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ABSTRACT

In the Internet era, recommendation systems play a crucial role in helping users find relevant information from
large datasets. Class imbalance is known to severely affect data quality, and therefore reduce the performance
of recommendation systems. Due to the imbalance, machine learning algorithms tend to classify inputs into the
positive (majority) class every time to achieve high prediction accuracy. Imbalance can be categorized such as by
features and classes, but most studies consider only class imbalance. In this paper, we propose a recommendation
system that can integrate multiple networks to adapt to a large number of imbalanced features and can deal
with highly skewed and imbalanced datasets through a loss function. We propose a loss aware feature attention
mechanism (LAFAM) to solve the issue of feature imbalance. The network incorporates an attention mechanism
and uses multiple sub-networks to classify and learn features. For better results, the network can learn the weights
of sub-networks and assign higher weights to important features. We propose suppression loss to address class
imbalance, which favors negative loss by penalizing positive loss, and pays more attention to sample points near
the decision boundary. Experiments on two large-scale datasets verify that the performance of the proposed system
is greatly improved compared to baseline methods.
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1 Introduction

Recommendation systems (RSs) are increasingly utilized by e-commerce websites to assist con-
sumers in discovering products of interest [1–4]. By providing personalized recommendations, RSs
can significantly enhance customer engagement and subsequently drive sales [5,6]. An effective
recommendation algorithm can increase the profit of an e-commerce platform by up to 20% [7,8].
E-commerce websites usually place fast-selling products in an advertising column to promote sales.
Consequently, with an equivalent exposure rate, a more accurate prediction will generate higher sales,
as well as profits from commission collection methods such as cost per click (CPC) and cost per sale
(CPS). Therefore, accurately predicting fast-selling products is important for e-commerce platforms.
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Since only 10–50 products can be displayed on a webpage, imbalances can occur when an RS is
used to predict potential fast-sellers from billions of available products [9]. The prediction accuracy of
a traditional RS decreases greatly when the distribution of classes is highly skewed [10]. Because the
number of instances in one class can be much smaller than that in another, an instance in a minority
class has a strong bias to be classified in the majority class [11–15]. Since the overall number of products
typically far exceeds the number of hot sale products, these fast-sellers are often overlooked, resulting
in high overall accuracy but low precision and F-measure scores.

Based on the input dataset, imbalance in RSs can usually be classified as either class or feature
imbalance, and both can diminish performance [13,16,17]. Class imbalance stems from significant
inequality among the number of examples in different classes, which skews predicted results [11,13,14].
Feature imbalance occurs when few features have a significant impact on the result, which dilutes the
contributions of important features to the output [17–19]. In other words, the large number of features
results in numerous invalid operations, which not only wastes computing resources but also diverts the
algorithm’s focus from the most critical features.

In the class imbalance issue, the sample can be subdivided into four categories based on the
distances of negative and positive instances to the decision boundary: hard negative, easy negative,
easy positive, and hard positive, as shown in Table 1 [20,21]. The sample points are divided into a
large positive category and a small negative category. According to the confidence level of the network
output (|yout − y|, greater deviation implies lower confidence), they are divided by whether they are easy
or hard to judge. Combining these two dimensions, sample points can be divided into four categories.
Hard negative samples (potential fast-selling products we tend to predict) are the most difficult to judge
in traditional networks but are of the most concern in an RS. Conversely, easy positive sample points
often contribute the most to the loss, since they constitute a large proportion of the training dataset,
which diminishes the algorithm’s ability to focus on learning the negative sample. Traditional machine
learning methods often use preprocessing (including upsampling and downsampling) to address class
imbalance [22,23]. Cost-sensitive algorithms that assume higher costs for misclassification of the
minority class [24,25] gain more attention since they do not change the original data distribution.
However, cost-sensitive algorithms do not consider the confidence level, which represents the degree
to which sample points are correctly classified. Sample points that are easily classified correctly (i.e.,
far from the decision boundary) are more likely to be correctly classified in any network, but those
that are difficult to judge (which are close to the decision boundary) are more likely to be misclassified
in general networks. Approaches such as focal loss [20] and shrinkage loss [21] have been proposed to
solve the two dimensions (number of sample points and confidence level). Shrinkage loss has excellent
accuracy, but training stability and computing speed are not considered. To solve these problems, we
propose suppression loss, which can solve the class imbalance in two dimensions at the same time while
also providing a faster training speed and smoother training process.

Table 1: Classification of sample points in class imbalance issue. f sp(·) is suppression loss, γ is a penalty
parameter of suppression loss

Hard Easy

Negative (Minority) Hard negative Easy negative (γ )
Positive (Majority) Hard positive (fsp(·)) Easy positive (fsp(·) × γ )
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Feature imbalance is usually solved through feature selection and fusion [26,27], which are used
to select useful features and discard those less helpful for classification [28]. However, features with
smaller contributions should also be considered. Discarding some features will affect prediction
accuracy to a certain extent [29]. We combine the attention mechanism and a mixture-of-experts (MoE)
[30] framework in a loss-aware feature attention mechanism (LAFAM), which can adjust the proportion
of each sub-network (with different types of features) by calculating the output confidence level and
letting more important features have higher weights, thereby solving the issue of feature imbalance.

We summarize the three major contributions of this paper:

• We propose suppression loss to address the class imbalance. It can greatly improve the precision
of network prediction by penalizing easy and positive classes. Due to the simple form of the loss
function, training is stable and fast, and gradient explosion and disappearance occur less than
with other loss functions.

• We propose LAFAM for feature imbalance issues. LAFAM fuses multiple sub-networks to
learn weights for different features so that important features can contribute more to prediction
results without discarding features. To avoid dependence of the network on just one sub-network
with excellent performance, total loss weights the loss of each sub-network, and the greater the
sub-network loss the greater the contribution to the total loss.

• We propose an RS to recommend potential hot sale products, which solves highly skewed
class imbalance and serious feature imbalance issues by applying the proposed suppression
loss and LAFAM. A feature preprocessing module sorts and classifies features. We tested the
performance of LAFAM on two real datasets covering billions of products with a large amount
of data (10 GB, 453 features), and the prediction effect was about 10% higher than that of an
existing algorithm.

2 Related Work

We investigate the impact of imbalance on deep learning algorithms and their solutions in
Section 2.1. In Section 2.2, the common structure of RS and the evolution of the algorithms utilized
for LAFAM and suppression loss are described.

2.1 Imbalance Issue

The issue of class imbalance exists in many areas [17,18], and has a great impact on the prediction
performance of machine learning algorithms [31–33] and a nontrivial impact on the RS [34,35]. Class
and feature imbalance in e-commerce has attracted the attention of many experts [36,37].

