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ABSTRACT

Underwater target detection is extensively applied in domains such as underwater search and rescue, environmental
monitoring, and marine resource surveys. It is crucial in enabling autonomous underwater robot operations and
promoting ocean exploration. Nevertheless, low imaging quality, harsh underwater environments, and obscured
objects considerably increase the difficulty of detecting underwater targets, making it difficult for current detection
methods to achieve optimal performance. In order to enhance underwater object perception and improve target
detection precision, we propose a lightweight underwater target detection method using You Only Look Once
(YOLO) v8 with multi-scale cross-channel attention (MSCCA), named YOLOv8-UOD. In the proposed multi-
scale cross-channel attention module, multi-scale attention (MSA) augments the variety of attentional perception
by extracting information from innately diverse sensory fields. The cross-channel strategy utilizes RepVGG-
based channel shuffling (RCS) and one-shot aggregation (OSA) to rearrange feature map channels according to
specific rules. It aggregates all features only once in the final feature mapping, resulting in the extraction of more
comprehensive and valuable feature information. The experimental results show that the proposed YOLOv8-UOD
achieves a mAP50 of 95.67% and FLOPs of 23.8 G on the Underwater Robot Picking Contest 2017 (URPC2017)
dataset, outperforming other methods in terms of detection precision and computational cost-efficiency.
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1 Introduction

One of the key factors for success in ocean exploration and the precise autonomous operation
of intelligent robots is the availability of highly accurate underwater target detection technology
that is capable of real-time processing [1]. However, certain uncontrollable factors render underwater
target detection an exceedingly challenging task. For instance, underwater environments are inherently
uncertain, and factors such as randomly distributed sand, rocks, and seaweed underwater may
interfere with correctly identifying targets. Furthermore, underwater organisms have evolved over
time and often have protective colors that blend in with their environment, rendering them visually
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challenging to identify and distinguish. Also, because water absorbs and scatters light, underwater
environments can lead to low contrast, color distortion, texture degradation, and blurred details in
images, directly affecting the image’s quality. The combination of these challenges creates extreme
background interference, making detecting underwater targets difficult [2,3].

The rapid advancement of deep learning has dramatically accelerated the promotion of object
detection technology. Current target detection methods mainly evolve into two categories: region
proposal-based methods (two-stage detection methods) [4] and regression-based methods (one-stage
detection methods) [5,6]. As a significant example of one-stage detection algorithms, the You Only
Look Once (YOLO) series [7] have been extensively researched and widely adopted in computer vision
tasks due to its high precision, rapid detection speed, and flexible architecture advantages. The latest
YOLOv8 method [8] not only outperforms earlier versions, such as YOLOv5, in terms of detection
performance, but also adopts a more optimized model architecture than YOLOv7, which effectively
reduces redundant computations [9]. Therefore, it has been successfully applied to underwater vehicle
detection and many other fields.

For the underwater target detection task, considering the detection accuracy and processing speed
of the model, we chose the YOLOv8 network underwater target detection baseline network. However,
YOLOv8 neglects the enhancement and refinement of multi-scale features for densely distributed
underwater objects, leading to inaccurate localization and classification [10]. In addition, there are
many improvements to YOLOv8 as a baseline that only consider the detection accuracy of the model
without considering the mount of computation, which may lead to the loss of the original lightweight
advantage of the model.

In this paper, we propose a multi-scale cross-channel attention-guided underwater target detection
method, YOLOv8-UOD, to achieve precise and efficient underwater target detection. Multi-scale
cross-channel attention uses multi-scale and cross-channel strategies to reduce computational burden
and improve detection accuracy. YOLOv8-UOD demonstrates better performance when dealing with
common challenges in underwater imaging, such as poor lighting conditions and unclear visual
information. The critical contributions of our work are outlined below:

1. This paper proposes YOLOv8-UOD, a lightweight underwater target detection method
designed based on the YOLOv8 model. It is designed to meet underwater target detection’s increased
precision and lightweight needs.

