, the can bottom spray coding character dataset (CPS Dataset) selected in this paper is a real
picture of the factory roller table scene. The shot data set contains characters blurred or connected
characters in the bottom of the can ink-jet code due to the influence of lighting conditions, inkjet
equipment and other factors. The dataset was taken over three periods, including 30 working days
and a total of 10 work scenes, each of which contained 50 to 100 images. In addition, to verify the
robustness of the proposed model, the complete model structure was migrated to the Box production
date inkjet dataset (BPD dataset) for verification.

5.2 Improved Testing and Evaluation of DBNet Detection Algorithm

In the image code detection stage, an improved DBNet algorithm is used for network training
on the code images. The input image size is uniformly adjusted to 640 × 640, with ResNet18 as the
backbone network. The learning rate is set to 0.00001, and the batch size for input to the network is 8.
The Adam optimizer is used, and the maximum number of iterations is set to 500. For the code image
detection task, the performance of the network is evaluated using three metrics: Precision, Recall, and
Hmean.

To validate the effectiveness of the improved DBNet code image detection algorithm proposed in
this study, a comparative experimental analysis was conducted against the original DBNet algorithm.
The experimental results are illustrated in Fig. 11, where Fig. 11a shows the detection results using
the original DBNet algorithm, and Fig. 11b presents the results obtained from the improved DBNet
algorithm proposed in this paper. From the comparison, it is evident that in the original DBNet
detection results, the bounding boxes did not effectively enclose all the characters, leading to instances
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of missed detection. The root cause of this issue lies in the fact that certain character features did not
respond, causing the character detection algorithm to fail to learn the features of the missed characters
during training. In contrast, in Fig. 11b, the improved DBNet code detection algorithm significantly
enhanced the feature representation capability for character regions, resulting in the bounding boxes
accurately enclosing all characters and effectively addressing the missed detection problem observed
in the original DBNet algorithm.

(a)

(b)

Figure 11: Comparison of inkjet image detection results. (a) Original DBNet algorithm detection
results; (b) Improved DBNet algorithm detection results

The evaluation metrics of the improved DBNet code detection algorithm proposed in this paper,
the original DBNet algorithm, and the mainstream open-source text detection algorithms EAST and
PSENet [29] are compared in Table 2.

Table 2: Performance comparison between improved detection algorithm and advanced algorithm

Algorithm Precision/% Recall/% Hmean/% FPS Params/M

EAST [17] 93.47 93.85 93.66 30.97 49.3
PSENet [29] 97.21 90.89 94.67 35.43 47.5
DBNet [8] 97.0 93.18 95.3 30.79 49.5
DBNet-L 99.13 96.72 97.6 26.32 74.2
Ours 99.01 97.1 97.32 30.5 52.7

As can be seen from Table 2, the DBNET-L inkbrush image detection algorithm improved by
DBNet in this paper is superior to other detection algorithms in Table 2 in terms of Precision,
Recall and Hmean indexes, when a part of FPS is lost and a part of parameter number is increased,
indicating that the proposed algorithm has better robustness and accuracy. Specifically, compared
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with the original DBNet algorithm, the DBNET-L algorithm used in this paper has a 2.13% increase
in Precision accuracy, a 3.54% increase in Recall accuracy and a 2.3% increase in Hmean accuracy.

Secondly, it is found that the DBNet-L model is too complex, and there is a negative correlation
between the complexity of the model structure and the actual performance. Considering that the future
model needs to be deployed in practical application scenarios, this paper adopts PaddleSlim model
pruning technology to compress DBNet-L to form the final model structure. As shown in the table
above, after pruning the model, the number of parameters of the model is reduced by 29%, but its
performance is still better than that of DBNet-L. Compared with DBNet-L, the pruning model has a
slight decrease in Precision and Hmean, while a slight increase in Recall. Although these changes have
little effect on the final detection performance of the actual model, the pruned model has a higher
FPS, higher detection accuracy and nearly the same FPS performance compared to other benchmark
models. It was verified that PaddleSlim model pruning could reduce the complexity of the model and
obtain excellent detection accuracy, which confirmed that the method adopted in this experiment could
be better used in the real scene.

5.3 SVTR Coding Recognition Algorithm Test and Evaluation

During the code image recognition phase, most images in the collected dataset have an aspect ratio
of 5:1. Therefore, the input image size is set to [40, 200] for this phase. A custom dictionary containing
36 characters, including digits 0–9 and letters A–Z, is used for network training. Additionally, the
learning rate is set to 0.00001, the batch size is set to 128, the Adam optimizer is used, and the maximum
number of iterations is set to 200.

Common evaluation metrics used in character recognition tasks include Word Accuracy (W) and
Character Accuracy (C). Word Accuracy (W) represents the ratio of correctly recognized words to the
total number of words, as shown in Eq. (5).