Regarding class imbalance, traditional machine learning algorithms often apply preprocessing to
increase or reduce the number of positive or negative instances, respectively [22,23]. To address the
problem of sample redundancy or outliers, Wei et al. [38] presented an improved stochastic synthetic
minority oversampling technique that applies ascending operations to rank the majority class of
samples and assigns weights through kernel density estimation. Hoyos-Osorio et al. [39] proposed
an undersampling method for imbalanced data classification based on information-theoretic learning,
which selects the most relevant examples from the majority class to enhance classification performance
in imbalanced data scenarios. Preprocessing methods, such as oversampling and undersampling,
increase computational complexity and cause overfitting by replicating minority classes, or lose
information by reducing the size of the majority class [40]. Therefore, Lin et al. [41] investigated
the effect of hybrid combinations of undersampling and oversampling methods of different order
on 44 different class-imbalanced datasets. Cost-sensitive algorithms that assume higher costs for
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misclassification of minority classes are gaining attention since they do not change the original
data distribution [24,25]. Cost-sensitive deep neural networks that learn weights for different classes
[15,25,42–44] or employ new loss functions [45] have been proposed. However, current cost-sensitive
algorithms do not consider the confidence level, which represents the accuracy that a sample point is
correctly classified. Lin et al. [20] proposed focal loss to solve the dense object detection problem, and
were the first to mention penalization of easy samples. Lu et al. [21] proposed shrinkage loss, which
penalizes easy samples without losing hard samples. However, the complexity of the calculation and
stability of the training process should also be considered. We focus on suppression loss to solve the
imbalance issue, with faster calculation and stabler training under the premise of better results.

Traditional feature selection and feature fusion are common processing methods to address feature
imbalance [26–28]. However, feature selection requires the discarding of some features with a low
contribution to the result, which will affect the integrity of features [17,18]. LAFAM can well solve the
feature imbalance issue, as discussed in Section 3.

2.2 Recommendation Systems

Almost all e-commerce platforms use product recommendation systems [46–48], which can
often help customers find items of interest and thereby contribute to boosting sales. Traditional
recommendation systems can be categorized as content-based recommendation systems (CBRSs),
collaborative filtering recommendation systems (CFRSs), and hybrids [49,50]. A CBRS generates
preferences based on a user’s profile and product features [51,52]. A CFRS uses a similarity matrix
to generate preferences based on the rating of neighbor users and items [1,53]. The hybrid framework
combines CBRS and CFRS to achieve precise performance by reducing the drawbacks of conventional
techniques [54,55]. Although classical RS methods have achieved remarkable success, they suffer from
issues such as cold starts and data sparsity [1–4,56].

With recent deep learning achievements in applications such as natural language processing
(NLP), machine translation, and computer vision (CV), machine learning models have been exploited
for RSs, bringing more capabilities by addressing the challenges of traditional RS models. Compared
to the traditional recommendation architectures, deep learning-based RS models provide better
representation learning of user-item interactions. Multi-layer perceptron (MLP) can model data with
simple correlation to enhance nonlinear transformation, but high complexity and slow convergence
limit its performance [56]. Convolutional neural network (CNN) is powerful for feature extraction of
contextual information, but it requires high parameterization tuning [57]. Recurrent neural network
(RNN) is specifically used to model sequential data [58]. However, it suffers from the exploding or
vanishing gradient, which makes it difficult to train when incorporating temporal layers to capture
sequential information. As deep learning models are increasingly adopted in recommendation systems,
explainability has become a critical concern for researchers and practitioners [59,60]. Explainable
artificial intelligence (XAI) [61] is being progressively integrated into recommendation models to assist
users and developers in better understanding how predictions are made.

Since imbalance has a great impact on the prediction results of machine learning algorithms (as
described in Section 2.1), it should be considered when designing an RS. Hence, we propose LAFAM
as a recommendation system, which focuses on solving the impact of imbalance on machine learning
algorithms and RSs.
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3 Proposed Methods

The framework of the proposed RS is shown in Fig. 1, which has three stages: feature preprocess-
ing, LAFAM training, and classification. The feature preprocessing stage completes feature sorting
and classification by three algorithms, replacing feature selection and fusion in traditional methods.
LAFAM training solves the feature imbalance issue, allocates suitable networks for different types of
features, and completes the self-learning of sub-network weights and feature weights through dynamic
adjustment of total loss, enabling important features to make greater contributions to prediction
results without discarding features; this cannot be achieved by traditional algorithms. To solve the class
imbalance issue, we use suppression loss in the appropriate LAFAM sub-network, which can deal with
datasets combining highly skewed class imbalance and serious feature imbalance. The classification
stage classifies scores output from LAFAM training to obtain the final classification result. The
proposed RS can perform well on large real datasets.

Figure 1: Framework of proposed RS, which has three main parts: (1) Feature preprocessing: Sort and
classify features by importance; (2) LAFAM training (core of RS): Adjust weights through supervision
network to solve class and feature imbalance issue; (3) Classification: Categorize output scores

3.1 Feature Preprocessing

We first utilize PS-smart [62], XGBoost [63], and GBDT [64] to determine and rank the feature
importance. These algorithms can effectively prioritize features that contribute most to model per-
formance, thereby mitigating the potential negative impact of less informative features that could
exacerbate feature imbalance. Based on the rankings provided by these three methods, we then
calculate the weighted feature importance scores to produce a final ranked list of features. To optimize
the output efficiency of network, we truncate the ranked list to discard features with insignificant
contributions. The exact truncation position should be adapted to the specific problem at hand, aiming
to maximize efficiency and minimize computational resources and time without compromising output
quality. This step is particularly useful for addressing feature imbalance, as it reduces the influence of
redundant or noisy features, thus helping the model focus on the most relevant information.

Furthermore, we categorize the features into dense features, sparse features, and sequential
features to better align with the network operations. Different types of features often exhibit distinct
distributional characteristics, and proper categorization helps optimize the handling of imbalanced
features. The detailed classification process and corresponding sub-networks will be explained in
Section 4.2. It is important to note that for addressing different problems, the classification approach
should be adjusted according to the types of subsequent sub-networks used. This targeted feature
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preprocessing approach ensures that imbalanced features are treated in a way that maximizes efficiency
and minimizes the risk of performance degradation due to feature imbalances.

3.2 LAFAM

LAFAM can perform independent sub-network training on important features, which are
obtained through feature preprocessing, with learning networks depending on features. A supervision
network learns the contribution weight of each sub-network. More important features contribute
more weight to the result, which increases their influence and improves accuracy. Fig. 2 shows the
structure of the model, in which different features are input to N sub-networks, and the supervision
network learns their output weights.

Figure 2: Structure of loss aware feature attention mechanism (LAFAM)

Specifically, we set up several sub-networks to learn the features, and the number and type of sub-
networks can be adjusted according to different problems. The sub-networks shown in Fig. 2 are of
different types. In our model, the output of each network is a score between 0 and 1, which indicates
the sample’s probability of becoming a hot sale product learning within each respective network. A
score of 0 signifies the lowest potential to be a hot sale product, and a score of 1 signifies the highest
potential.