2. We propose a multi-scale cross-channel attention mechanism that incorporates both multi-
scale and cross-channel strategies. The multi-scale approach applies fine, medium, and coarse-grained
attention to enhance the variety of attention perception. The cross-channel strategy uses channel
shuffling and one-shot aggregation cascade methods to reorganize and aggregate all features. We
integrate multi-scale cross-channel attention (MSCCA) into the YOLOv8 to achieve the heightened
precision requirements of detectors for underwater target detection tasks.

3. The experiments show that the YOLOv8-UOD method demonstrates better performance in the
evaluations performed on the Underwater Robot Picking Contest 2017 (URPC2017) dataset, and it
has significant advantages in terms of precision and detection speed compared to YOLOv8 and other
methods.

2 Related Works

Deep learning-based underwater target detection methods mainly fall into two categories: two-
stage and one-stage methods. This section outlines recent progress in these research fields.
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2.1 Two-Stage Underwater Target Detection Methods

Two-stage target detection methods decompose the task into two steps: extracting candidate
regions followed by classifying and accurately localizing the targets. These detection methods surpass
one-stage methods in terms of detection precision and localization precision, but their detection speed
is generally lower than that of the one-stage target detection method. Therefore, many researchers have
focused on improving classic algorithms like region-based convolutional neural network (R-CNN) and
Faster Region-based Convolutional Neural Networks (Faster R-CNN) in recent years [11].

For example, Liu et al. [12] replaced the backbone network of Faster R-CNN with a Transformer
structure while introducing a path aggregation network, enabling better integration of deep and
shallow feature maps. Zeng et al. [13] introduced the Faster Region-based Convolutional Neural
Network with Attention to Object Norms (Faster R-CNN-AON), which integrates an adversarial
occlusion network. This approach improves the detection performance when the sample data is
limited. To address the overlapping and occlusion issues of underwater organisms, Lin et al. [14]
proposed RoIMix, an augmentation technique applied to Faster R-CNN. RoIMix simulates the
overlapping and occlusion of underwater organisms by fusing regions of interest extracted from
multiple images, thus enabling Faster R-CNN to better detect dense objects.

Additionally, Shi et al. [15] replaced the backbone network of Faster R-CNN with the Residual
Neural Network (ResNet). They introduced a Bidirectional Feature Pyramid Network (Bi-FPN)
structure while applying the K-means++ clustering algorithm for anchor box generation, enhancing
multi-scale feature integration and increasing target localization precision. Wang et al. [16] used
Res2Net101 to replace the feature extraction module of Faster R-CNN and introduced Online Hard
Example Mining (OHEM) to address the issue of imbalance between positive and negative samples in
bounding boxes, enabling more accurate and effective detection of underwater objects. Song et al. [17]
introduced Boosting R-CNN, an innovative two-stage detector designed for underwater scenarios,
which tackles the difficulties of detecting underwater targets by incorporating uncertainty modelling
and mining challenging samples.

2.2 One-Stage Underwater Target Detection Methods

One-stage target detection methods convert the detection problem into an end-to-end regression
problem without generating candidate regions. Compared to two-stage detection methods, single-stage
detection methods have a slight gap in detection precision. However, they can achieve near-comparable
precision while significantly enhancing detection speed, making them more suitable for intelligent
devices like underwater robots. The main one-stage target detection methods include the YOLO
algorithm [18] and SSD algorithm [19], which have been widely applied in the field of underwater
target detection due to their excellent performance and high precision.

SSD is one of the essential representatives of one-stage target detection methods, and many
researchers use it for underwater target detection tasks. Ma et al. [20] proposed the MobileNet-SSD,
utilizing a 13-layer depthwise separable convolution as the core feature extractor, achieving rapid and
accurate detection. Li et al. [21] introduced the XC-SSD model, which incorporates a channel-space
attention mechanism to improve the semantic content of high-level feature maps while minimizing
false negatives and false positives.