W = Wi

Wall

(5)

In this equation, Wi represents the total number of correctly recognized words, and Wall represents
the total number of words to be recognized.

Character accuracy rate represents the ratio of accurately recognized characters to the total
number of characters, as shown in Eq. (6).

C = Ci

Call

(6)

In this equation, Ci represents the total number of correctly matched characters, and Call represents
the total number of characters to be recognized.

The results comparing the evaluation metrics of the improved SVTR end-to-end code recognition
algorithm proposed in this paper with the original SVTR algorithm, the algorithm in Reference [4],
VST [30] algorithm and the mainstream open-source text recognition algorithm ABINet [31] are shown
in Table 3.

From Table 3, it can be concluded that the SVTR-L end-to-end spray code recognition algorithm,
improved from the SVTR algorithm in this paper, achieves higher image recognition accuracy with
minimal FPS loss and parameter addition. Specifically, the model’s character accuracy improved
by 2.75%, and word accuracy increased by 0.39%. Moreover, the improved SVTR code recognition
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algorithm outperforms other recognition algorithms in terms of parameter count and FPS. Compared
to the model in Reference [4] and the ABINet algorithm, the character recognition accuracy is higher
by 13.54% and 3.57%, respectively, and the code recognition accuracy is higher by 2.65% and 0.84%.
The benchmark model with the best performance is the VST model, which uses a visual semantic
converter to jointly model semantics and visual information to achieve the interaction between
learning visual and semantic features. The proposed model in this paper improves word accuracy and
character accuracy by 0.35% and 0.61% respectively compared to VST.

Table 3: Performance comparison between improved recognition algorithm and advanced algorithm

Algorithm W/% C/% FPS Params/M

Reference [4] 96.71 84.81 90.2 110.6
VST [30] 98.1 95.74 137.5 94.1
ABINet [31] 98.52 94.78 130.5 147.6
SVTR [9] 98.97 95.6 141.2 90.7
SVTR-L 99.36 98.35 136.3 99.9
Ours 99.26 98.21 140.4 93.1

In order to further control the number of model parameters, PaddleSlim’s model quantization
method was adopted. Through this method, the parameter count of the SVTR-L model was reduced
by 6.8% compared to SVTR, while the model achieved a slight improvement in overall performance.
Specifically, the quantized model showed a slight decrease in character accuracy and word accuracy
compared to SVTR-L, while the recognition FPS showed a slight increase. Overall, the final model
formed through model quantification can better meet the requirements while saving computational
resource costs, providing a more efficient and practical solution for practical applications.

5.4 Ablation Experiment

To verify the effectiveness of the improvements introduced in the detection stage of the algorithm
proposed in this paper, ablation experiments were conducted. The effectiveness of the A-PAN,
RSECONV, and tree-like hierarchical structures was compared using the code image test set. The
results of the ablation experiments are shown in Table 4.

Table 4: Comparison table of ablation results

A-PAN RSECONV Hierarchical
tree structure

SPIN Precision/% Recall/% Hmean/% FPS Params/M

√ √ 96.25 93.9 95.62 30.28 50.5√ √ √ 98.76 94.31 96.16 28.59 51.1√ √ √ √ 99.13 96.72 97.6 26.32 74.2√ √ √ 97.06 93.65 95.22 26.4 69.4

From Table 4, it can be observed that when only the A-PAN structure is added to the original
DBNet algorithm, the detection precision and FPS slightly decrease, but the recall rate and Hmean
indicators improve, and the model’s parameters increase by 1 M. With the additional incorporation
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of the RESCONV attention mechanism, despite a slight increase in model parameters and a decrease
in FPS, there is an improvement in precision, recall rate, and Hmean indicators, with the enhanced
model outperforming the original by 1.76%, 1.13%, and 0.86%, respectively. This effectively suppresses
background noise and enhances the expression of target features. Further adding the tree-like
hierarchical structure results in precision, recall rate, and Hmean improvements of 2.13%, 3.54%,
and 2.3%, respectively. Additionally, the use of dilated convolutions with different dilation rates
significantly improves the model’s positive sample coverage. Although there is an increase in model
parameters and a reduction in FPS, it still meets the practical requirement of FPS greater than 24 for
code image generation. To verify the model’s performance under significantly degraded data quality
conditions, we conducted an experiment by adding other modules while removing only the SPIN image
enhancement module. The results showed that although the model’s performance indicators declined,
there was still a slight improvement compared to the original model. This outcome not only confirmed
the important role of the SPIN module in image enhancement but also provided an initial exploration
of the model’s behavior when faced with degraded data quality. Based on these experimental results, it
is clear that the improved detection algorithm proposed in this paper effectively enhances the feature
extraction capability and detection performance of code images. It also demonstrated that the model
possesses a certain degree of robustness under degraded conditions. Through this experiment, the
model’s performance evaluation under low-quality data conditions was further refined.