For each sub-network, the larger the loss value the lower the confidence of the current output. It is
difficult to judge a sub-network based on features with low confidence, and these are usually discarded
by the traditional methods. However, any feature will have an impact on the prediction result, and we
should not discard a feature that is difficult to judge or makes a small contribution. For example, in
e-commerce recommendations, commission, and rebate characteristics are often difficult to judge by
the predictive network, but they are important. In our network, confidence means that the network
should strengthen the learning of the sub-network, so its loss value accounts for a larger proportion
of the loss of the entire network. Therefore, we calculate the softmax value of the loss value output by
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the network by Eq. (1), and determine the proportion of its contribution to the overall loss. At the end
of the network, the weighted sum of the loss values obtains the overall loss.

For a given li, i ∈ (0, 1, 2, . . . , N), which is the output loss of sub-networks, we estimate the
probability p(ε = j|li) for each category j with softmax, i.e., we estimate the probability of each
classification result of ε. Let �ε = [ε0, ε1, ε2, . . . , εN] be a vector of weights of output values from each
network. When we obtain the predicted value through the network, we hope that a result with high
confidence will dominate. Therefore, in calculating the predicted value, we use the opposite coefficient
εi as the weight of output from sub-networks:

εi = eli∑N

n = 0 elN
= eli

el0 + el1 + · · · + elN
, i = 0, 1, 2, . . . , N (1)

Then, we design a supervised network whose output is the ratio of each subnetwork output to
the total output. The labels used for training are the weight vectors �ε′ = [ε′

1, ε
′
2, ε

′
3, . . . , ε′

N] about li

obtained after a softmax calculation based on the loss values. We substitute the parameters shown in
Fig. 2 in the formula, which simplifies the ratio of each category to:

ε
′
i = e−li∑N

n = 0 e−lN
= e−li

e−l0 + e−l1 + · · · + e−lN
, i = 0, 1, 2, . . . , N (2)

In the training process, we need to fit �ε′ and �ε to make these two probability distributions infinitely
close. Therefore, the final loss function lra is:

lra = λlfinal + μlsubnet + ηlsuperv

= λ ‖ yfinal − y0 ‖2 +μ�ε ‖ ysubnet − y0 ‖2 +η ‖ −−→ysuperv − �ε′ ‖2

= λ ‖ yfinal − y0 ‖2 +μ
∑N

j=0

e
lj
T · ‖ yj − y0 ‖2∑N

k=0 e
lk
T

+ η
∑N

j=0
‖ −−→ysuperv −

(
1 − elj∑N

k=1 elk

)
‖2 (3)

where λ, μ, and η are network parameters that can be set and adjusted using grid search or other
tuning methods; yfinal is the final output of the network overall; y0 is the label of the original sample;
ysubnet = {y1, y2, . . . , yN} is the output of the sub-network; −−→ysuperv is the output of the supervision network;
N is the number of feature groups, which in this task is 4; and T is the temperature coefficient used in
softmax operation, and it can adjust the difference between the values calculated by softmax.

In general, T ≥ 1. The smaller T is, the steeper the softmax curve is, and the bigger the difference
between the output values will be. The larger T is, the smoother the softmax curve is, and the difference
between the output values will be small. In this way, we control the balance of weighting the sub-
network loss li by the coefficient T .

3.3 Suppression Loss

We propose suppression loss to solve the class imbalance issue, which influences machine learning
algorithms to classify inputs in the positive (majority) class every time to achieve high prediction
accuracy. If we train the deep learning model with traditional loss functions (e.g., square loss, log
loss), the loss value of positive samples will account for a larger proportion of the total loss. However,
in practice, we are often more concerned with the accuracy of the negative class (precision or F-
measure). For example, in our scenario, hot sale products are a minority, but traditional deep learning-
based models tend to neglect the minority class and output general products as the prediction result.
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Therefore, regarding class imbalance, we want negative classes to contribute more loss value. Hence,
we propose suppression loss:

Lsp

(
yfinal, y0

) =
[

α
(
yfinal + β

)
2 + 2α

(
yfinal + β

) + 1
2

]
×

[
θ(|yfinal − y0| + ρ)

2 + 2θ
∣∣|yfinal − y0| + ρ

∣∣ + 1
2

]
× |yfinal − y0|γ (4)

where |yfinal − y0| is the absolute difference between the estimated probability yfinal and its true label y0;
α, β, θ , ρ, and γ are the parameters of the model, which can be set according to the practical dataset
problem through the grid search method.

The suppression loss function consists of three parts. The first part is the suppression of the loss
contribution to the large category of samples through a function. The second part is to suppress the
easy sample contribution by using the same function and different parameters. The last part is the
suppression of the easy sample contribution employing a high-power function that expands the output
disparity. The feasibility of suppression loss is explained below, and a more detailed process can be
found in the Appendix (Figs. A1 and A2).

Firstly, we need a function fsp(x) to meet the following conditions:

• The value range of fsp(x) is (0, 1) or (0, 1].
• fsp(x) → 0 when x → 0. fsp(x) → 1 when x → ∞.
• The function fsp(x) is continuous and differentiable.

We find that the simple function f (x) = x
1 + |x| has the above properties. This is an S-type

function, with similar properties to a sigmoid function. However, f (x) is more concise and less

complex, as shown in Fig. 3a. The function fsp(x) = α (x + β)

2 + 2α |x + β| + 1
2

is obtained by linear

transformation (translation and compression). Its value range is (0, 1), and its slope and the point

over 0.5 can be adjusted by changing α and β. Fig. 3a is the original graph of f (x) = x
1 + |x| . Fig. 3b

is a function diagram for controlling both the independent and dependent variables within the range
of 0–1 after compression and translation. Fig. 3c is a graph of fsp(x) under different parameters, from
which it can be seen that the larger α is, the larger the slope is, i.e., easily classified data can be better
penalized. Fig. 3d is a comparative diagram of three loss function adjustment factors. When x is closer
to 0, the smaller the suppression loss the stronger the penalty of easily classified data. The larger x is,
the closer the function value is to 1. The function hardly punishes sufficiently large x. It can be seen
from Fig. 3d that focal loss still inhibits large x values. The two-parameter control of shrinkage loss
is not as accurate as the three-parameter control of suppression loss. Suppression loss has a simpler
functional form than shrinkage loss (fsp(·) is simple, but fshrinkage(·) is elementary), which will greatly help
its stability. We provide verification results in the following experiment.

When applied to classification problems, it is assumed that the label of the positive class is 0. In
this case, the closer the predicted value is to 0, the more its loss is penalized, i.e., this kind of sample
contributes less to the overall loss. If the label is 1, then the smaller the predicted value the larger
its loss, and the less it is penalized in the function, so this kind of sample contributes greatly to the
overall loss.
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Figure 3: Proposed process of suppression loss: (a) The original graph of function f (x); (b) The graph
of function after compression and translation; (c) The graph of fsp(x) under different parameters; (d)
The comparative diagram of three loss function adjustment factors
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According to the focal loss [20], we superimpose fsp(·) on lγ . In this way, we can penalize the sample
points of positive and easy classes. As shown in Table 1, easy positive sample points are penalized by
fsp(·) and γ at the same time, i.e., they are restrained to the greatest extent. Hard positive sample points
are penalized by fsp(·). Easy negative sample points are penalized by γ , while hard negative sample
points are barely penalized. This achieves the goal of making hard negative sample points contribute
the most loss. The accuracy of the classification of hard negative sample points determines the final
loss value of the network. The more mistakes in hard negative sample points, the greater the loss.
The network pays more attention to hard negative sample points. Therefore, the classification rate of
negative classes can be improved.