YOLO is one of the most important representatives of one-stage target detection methods
and a popular research direction for realizing underwater target detection tasks. Chen et al. [22]
integrated channel attention and feature pyramid over a YOLOv4 [23] backbone network to extract
and isolate the most significant weighted multi-scale features, subsequently utilizing these features for
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underwater bio-detection. Cai et al. [24] combined a weakly supervised learning method based on
the YOLOv5 [25] method using two YOLOv5 detectors for training. Using this dual training mech-
anism not only reduces the consumption of computational resources but also improves recognition
precision. Hang et al. [26] suggested the implementation of a global attention mechanism within
the YOLOv5 model to strengthen the backbone network’s feature extraction ability for essential
regions, along with a multi-branch reparameterization structure to enhance the fusion of multi-
scale features. Zhang et al. [27] proposed the CGC-YOLO network, which incorporates a cross-stage
partial convolution block attention module (CSPCBAM), ghost modules, and cluster non-maximum
suppression (Cluster-NMS), achieving efficient processing of blurred objects while maintaining lower
computational costs and faster inference speeds. Lou et al. [28] proposed a new down-sampling
method and integrated it into YOLOv8, which can retain contextual feature information better.
Meanwhile, they improved the feature fusion method of YOLOv8 so that the network maintains more
comprehensive information in the feature extraction process.

3 Proposed Method

In this section, we present YOLOv8-UOD, a lightweight underwater object detection method
based on the YOLOv8 model. This method improves the precision of underwater object detection
and minimizes the computational cost by introducing our multiscale cross-channel attention module.

The network structure of YOLOv8-UOD is depicted in Fig. 1. YOLOv8-UOD consists of three
modules: Backbone, Neck, and Head. The Backbone is responsible for feature extraction, capturing
essential semantic information. The Neck enhances the expression of semantic information through
feature fusion, while the Head is tasked with generating object categories and bounding box positions.
Within the Backbone and Neck, we integrate the multi-scale cross-channel attention module, which
combines multi-scale attention mechanisms with cross-channel strategies. This allows the approach to
precisely identify and locate targets in challenging underwater environments, enhancing the adaptabil-
ity of the YOLOv8-UOD method for underwater detection tasks.

Figure 1: YOLO-UOD network structure
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3.1 Multi-Scale Cross-Channel Attention

In the MSCCA module, in order to make it capable of capturing the overall and detailed features
of multi-scale underwater targets based on the input information, we introduce multi-scale attention
to capture the local and overall details of multi-scale underwater targets, as well as the information
between the target and the background. In addition, we incorporate a cross-channel strategy to
enhance the information flow between different channels across neighboring feature layers. This
involves merging the constant mappings within each block, thereby enhancing the model’s adaptability
to various features., which helps the precise location information to propagate quickly across the
feature layers of both the backbone and neck networks. The structure of MSCCA is shown in Fig. 2.

Figure 2: MSCCA network structure diagram

Fig. 2 illustrates the details of the MSCCA’s components and specific processes. First, the input
image X is passed through a RepVGG [29] to generate the feature map Y . Next, the Csplit module
segments the feature map Y into Y S and Y T . These segmented feature maps are fed into the MSA
module, which performs convolution operations using multiple convolution kernels (e.g., 7 × 1, 1 ×
7, 1 × 11, 11 × 1, 1 × 21, 21 × 1) and combines these features through a weighting mechanism to
merge these features and generate the output Y Sm and Y Tm. Different sizes of convolution kernels in
multiscale convolution are designed to handle the irregular shapes, localized details, and long-edge
structures of underwater targets. Together, these convolutions improve the model’s feature extraction
capabilities and enhance the interaction and refinement of features across different scales.

Next, the features go back into the RCS [30] module to further realize the feature extraction
and channel interaction operations. The RCS module consists of the RepVGG module and channel
shuffling, where the RepVGG consists of a 3 × 3 convolution layer and a 1 × 1 convolution layer
along with the ReLU activation function, and the channel shuffling rearranges the output of the
RepVGG. In practice, the RCS module receives features Y Sm and Y Tm from the MSA module. Y Sm is
then processed by a RepVGG module to generate the intermediate feature Y Sm

r . Then, Y Tm and Y Sm
r are

channel aggregated to form new features. Next, a channel shuffling operation rearranges the channels
of the features to output the final feature OR

1 . Channel shuffling ensures the global interaction of
feature information by rearranging channels to ensure computational efficiency and enhance feature
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fusion. Utilizing this design allows the model to comply more with the lightweight requirements of
underwater target detection.