6 Discussion

In the current discussion of Optical Character Recognition (OCR) technology, the development
of text detection and text recognition are two core topics. With the application of deep learning
technology, text detection has shifted from traditional rule-based methods to end-to-end methods
based on deep learning, significantly improving the accuracy and efficiency of detection. At the same
time, text recognition technology is constantly advancing. By using more complex neural network
structures and large amounts of training data, modern OCR systems can better process text in various
fonts, languages, and complex backgrounds.

Despite significant progress, OCR technology still faces some challenges, such as processing low-
quality images, recognizing multilingual mixed text, and diverse font variations. During the research
process, in order to verify the robustness of the model structure in this article, the structure was
transferred to the Box production date inkjet dataset (BPDate dataset). The model detection results
are shown in Table 5, and the recognition results are shown in Table 6.

In this study, the pre-trained model based on the CPS dataset was migrated to the BPD dataset
and fine-tuned on the BPD dataset. As can be seen from Tables 5 and 6, the fine-tuned model still
outperforms the other models on the other datasets.

In the process of model deployment, in order to ensure that the model can have a good recognition
and detection ability, it is crucial to build a model training scenario in the field production environment
that is as close as possible to the actual application scenario. This strategy can help improve the
generalization ability and adaptability of the model, so that various situations can be predicted and
processed more accurately in the actual production scenario. In order to achieve this goal, through
the in-depth analysis of the production environment, the assessment of the influencing factors of the
production environment, and the prediction of possible abnormal situations.
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Table 5: Test model performance comparison tables in multiple data sets

Dataset Method Precision/% Recall/% Hmean/% FPS

BPD dataset EAST [17] 85.52 84.12 85.81 31.2
PSENet [29] 91.61 86.25 88.37 36.13
DBNet [8] 91.5 89.35 91.83 32.33
DBNet-L 93.23 90.81 92.56 28.61
Ours 93.71 91.2 92.18 31.1

CPS dataset EAST [17] 93.47 93.85 93.66 30.97
PSENet [29] 97.21 90.89 94.67 35.43
DBNet [8] 97.0 93.18 95.3 30.79
DBNet-L 99.13 96.72 97.6 26.32
Ours 99.07 97.1 97.32 30.5

Table 6: Recognition model performance comparison tables in multiple datasets

Dataset Method W/% C/% FPS

BPD dataset Reference [4] 81.23 83.22 88.81
VST [30] 86.64 87.94 136.3
ABINet [31] 88.25 89.82 134.3
SVTR [9] 88.55 89.81 142.6
SVTR-L 90.12 91.2 135.8
Ours 90.3 90.64 132.7

CPS dataset Reference [4] 96.71 84.81 90.2
VST [30] 98.1 95.74 137.5
ABINet [31] 98.52 94.78 130.5
SVTR [9] 98.97 95.6 141.2
SVTR-L 99.36 98.35 136.3
Ours 99.26 98.21 140.5

After model deployment, continuous adjustment of model parameters and optimization algo-
rithm using data sets can improve the accuracy and robustness of the model in different scenarios.
At the same time, the model is continuously monitored and regularly updated and maintained. This
includes steps such as collecting new data, retraining the model, and adjusting the model parameters.
Through model iteration and optimization, it can ensure that the model always maintains good
recognition and detection ability in the production environment.

7 Conclusion

This article studies the problem of inkjet image detection and recognition based on improved
DBNet and SVTR algorithms. Among them, the A-PAN structure was designed based on the inkjet
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image detection algorithm, and residual attention convolution and dilated convolution were used to
greatly improve the accuracy of inkjet image detection; Integrating the SPIN correction network into
the coding image recognition algorithm for end-to-end training effectively alleviates the white balance
problem caused by changes in lighting intensity and background noise in the collected coding images.
By comparing the model performance on two datasets using two types of real-life collected spray code
images, the experimental results show that the algorithm proposed in this paper has the following
significant advantages: the compressed spray code image detection model can effectively detect the
spray code at any position on the roller conveyor in the image while reducing the number of model
parameters, and the Hmean of spray code detection reaches 97.32%, with a frame value of 30 frames
per second, proving that the detection algorithm has good representational power; After the SPIN
preprocessing method, the model effectively improved the image quality of low-quality characters such
as changes in lighting conditions and connected characters in characters, proving that the model has
good robustness; The recognition rate of the inkjet image detection and recognition algorithm used
in this article reaches 98.21%. In the next research work, after model deployment, the model will be
trained on other scenario data to gradually enhance its transferability, which can meet the needs of
more scenarios for spray code detection and recognition.
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