4 Experiments
4.1 Datasets

We use the Tmall (Taobao) non-public dataset and the Kaggle public dataset Corporación
Favorita Grocery Sales Forecasting (CFGSF) for experimental verification.

• Tmall: The dataset is 10.7 GB in size and contains 51,134,193 rows of data, with 453 data
features from August 2019 to August 2020. The dataset contains information such as product
name, product category, product price, coupon price, historical sales volume, highest single-day
sales, and single-day average sales.

• CFGSF: It provides the sales information of 54 stores in different parts of Ecuador from
01 January 2013, to 31 August 2017, including commodity serial number, sales volume, and
category; whether goods are easily corrupted; and whether they are in promotion. The dataset
al.so provides the store category, city, total sales, and oil price on the day of the sale.

Table 2 presents some examples of sales records from the CFGSF dataset. After merging,
extracting, cleaning, and screening to ensure that abnormal data and noise would not affect the
classification accuracy of the neural network, the dataset contains 70,205,249 rows of data with a
dataset size of 13.93 GB. To put the forecasting problem into practice, we transform the forecasting
of commodity sales from a regression problem to a classification problem. After normalizing the
sales volume of the training set, we select 0.15 as the threshold to define the two classifications. After
classification, the data volumes of categories 0 and 1 are 70,184,766 and 20,483, respectively, and the
imbalance ratio is 3426:1.

Table 2: Some examples of sales records in the CFGSF dataset

Feature 1 2 3 4 5

Date 2013/4/1 2014/12/24 2015/1/2 2016/8/10 2017/4/12
Store ID 18 39 1 23 30
Product ID 315463 1473413 220435 1403464 1098624
Product category 1236 2032 1080 1080 4114
Perishable 0 1 0 0 0
Store city Quito Cuenca Quito Ambato Guayaquil
Store category B B D D C
Transactions 1483 2882 1021 980 528
Oil price 97.1 55.7 52.72 41.75 53.12
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4.2 Structure and Parameter Settings of LAFAM

With a simple MoE structure, the importance weight distribution of the softmax gate learning
model on experts of different feature groups is shown in Fig. 4a. The weight of time series features
is high, followed by the importance of commission and voucher features. This is consistent with the
conclusion from the PS-smart that the future sales volume of most samples is highly correlated with
the sales volume of N days in recent history. Fig. 4b shows the learning result based on LAFAM.
It has a high learning fit for a large number of simple samples, with high importance of historical
time series features and insufficient learning of other features. We observe that the latter’s dependence
weight distribution on different features is more even so that other basic feature models can also be
fully learned, thereby obtaining better recommendation results.

Figure 4: Importance weight distribution of different feature groups based on: (a) Simple mixture-of-
experts (MoE) network; (b) Loss aware feature attention mechanism (LAFAM)

Therefore, in the process of realizing the model, we divide the features into four parts. The model
application structure diagram is shown in Fig. 5. The basic feature depicts the basic attributes of
commodities (including historical prices, historical sales, and other statistical features). The second
and third parts are the coupling and commission features, which are the key factors to describe whether
goods can become hot sale products. The fourth part is the sequence feature, i.e., the time series of daily
transactions of commodities in the past three months. The features are categorized and fed into four
distinct sub-networks.
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Figure 5: Application structure of our LAFAM

All features are processed using the deep & cross network (DCN), a commonly employed approach
in recommendation systems, which includes 3 deep layers with ReLU activation functions and 2
cross layers. The cross layers are specifically designed to learn feature interactions in a more efficient
manner, capturing bounded-degree interactions between features at different levels. This structure
is highly effective for both vertical recommendations and wide-ranging interest exploration, and it
offers high computational efficiency, making it an ideal choice for learning from all features. Coupling
and commission features are handled using a 3-layer MLP with ReLU activation function, which
can extract high-dimensional features from the samples, making it suitable for recommendation
predictions. Sequence features are processed using a 2-layer gated recurrent unit (GRU), each layer
with 64 hidden units and using the tanh activation function. The GRU is a variant of the long short-
term memory (LSTM) network, itself an evolved form of the RNN, known for its excellent predictive
performance. Compared to the LSTM, the GRU has a simpler structure and effectively addresses the
long-term dependency problem of RNNs. This results in high computational efficiency and excellent
accuracy, making the GRU well-suited for learning from sequence features. For the training process,
we employ the Adam optimizer with a learning rate of 0.01 and a batch size of 64. The model is trained
for 50 epochs, with the suppression loss used to compute the final loss value. The parameter settings
for the LAFAM framework are determined based on our own experimental results to ensure optimal
performance for the given dataset and task.

Combined with the theoretical derivation and practical application, we improve and optimize the
network as follows:

• We combine the idea of MoE to build an expert network for different feature groups. We
combine the expert results through the softmax gate layer and use the loss aware method for
learning. In the training process, the output result yi of each expert is calculated with the true
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value of loss in the training stage, which is recorded as l0, l1, l2, l3, and the distribution of different
losses is obtained through a softmax layer. Assuming that each expert learns well and tries
to accurately predict the final value yfinal, the distribution of loss represents the importance of
different feature groups to the prediction results. Therefore, the difference in attention results
of samples in different feature groups is strengthened in the training stage.

• Because we cannot obtain the loss value of each part in the prediction stage, we add lsuperv in the
training stage to measure the distance between the output probability distributions at A and B
in Fig. 5. We make the probability distributions of two places similar.

• MoE has disadvantages. It cannot guarantee that every sub-network in the framework will do
its best to predict. Simply calculating the prediction results according to the smaller the loss
the higher the weight will cause the model to gradually abandon the learning of the expert for
the larger loss. This causes each expert to not do its best to predict the result, and it cannot
reflect the authenticity of each expert’s attention result. Therefore, we propose lsubnet and lra. In
the process of fusion, we pay more attention to the learning of the higher part of the loss, and
control the balance of the softmax result through the temperature parameter T , so that each
expert tries best to learn.

4.3 Evaluation Process and Metrics

We evaluate the performance of the LAFAM network, suppression loss, and the RS by controlling
variables, as shown in Fig. 6. We first assess the performance of LAFAM according to regression
problems. Since the output of LAFAM is a score (as shown in Fig. 1), which belongs to [0, 1], the
higher the score, the more likely a product is to become a hot sale product. Then, we use the parameters
obtained through a grid search to verify the performance of suppression loss, and we validate the
performance of LAFAM and suppression loss from a classification problem perspective. Finally, we
verify the effect of the entire RS, i.e., the fusion of LAFAM and suppression loss.