Subsequently, OR
1 is again subjected to channel splitting, and the steps of multi-scale attention,

RepVGG, and channel shuffling are repeated to obtain OR
2 . Finally, through a one-time aggregation

method, Y , OR
1 , and OR

2 are concatenated and passed through a RepVGG module for the final fusion
and integration to produce the final output result O.

Multi-scale attention effectively captures features at different scales and is particularly suitable for
detecting underwater irregularly shaped targets. Channel shuffling enhances the flow of information
between feature channels and suppresses redundant information, thus optimizing the detection effi-
ciency of the model. Combining the two, the YOLOv8 demonstrates enhanced detection capabilities
and robustness in complex underwater environments.

3.2 Multi-Scale Attention

For enhancement and refinement between multi-scale features of underwater objects, we imple-
mented multi-scale attention using only some simple convolutional structures to improve the model’s
ability to capture and extract multi-scale features [31]. The composition of the multi-scale attention
module consists of three parts. First, the module uses a 5 × 5 convolution to perform the convolution
operation to converge the local information in order to ensure the spatial continuity and richness
of the features. Secondly, as shown by the MSA module in Fig. 2, we used multi-branch strip
convolution. Three pairs of 1 × 7 and 7 × 1, 1 × 11 and 11 × 1, and 1 × 21 and 21 × 1
convolution are included here to form a multiscale convolution. During training, the network assigns
a learnable weight to the outputs of these convolutional operations, and by learning the weights of
different convolutional operations, the network can better fuse features at different scales and suppress
redundant information. There are two main reasons for using multi-branch strip convolution instead
of standard 2D convolution. On the one hand, this is more in line with the lightweight design of the
model; for example, a standard 2D convolution of 7 × 7 can be approximated by a pair of 7 × 1 and
1 × 7 convolution, which reduces computational complexity. On the other hand, in the underwater
target detection application scenarios, there are a large number of striped and irregularly shaped
objects (e.g., sea cucumbers, starfish, etc.), and strip convolution can better capture the edge and
directional features of these objects., make up for the shortcomings of mesh convolution, and improve
the network model’s ability to extract features [32]. Lastly, the 1 × 1 convolution is used to capture the
interdependencies among various channels, and its output is directly used as the attention weights to
reweight the module’s inputs to enhance essential features dynamically [33]. MSA can be expressed as:

Att = Conv1×1(
∑3

i=0
Scalei(DWConv(Conv5×5(F)))), (1)

Out = Att ⊗ F . (2)

where Eq. (1) showcases the computation process of the attention map, which begins by applying
depth-wise convolution (DWConv) to the input feature F , followed by a weighted sum operation
through the Scalei branches, and finally integrating them through the 1 × 1 convolutional layer. Here,
Scalei denotes different scale branches that correspond to kernels of different sizes to capture features
of different scales. The output feature is calculated using Eq. (2), which ⊗ denotes element-wise matrix
multiplication. The attention map is applied element-wise to the input feature through multiplication,
resulting in a weighted output feature that further strengthens the model’s emphasis on significant
features.
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3.3 Cross-Channel Operations

To promote interaction among different features and improve the model’s generalization capabil-
ity, we introduce the idea of cross-channel in the MSCCA module. In the MSCCA module, the input
feature map X with dimensions C × H × W (C denotes the number of channels, while H and W
indicate the height and width of the feature map, respectively) is accepted as input, and further feature
extraction is performed by RepVGG to obtain the feature map Y . Subsequently, Y is split into two
sub-features Y S and Y T , providing support for cross-channel information interaction. Here, the input
feature map Y and the two sub-features Y S and Y T can be represented as Y ∈ R

C×H×W , Y S ∈ R
C×H×W ,

and Y T ∈ R
C×H×W , respectively. The channel splitting operation can be expressed as:

Y S, Y T = Csplit (Y) (3)

where Y = [Y1, . . . , YC], Y S = [Y S
1 , . . . , Y S

C/2], and Y T = [Y T
1 , . . . , Y T

C/2]. Subsequently, Y S and Y T

are simultaneously passed through the multi-scale attention module. The formula for the multi-scale
feature extraction stage can be expressed as:

Y Sm = MSA
(
Y S

)
(4)

Y Tm = MSA
(
Y T

)
(5)

Here after processing by the multi-scale attention module, each sub-feature is able to capture more
detailed contextual information at different spatial scales. This allows the model to understand and
extract both local and global dependencies of features, thereby enhancing the model’s perception of
various scale structures in images.