Figure 6: Recommendation system (RS) evaluation process and result guidance

In the experiments, our proposed LAFAM can calculate the probability of a product being a
hot sale product. In regression problems, the performance of LAFAM is assessed with four evaluation
metrics, which are Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Weighted Mean
Absolute Percentage Error (WMAPE), and Top 50/100/200 Hit Rate (HR@50/100/200). In sorting
problems, we use Precision, Accuracy, and F-measure to evaluate the effectiveness of LAFAM and
suppression loss.

RMSE presents the gap between the predicted value by the model and the true value:

RMSE =
√

1
n

∑n

i=1

∣∣ŷi − yi

∣∣ (5)

where n is the number of samples, ŷi is the predicted output, and yi is the true label.
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MAE directly calculates the absolute value of the error between the predicted value and the true
value:

MAE = 1
n

∑n

i = 1

∣∣ŷi − yi

∣∣ (6)

WMAPE weights the prioritized products so as to bias the prediction error towards those
products:

WMAPE =
∑n

i = 1

∣∣ŷi − yi

∣∣∑n

i = 1 yi

(7)

HR is a recall-based metric, which is defined as:

HR@k = Nk
GT

(8)

where GT denotes the number of test sets, and Nk denotes the sum of test sets in each user’s Top k
recommended products.

Accuracy indicates the percentage of the number of correctly categorized samples to the total
number of samples:

Accuracy = TP + TN
TP + TN + FP + FN

(9)

where TP indicates that the final prediction of the positive sample is positive, TN demonstrates that
the final prediction of the negative sample is negative, FP means that the negative sample ends up with
a positive prediction, FN implies that the positive sample ends up with a negative prediction.

Precision denotes the proportion of correctly categorized positive samples out of all categorized
positive samples:

Precision = TP
TP + FP

(10)

Recall represents how many of all positive samples are correctly categorized by the model. F-
measure is the harmonic mean of Precision and Recall:

Recall = TP
TP + FN

(11)

F − measure =
(
1 + β2

) × Recall × Precision

β2 × Recall + Precision
(12)

where β is a coefficient regulating the weight of Precision and Recall, typically taken as 1.

4.4 Results

4.4.1 Regression Validation of LAFAM

To verify the performance improvement of the LAFAM network, we first compare the model with
the following models widely used in recommendation systems in terms of a regression problem:

• GBDT (Gradient Boosting Decision Tree) [64]: an ensemble learning method that builds and
combines many decision trees sequentially to improve predictive performance by minimizing
errors.



CMC, 2025, vol.82, no.1 765

• DCN (Deep & Cross Network) [65]: it retains the benefits of the deep neural network and
introduces a novel cross network to learn certain bounded-degree feature interactions more
efficiently.

• MoE (Mixture-of-Experts) [30]: it consists of several feed-forward sub-networks and selects a
sparse combination of sub-networks via a trainable gated network.

In this experiment, the squared loss function is used as the basic backpropagation loss function.
For GBDT, we use a learning rate of 0.1, a maximum depth of 6, and 100 boosting iterations. For
DCN, we follow a standard configuration with 3 deep layers and 2 cross layers, utilizing ReLU as the
activation function. For MoE, we configured the model with 4 experts and 2 gating layers, with each
expert being an MLP with 3 hidden layers. These settings are selected based on both previous studies
and a hyperparameter tuning process conducted in our own experiments to ensure all models were
optimized under the same conditions.

On the model side, MAE can intuitively show the regression error situation, RMSE can better
reflect the influence of extreme values on the error, while WMAPE is less affected by extreme values
and individuals, and can show the overall prediction of the network more evenly. Therefore, the three
metrics together can measure the performance of the regression model more completely. However,
since the prediction problem in this paper is a class imbalance problem, the metrics above are all
calculated with the same weights for both large and small classes, so they cannot well reflect the
effectiveness of the network for the imbalance problem. For this reason, we choose the metric HR@K
to judge the performance of the model under imbalance conditions in practical application.

The experimental results as regression problems are shown in Table 3. It shows that LAFAM
outperforms other network structures on both datasets. In terms of RMSE, MAE, and WMAPE, the
LAFAM network has no obvious disadvantage compared with other networks, and even if it cannot
reach the best, it is still very close to the best value. Moreover, MAE and WMAPE parameters even
occupy the optimal position in the Tmall dataset. RMSE parameters are reduced because large classes
contribute many loss values in highly unbalanced datasets. In practical applications, we often measure
the performance of a model by HR@K (K = 50, 100, 200), the hit rate of the top K products. It can be
seen from Table 2 that LAFAM improves stability on the HR@K parameter. For the Tmall dataset,
LAFAM increases by 34.8%, 8.4%, and 10.4% on HR@50, HR@100 and HR@200, respectively,
compared to MoE. For the CGFSF dataset, the improvement is 22.9%, 3.6%, and 24.4%, respectively.
This is a great benefit in practical commercial applications. It indicates that LAFAM can optimize
the problem of reduced prediction accuracy caused by feature imbalance and class imbalance, and has
certain advantages compared to other recommendation applications.

Table 3: Comparison of different networks in regression problems based on two datasets

Tmall/CFGSF RMSE MAE WMAPE HR@50 HR@100 HR@200

GBDT 22.583/0.539 1.294/0.389 0.447/0.402 0.32/0.44 0.37/0.52 0.415/0.585
DCN 23.637/0.566 1.185/0.328 0.494/0.388 0.40/0.51 0.46/0.55 0.450/0.525
MoE 22.525/0.574 1.196/0.375 0.452/0.375 0.46/0.48 0.48/0.47 0.475/0.450
LAFAM 22.639/0.543 1.171/0.337 0.433/0.379 0.62/0.59 0.53/0.57 0.515/0.560
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4.4.2 Classification Validation of LAFAM and Suppression Loss

In practical applications, conspicuous positions on the sales page are limited, so we require high
prediction accuracy. We can accept the misclassification of small categories into large categories, but
the misclassification of large categories into small categories is costly and unacceptable. Therefore,
in the experiment, the higher the precision the better the experimental effect. We also refer to the F-
measure and accuracy to comprehensively evaluate the network. The F-measure is a typical parameter
to measure the effect of a model in an unbalanced data field.

We determine the parameters of suppression loss function by grid search. Fig. 7 shows the grid
search process of suppression loss, where the red dot position is the selected parameter value, and other
experiments are conducted in the same way. Since the practical tuning uses high dimensions for the
search, the location of the red point in Fig. 7b is not the global optimal solution, but it has optimal
performance when combined with other parameters. The optimal parameter points are selected as
experimental parameters, whose final values are shown in Table 4.

Figure 7: Suppression loss grid search image: (a) λ and μ; (b) μ and η

Table 4: Parameters used in the experiment

Parameter Source formula Selected value Setting range

λ Eq. (3) 0.60 [0, 1]
μ Eq. (3) 0.25 [0, 1]
η Eq. (3) 0.35 [0, 1]
α Eq. (4) 58 [1, ∞)

β Eq. (4) 0.69 (0, 1)

θ Eq. (4) 50 [1, ∞)

ρ Eq. (4) 0.37 (0, 1)

γ Eq. (4) 2.1 (1, 50)

We should ensure the stability of the function as well as its effectiveness. Fig. 8 shows the change
curves of accuracy and loss during training with shrinkage and suppression loss, from which we can
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find that acc and loss values of suppression loss basically do not fluctuate after reaching a stable level.
In addition, there is obviously less gradient disappearance and explosion of suppression loss during
training, so its performance is more stable. Stable performance will have higher credibility in practical
application, which also benefits recommendation income.

Since both LAFAM and suppression loss have excellent performance in the control variable test,
we use them together to verify the effectiveness of the RS for class and feature imbalance. We examine
focal loss, shrinkage loss, and suppression loss respectively under different networks, and select MLP,
GRU, DCN, MoE, and LAFAM networks for comparison. The first four are the sub-networks used
in the LAFAM network in this paper and thus are tested separately. The parameter settings of the sub-
networks used for comparison are kept consistent with the LAFAM network. In this way, we complete
the ablation experiment while baseline comparison, proving that the joint network has enhancement
compared to each sub-network.

Figure 8: Comparison of training process between shrinkage loss and suppression loss

Table 5 shows the performance of loss functions in different networks based on the imbalanced
dataset Tmall. The imbalance ratios of 1:5, 1:10, and 1:20 are selected to represent different levels of
data imbalance commonly observed in real-world recommendation system applications. These ratios
simulate different degrees of data skewness, allowing us to evaluate the performance of the LAFAM
network and suppression loss under both mild (1:5) and extreme (1:20) imbalance conditions. By
testing across these imbalance degrees, we ensure the generalizability of our findings across different
levels of class distribution imbalances that are relevant in practical applications.

Table 5: Comparison of different networks and loss functions in classification problems under different
imbalances based on the Tmall dataset

1:5/1:10/1:20 Precision Accuracy F-measure

MLP-Focal 0.1678/0.1002/0.0524 0.1736/0.1860/0.1484 0.2874/0.1820/0.0997
MLP-Shrinkage 0.2909/0.2460/0.1694 0.6355/0.7796/0.8345 0.4304/0.3619/0.2675

(Continued)
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Table 5 (continued)

1:5/1:10/1:20 Precision Accuracy F-measure

MLP-Suppression 0.3480/0.3202/0.2214 0.7216/0.8560/0.8934 0.4791/0.3899/0.2464
GRU-Focal 0.1336/0.1158/0.1006 0.1662/0.1703/0.1715 0.2523/0.1639/0.1005
GRU-shrinkage 0.2269/0.2021/0.1859 0.6012/0.6824/0.7219 0.4017/0.3028/0.2771
GRU-Suppression 0.3520/0.3114/0.2073 0.7033/0.8623/0.8982 0.4663/0.3893/0.2215
DCN-Focal 0.1562/0.0997/0.0312 0.1527/0.1808/0.1879 0.2413/0.1507/0.0958
DCN-shrinkage 0.2934/0.2185/0.1523 0.6378/0.7209/0.8660 0.4273/0.3469/0.2801
DCN-Suppression 0.3478/0.3019/0.2115 0.7829/0.8602/0.9099 0.4870/0.3772/0.2518
MoE-Focal 0.1473/0.0843/0.0476 0.1455/0.1033/0.1143 0.2376/0.1102/0.0883
MoE-shrinkage 0.2933/0.2374/0.1940 0.6222/0.7635/0.8878 0.4355/0.3309/0.2541
MoE-Suppression 0.3561/0.2912/0.2012 0.6559/0.8243/0.8841 0.5010/0.3840/0.2954
LAFAM-Focal 0.1667/0.0923/0.0505 0.1670/0.1024/0.0569 0.2858/0.1691/0.0961
LAFAM-shrinkage 0.2934/0.2916/0.2127 0.6436/0.8364/0.9003 0.4306/0.3817/0.2695
LAFAM-Suppression 0.3373/0.3055/0.2426 0.6755/0.8460/0.9192 0.4580/0.3943/0.3028

Regarding the network, LAFAM shows significant improvements on the dataset with a high
imbalance degree compared to the other networks. In the 1:20 imbalance dataset, the LAFAM is in
the optimal position for all three parameters, which is about 10% higher than the other networks on
average. While in the 1:5 and 1:10 imbalance datasets, it is only about 7% lower than the optimal
network on average. Therefore, the LAFAM network is used in the class imbalance and feature
imbalance datasets with stable results and obvious advantages. Regarding the loss function, it can
be found that suppression loss has better performance in each network, as it can well solve the
problems of the unbalanced number of categories and unbalanced sample discriminant confidence.
The experimental results of the suppression loss have an average increase of about 15% compared to the
other loss functions, which shows that it has good adaptability to unbalanced datasets. The LAFAM-
suppression loss, which is combined with the two methods, has the best performance under a 1:20
imbalance degree (which is closest to practical application). The performance superiority of LAFAM-
suppression loss continues to increase with the imbalance ratio. Therefore, it can be concluded that
LAFAM-suppression loss can improve the recommendation of multi-angle imbalance.

5 Conclusion and Future Work

We proposed an RS to solve the recommendation problem on unbalanced datasets. It includes
the LAFAM network framework and suppression loss, which can solve the issues of feature and
class imbalance, respectively. Combined, they can well improve the imbalance issue encountered in
the traditional machine learning algorithm used in the RS field. Comparative experiments using
other networks and loss functions on two datasets show that they can solve the imbalance issue.
Furthermore, the results on datasets with a high degree of imbalance show greater improvement than
traditional methods.

For future work, our proposed LAFAM network requires background data to make recommen-
dations, and thus cannot cope with the cold-start issue. We can optimize this problem by fast trial or
interest migration. Alternatively, supervised learning can be combined with reinforcement learning to
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promote recommendation accuracy, diversity, and vertical category ratio optimization for unbalanced
e-commerce data.

Acknowledgement: We sincerely thank Zhenyu Zhang of Alibaba Group for providing the dataset for
this study.

Funding Statement: This work was supported by the National Key Research and Development
Program of China (Grant numbers: 2021YFF0901705, 2021YFF0901700); the State Key Laboratory
of Media Convergence and Communication, Communication University of China; the Fundamental
Research Funds for the Central Universities; the High-Quality and Cutting-Edge Disciplines Con-
struction Project for Universities in Beijing (Internet Information, Communication University of
China).