Next, in order to preserve the original information to enrich the features in the cross-channel
operation, we do not perform any operation on Y Tm. Meanwhile, Y Sm is transferred to the RepVGG
block for further feature extraction to obtain Y Sm

r . This design ensures that the network retains some
of the original signal while increasing complexity, enhancing the generalization of the model. The
formula can be expressed as:

OR
1 = RepVGG

(
Y Sm

r

) + Y Tm (6)

Here, RepVGG is a Visual Geometry Group (VGG) based on structural reparameterization,
which contains 3 × 3, 1 × 1 convolution and an identity branch. Y Sm

r denotes the result after the
RepVGG module. OR

1 denotes the result of the cascade of Y Sm
r and Y Tm.

Next, Y Tm and Y Sm
r are combined to form a fused feature OR

1 . This is followed by a Channel
Shuffle operation, which promotes information exchange between different channels by rearranging
their order, further improving the network’s capability for feature extraction and representation across
multiple levels.

Cross-channel cooperation ensures effective feature fusion at deeper levels of the model, even after
feature segmentation and independent processing by channel shuffling. This not only provides rich
feature information for subsequent detection tasks but also improves the generalization capability of
the model.

4 Experiments and Results

To verify the effectiveness of our approach, we conduct comprehensive detection experiments,
followed by an in-depth analysis of the results. The experimental evaluation assesses detection
precision using mAP (mean Average Precision) calculated at specified IoU (Intersection over Union)
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thresholds. We utilize mAP50 (mAP at IoU = 0.5) to measure algorithm performance, while mAP50-
95 (mAP across IoU thresholds from 0.5 to 0.95 in 0.05 increments) is the challenge metric. Alongside
precision, recall is evaluated to measure the model’s ability to detect positive cases correctly. The
network’s size and computational complexity are quantified using Params (parameters) and FLOPs
(floating-point operations).

4.1 Experimental Details

In this study, we utilized the publicly available The Underwater Robot Picking Contest 2017
(URPC2017) [34] dataset, which was captured in a real underwater environment by professionals using
an underwater video camera and is widely used for underwater object detection tasks. The dataset was
downloaded from the official repository and stored in a structured directory format for easy access
during the training and evaluation phases. As shown in Fig. 3, the dataset consists of 18,638 images,
each with a resolution of 720 × 405, containing annotations for multiple underwater object classes
such as sea urchin, sea cucumber, and scallop. Each image is annotated with bounding boxes and
category labels to accurately indicate the location of the objects.

Figure 3: Samples from the URPC2017 dataset

For the experiment, the dataset was divided into training and testing sets, with the training
images into training and validation sets in the ratio of 8:2. We also implemented data augmentation
strategies, including random scaling, cropping, rotation, and color adjustments, to enhance the model’s
robustness throughout the training process. The raw data of the dataset is preprocessed, resized to 640
× 640 pixels, and normalized to ensure consistency across all images before it is fed into the model for
training and evaluation.

The approach utilizes the efficient PyTorch framework, operating within the Python 3.8.0
environment. Table 1 describes the detailed experimental setup.
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Table 1: Experimental environment

Experimental details Detailed information

Graphics processing unit NVIDIA RTX3090Ti (24 GB)
Processing unit Intel (R) Xeon (R) Silver 4210R CPU @ 2.40 GHz
Operating system Ubuntu 20.04.5
Random access memory 64 GB

During the model training phase, we set 300 epochs for the training period and implemented an
early stopping mechanism, which terminates training prematurely if no performance advancement is
observed over 50 epochs. For all the experiments, we use a uniform hyperparameter, and the specific
experimental settings are detailed in Table 2.