Author Contributions: Conceptualization, Yuewei Wu; Methodology, Yuewei Wu, Ruiling Fu; Data
curation, Ruiling Fu, Tongtong Xing; Formal analysis, Ruiling Fu, Tongtong Xing; Investigation,
Yuewei Wu, Fuliang Yin; Writing—original draft, Yuewei Wu, Ruiling Fu. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: Due to the nature of this research, participants of this study did
not agree for their data to be shared publicly, so supporting data is not available.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, “A Survey on accuracy-oriented neural recommendation:

From collaborative filtering to information-rich recommendation,” IEEE Trans. Knowl. Data Eng., vol. 35,
no. 5, pp. 4425–4445, May 2023. doi: 10.1109/TKDE.2022.3145690.

[2] N. Khan, Z. Ma, A. Ullah, and K. Polat, “Categorization of knowledge graph based recommendation
methods and benchmark datasets from the perspectives of application scenarios: A comprehensive survey,”
Expert Syst. Appl., vol. 206, no. 15, Nov. 2022, Art. no. 117737. doi: 10.1016/j.eswa.2022.117737.

[3] Y. Wang, W. Ma, M. Zhang, Y. Liu, and S. Ma, “A Survey on the Fairness of Recommender Systems,”
ACM Trans. Inf. Syst., vol. 41, no. 3, Feb. 2023, Art. no. 52. doi: 10.1145/3547333.

[4] S. Dhelim, N. Aung, M. A. Bouras, H. Ning, and E. Cambria, “A survey on personality-
aware recommendation systems,” Artif. Intell. Rev., vol. 55, no. 3, pp. 2409–2454, Mar. 2022. doi:
10.1007/s10462-021-10063-7.

[5] R. E. Bawack, S. F. Wamba, K. D. A. Carillo, and S. Akter, “Artificial intelligence in e-commerce:
A bibliometric study and literature review,” Electr. Mark., vol. 32, pp. 297–338, Mar. 2022. doi:
10.1007/s12525-022-00537-z.

[6] Y. Bai and H. Li, “Mapping the evolution of e-commerce research through co-word analysis: 2001–2020,”
Electr. Commer. R. A., vol. 55, no. 2, Sep.–Oct. 2022, Art. no. 101190. doi: 10.1016/j.elerap.2022.101190.

[7] C. Pei et al., “Value-aware recommendation based on reinforcement profit maximization,” in World Wide
Web Conf. (WWW’19), San Francisco, CA, USA, May 13–17, 2019, pp. 3123–3129.

[8] B. Zhou and T. Zou, “Competing for recommendations: The strategic impact of personalized product
recommendations in online marketplaces,” Market. Sci., vol. 42, no. 2, pp. 360–376, Mar.–Apr. 2023. doi:
10.1287/mksc.2022.1388.

https://doi.org/10.1109/TKDE.2022.3145690
https://doi.org/10.1016/j.eswa.2022.117737
https://doi.org/10.1145/3547333
https://doi.org/10.1007/s10462-021-10063-7
https://doi.org/10.1007/s12525-022-00537-z
https://doi.org/10.1016/j.elerap.2022.101190
https://doi.org/10.1287/mksc.2022.1388


770 CMC, 2025, vol.82, no.1

[9] E. Gómez, L. Boratto, and M. Salamó, “Provider fairness across continents in collaborative rec-
ommender systems,” Inform. Process. Manag., vol. 59, no. 1, Jan. 2022, Art. no. 102719. doi:
10.1016/j.ipm.2021.102719.

[10] G. Aguiar, B. Krawczyk, and A. Cano, “A survey on learning from imbalanced data streams: Taxonomy,
challenges, empirical study, and reproducible experimental framework,” Mach. Learn., vol. 113, pp. 4165–
4243, Jun. 2024. doi: 10.1007/s10994-023-06353-6.

[11] Y. Zhu, Y. Geng, Y. Li, J. Qiang, Y. Yuan and X. Wu, “Self-adaptive deep asymmetric network for
imbalanced recommendation,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 8, no. 1, pp. 968–980, Feb.
2024. doi: 10.1109/TETCI.2023.3300740.

[12] X. Zhang, R. Li, B. Zhang, Y. Yang, J. Guo and X. Ji, “An instance-based learning recommendation
algorithm of imbalance handling methods,” Appl. Math. Comput., vol. 351, pp. 204–218, Jun. 2019. doi:
10.1016/j.amc.2018.12.020.

[13] L. Yu et al., “A biased sampling method for imbalanced personalized ranking,” in Proc. 31st ACM Int.
Conf. Inform. Knowl. Manag. (CIKM’22), Atlanta, GA, USA, Oct. 17–21, 2022, pp. 2393–2402.

[14] M. Kim, Y. Yang, J. H. Ryu, and T. Kim, “Meta-learning with adaptive weighted loss for imbalanced cold-
start recommendation,” in Proc. 32nd ACM Int. Conf. Inform. Knowl. Manag. (CIKM’23), Birmingham,
UK, Oct. 21–25, 2023, pp. 1077–1086.

[15] Y. Qiao, Y. Wu, F. Duo, W. Lin, and J. Yang, “Siamese neural networks for user identity linkage through
web browsing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 8, pp. 2741–2751, Aug. 2020. doi:
10.1109/TNNLS.2019.2929575.

[16] K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance problems in object detection: A
review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10, pp. 3388–3415, Oct. 2021. doi:
10.1109/TPAMI.2020.2981890.

[17] G. Wang, Q. Song, H. Sun, X. Zhang, B. Xu and Y. Zhou, “A feature subset selection algorithm automatic
recommendation method,” J. Artif. Intell. Res., vol. 47, pp. 1–34, May 2013. doi: 10.1613/jair.3831.

[18] E. H. Han and G. Karypis, “Feature-based recommendation system,” in Proc. 14th ACM Int. Conf. Inform.
Knowl. Manag. (CIKM’05), Bremen, Germany, Oct. 31–Nov. 05, 2015, pp. 446–452.

[19] Y. Wu, W. Zhang, L. Zhang, Y. Qiao, J. Yang and C. Cheng, “A multi-clustering algorithm to solve driving
cycle prediction problems based on unbalanced data sets: A Chinese case study,” Sensors, vol. 20, no. 9,
Apr. 2020, Art. no. 2448. doi: 10.3390/s20092448.

[20] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 318–327, Feb. 2020. doi: 10.1109/TPAMI.2018.2858826.

[21] X. Lu, C. Ma, B. Ni, X. Yang, I. Reid and M. H. Yang, “Deep regression tracking with shrinkage loss,” in
Comput. Vis.-ECCV 2018: 15th European Conf., Munich, Germany, Sep. 08–14, 2018, pp. 369–386.

[22] S. Park, Y. Hong, B. Heo, S. Yun, and J. Y. Choi, “The majority can help the minority: Context-rich minority
oversampling for long-tailed classification,” in Proc. 2022 IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR’22), New Orleans, LA, USA, Jun. 18–24, 2022, pp. 6877–6886.