Table 2: Experimental parameters

Parameter Setting

Batch size 8
Optimizer Stochastic Gradient Descent (SGD)
Initial learning rate 0.01
Minimum learning rate 0.0001 (1% of the initial learning rate)
Learning rate decay method Cosine annealing

4.2 Ablation Experiments

To verify the unique contribution of each module in YOLOv8-UOD, we propose ablation exper-
iments. We conducted experiments where the model is integrated with all modules, i.e., including the
MSCA module, Channel Shuffle, and RepVGG. Then, we conducted ablation experiments between
modules by gradually removing different modules to analyze each module’s role in the model and gain
insights into each part’s impact on overall performance. The experimental results are summarized in
Table 3.

Table 3: Ablation experiments of different modules

Methods Params Precision Recall mAP50 FLOPs

Full (All modules) 7.88 M 96.19% 92.12% 95.67% 23.8 G
-MSA 7.88 M 95.78% 92.26% 95.56% 23.8 G
-Channel Shuffle 7.88 M 96.16% 92.10% 95.63% 23.8 G
-RepVGG 7.88 M 96.17% 92.10% 95.63% 23.7 G

In the complete configuration, utilizing MSA, RepVGG, and Channel Shuffle, the model exhibits
optimal performance, achieving a mAP50 of 95.67% and a recall of 92.12% while maintaining FLOPs
at 23.8 G. This result demonstrates the importance of using a combination of these modules to improve
the model’s detection precision and processing speed. MSA dynamically weights the feature map to
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emphasize salient regions, enhancing the network’s adaptability to image features of different scales
and complexities. The removal of MSA results in a slight decrease in mAP50 to 95.51%, with recall
slightly increasing to 92.26%, which shows that it is optimized for multi-scale feature extraction and
improving detection precision.

Channel Shuffle enhances the flow of information between channels by rearranging the order
of channels in convolution layers, improving feature extraction capability and generalization of the
network. Its removal leads to a slight performance decrease in mAP50 from 95.67% to 95.63%,
and recall slightly decreases to 92.10%, indicating its positive impact on optimizing the model’s
information processing and feature learning processes. These observations confirm the importance of
these components in enhancing the model’s overall performance. The proposed modules all improve
the precision and also achieve good performance compared to YOLOv8.

4.3 Experimental Analysis

To further validate the performance benefits of the attention module in underwater object
detection, we compared YOLOv8-UOD with the original YOLOv8 network architecture and other
versions of the YOLO series, including YOLOv5 and YOLOv7. The experimental results are presented
in Table 4.

Table 4: The comparison of the proposed method with other methods

Methods Params Precision Recall mAP50 mAP50-95 FLOPs

YOLOv5 [25] 2.39 M 95.61% 91.03% 94.82% 69.13% 7.8 G
YOLOv7 [35] 35.48 M 97.87% 94.46% 95.59% 74.32% 105.1 G
YOLOv8 [8] 2.88 M 95.50% 91.38% 95.12% 70.10% 8.2 G
YOLOv8-UOD 7.88 M 96.19% 92.12% 95.67% 71.76% 23.8 G

From Table 4, it is evident that YOLOv8-UOD excels in precision, mAP50, recall, and mAP50-
95 metrics, outperforming all other outperforms all other versions of the YOLO method. Although
the YOLOv7 model has a slight edge in precision and recall, there’s a reason for this: it’s the
positive impact of its design with an anchored frame, but it also makes it somewhat limited in
processing speed. The anchor strategy constructs many anchor boxes, directly allowing the network
to carry out object classification and bounding box regression. Nevertheless, this method necessitates
configuring multiple hyperparameters, including scale and aspect ratio, which are difficult to optimize
and may affect detection accuracy. Moreover, it results in numerous overlapping boxes, escalating
computational demands. Experimental data in Table 4 also shows that YOLOv7’s Params and FLOPs
are nearly five times larger than those of YOLOv8-UOD.

Fig. 4 shows the precision-recall curves for YOLOv8-UOD compared to YOLOv8. The coloured
lines represent the precision-recall curves for each category, and the dark blue lines represent the
average precision-recall curves for all categories. The phenomenon illustrated in Fig. 4 shows that as
the recall increases, the model causes a significant increase in the number of false positives to detect
all the positive cases as much as possible, which leads to a significant decrease in the precision or even
close to zero. This is due to the balanced between recall and precision. The figure reveals a higher
precision-recall curve for our YOLOv8-UOD method, suggesting that it can achieve higher precision
while maintaining the same recall. This confirms the stability of our method in complex underwater
environments, as well as its adaptability and efficiency in handling underwater target detection tasks.
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Figure 4: Precision-recall curves of YOLOv8-UOD and YOLOv8 on URPC2017 dataset

To validate the effectiveness of the proposed MSCCA, we incorporated a vision transformer with
bi-level routing attention (BiFormer) [36] and deformable large kernel attention (DLKA) [37], which
are recently proposed effective modules, into YOLOv8 for comparison, respectively. The experimental
results are presented in Table 5.

Table 5: Comparing several modules to enhance YOLOv8

Methods Params Precision Recall mAP50 mAP50-95 FLOPs

YOLOv8 2.88 M 95.56% 91.38% 95.12% 70.13% 8.2 G
YOLOv8+BiFormer 2.89 M 96.18% 90.99% 95.15% 70.01% 8.9 G
YOLOv8+DLKA 4.36 M 95.94% 91.45% 95.21% 70.70% 13.4 G
YOLOv8-UOD 7.88 M 96.19% 92.12% 95.67% 71.76% 23.8 G

In this study, we integrate the BiFormer and DLKA modules into the YOLOv8 and determine
the impact that both approaches have on YOLOv8 by conducting experiments with the same training
strategy. While the BiFormer module slightly increases mAP50 (from 95.12% to 95.15%), it also
resulted in a decrease in the mAP50-95 and recall, which reflects a potential problem with optimizing
precision in specific scenarios that may affect generalization ability. The DLKA module improves
mAP50, mAP50-95, and recall to 95.21%, 70.70%, and 91.45%, respectively, demonstrating that
the large convolutional kernel combined with deformable convolution presented in this module can
enhance the performance of YOLOv8 to a certain extent.

Although YOLOv8 is improved by integrating both BiFormer and DLKA modules, the positive
impact of these two methods is not as large as that of our proposed YOLOv8-UOD. YOLOv8-UOD,
with the introduction of the multi-scale cross-channel module, not only achieves a mAP50 of 95.67%,
but also improves mAP50-95 to 71.76% and recall to 92.12%. Our proposed method’s false detection
rate is lower than the other methods in the table, proving that it is suitable for complicated underwater
environments. Despite the increase in Params and FLOPs, the model reaches a favorable balance
between processing speed and precision, making it a more compelling choice for underwater target
detection.

We applied the weights of the trained model to the test set of images from the URPC2017 dataset.
Fig. 5 presents the original and manually labeled images from the test set and the results obtained
using the YOLOv8-UOD model. These images include challenging environments such as turbid water,
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overlapping target objects, and occlusions of unknown items. Compared to the original annotated
images, the YOLOv8-UOD model achieves accurate detection results without deviations from the
annotations and demonstrates the capability to identify targets that lack prior annotation information.

Figure 5: Detection results and labeled images

5 Conclusion

The YOLOv8-UOD proposed in this paper is a lightweight underwater object detection method
that effectively enhances the precision of target detection in complex underwater environments. The
proposed MSCCA mechanism captures features at various scales through an MSA module, providing
the network with more comprehensive visual information. The cross-channel strategy effectively
integrates cross-channel information through RCS and OSA, extracts more comprehensive and
valuable feature information, and significantly improves network performance and computational
efficiency. The experimental results show that the method improves the precision of underwater target
detection, and achieves a suitable balance in the number of parameters, computation, and memory
consumption.

In future research, we intend to advance and perfect the YOLOv8-UOD method, striving for
superior performance and efficiency. Achieving this will necessitate further exploration of strategies
for model compression, designing more lightweight network architectures, and adapting them for
deployment on small embedded devices without compromising precision. For instance, model pruning
can decrease the model’s size by removing redundant neurons and connections in the network while
maintaining performance. In addition, knowledge distillation is an effective strategy for training
compact “student” models to imitate the behavior of larger “teacher” models, thus achieving similar
performance with limited resources. We expect to develop accurate and efficient underwater target
detection models by combining these approaches.
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