[23] S. Goyal, “Handling class-imbalance with KNN (neighbourhood) under-sampling for software defect
prediction,” Artif. Intell. Rev., vol. 55, pp. 2409–2454, Mar. 2022. doi: 10.1007/s10462-021-10044-w.

[24] H. Kaur, H. S. Pannu, and A. K. Malhi, “A systematic review on imbalanced data challenges in machine
learning: Applications and solutions,” ACM Comput. Surv., vol. 52, no. 4, Aug. 2019, Art. no. 79. doi:
10.1145/3343440.

[25] A. N. Tarekegn, M. Giacobini, and K. Michalak, “A review of methods for imbalanced multi-label
classification,” Pattern Recogn., vol. 118, Oct. 2021, Art. no. 107965. doi: 10.1016/j.patcog.2021.107965.

[26] T. Meng, X. Jing, Z. Yan, and W. Pedrycz, “A survey on machine learning for data fusion,” Inform. Fusion.,
vol. 57, pp. 115–129, May 2022. doi: 10.1016/j.inffus.2019.12.001.

[27] S. Ji, Z. Wang, T. Li, and Y. Zheng, “Spatio-temporal feature fusion for dynamic taxi route recommen-
dation via deep reinforcement learning,” Knowl.-Based Syst., vol. 205, Oct. 2020, Art. no. 106302. doi:
10.1016/j.knosys.2020.106302.

https://doi.org/10.1016/j.ipm.2021.102719
https://doi.org/10.1007/s10994-023-06353-6
https://doi.org/10.1109/TETCI.2023.3300740
https://doi.org/10.1016/j.amc.2018.12.020
https://doi.org/10.1109/TNNLS.2019.2929575
https://doi.org/10.1109/TPAMI.2020.2981890
https://doi.org/10.1613/jair.3831
https://doi.org/10.3390/s20092448
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1007/s10462-021-10044-w
https://doi.org/10.1145/3343440
https://doi.org/10.1016/j.patcog.2021.107965
https://doi.org/10.1016/j.inffus.2019.12.001
https://doi.org/10.1016/j.knosys.2020.106302


CMC, 2025, vol.82, no.1 771

[28] J. H. Wang, Y. T. Wu, and L. Wang, “Predicting implicit user preferences with multimodal feature fusion
for similar user recommendation in social media,” Appl. Sci., vol. 11, no. 3, Jan. 2021, Art. no. 1064. doi:
10.3390/app11031064.

[29] L. Lin, Z. Xu, and Y. Nian, “FFDNN: Feature fusion depth neural network model of recommendation
system,” in Proc. 2020 Int. Conf. Internet of Things Intell. Appl. (ITIA’20), Zhenjiang, China, Nov. 27–29,
2020, pp. 1–5.

[30] N. Shazeer et al., “Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,” 2017,
arXiv:1701.06538.

[31] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,” J. Big Data, vol.
6, Mar. 2019, Art. no. 27. doi: 10.1186/s40537-019-0192-5.

[32] A. Bria, C. Marrocco, and F. Tortorella, “Addressing class imbalance in deep learning for small
lesion detection on medical images,” Comput. Biol. Med., vol. 120, May 2020, Art. no. 103735. doi:
10.1016/j.compbiomed.2020.103735.

[33] H. Cang et al., “Jujube quality grading using a generative adversarial network with an imbalanced data
set,” Biosyst. Eng., vol. 236, pp. 224–237, Dec. 2023. doi: 10.1016/j.biosystemseng.2023.11.002.

[34] E. Gómez, “Characterizing and mitigating the impact of data imbalance for stakeholders in recommender
systems,” in Proc. 14th ACM Conf. Recommender Syst. (RecSys’20), Brazil, Sep. 22–26, 2020, pp. 756–757.

[35] R. Qin, Z. Wang, S. Huang, and L. Huangfu, “MSTIL: Multi-cue shape-aware transferable imbalance
learning for effective graphic API recommendation,” J. Syst. Software., vol. 200, Jun. 2023, Art. no. 111650.
doi: 10.1016/j.jss.2023.111650.

[36] S. Dhote, C. Vichoray, R. Pais, S. Baskar, and P. Mohamed Shakeel, “Hybrid geometric sampling and
AdaBoost based deep learning approach for data imbalance in e-commerce,” Electr. Commer. Res., vol. 20,
no. 2, pp. 259–274, Jun. 2020. doi: 10.1007/s10660-019-09383-2.

[37] R. G. Wang, X. Zhang, Y. Gao, A. L. Yee, and X. Wang, “The use of an internet of things data management
system using data mining association algorithm in an e-commerce platform,” J. Organ. End User Com., vol.
35, no. 3, pp. 1–19, May 2023. doi: 10.4018/JOEUC.322553.

[38] G. Wei, W. Mu, Y. Song, and J. Dou, “An improved and random synthetic minority oversam-
pling technique for imbalanced data,” Knowl.-Based Syst., vol. 248, Jul. 2022, Art. no. 108839. doi:
10.1016/j.knosys.2022.108839.

[39] J. Hoyos-Osorio, A. Alvarez-Meza, G. Daza-Santacoloma, A. Orozco-Gutierrez, and G. Castellanos-
Dominguez, “Relevant information undersampling to support imbalanced data classification,” Neurocom-
puting, vol. 436, pp. 136–146, May 2021. doi: 10.1016/j.neucom.2021.01.033.

[40] V. Werner de Vargas, J. A. Schneider Aranda, R. dos Santos Costa, P. R. da Silva Pereira, and J. L. Victória
Barbosa, “Imbalanced data preprocessing techniques for machine learning: A systematic mapping study,”
Knowl. Inf. Syst., vol. 65, no. 1, pp. 31–57, Jan. 2023. doi: 10.1007/s10115-022-01772-8.

[41] C. Lin, C. F. Tsai, and W. C. Lin, “Towards hybrid over-and under-sampling combination methods for class
imbalanced datasets: An experimental study,” Artif. Intell. Rev., vol. 56, no. 2, pp. 845–863, Apr. 2022. doi:
10.1007/s10462-022-10186-5.

[42] A. Sze-To and A. K. C. Wong, “A weight-selection strategy on training deep neural networks for imbal-
anced classification,” in Image Anal. Recognit.: 14th Int. Conf. (ICIAR’2017), Montreal, QC, Canada, Jul.
05–07, 2017, pp. 3–10.

[43] D. Tran, H. Mac, V. Tong, H. A. Tran, and L. G. Nguyen, “A LSTM based framework for handling
multiclass imbalance in DGA botnet detection,” Neurocomputing, vol. 275, pp. 2401–2413, Jan. 2018. doi:
10.1016/j.neucom.2017.11.018.

[44] Y. Chen, B. Pang, G. Shao, G. Wen, and X. Chen, “DGA-based botnet detection toward imbal-
anced multiclass learning,” Tsinghua Sci. Technol., vol. 26, no. 4, pp. 387–402, Aug. 2021. doi:
10.26599/TST.2020.9010021.

[45] H. T. Lin, “Advances in cost-sensitive multiclass and multilabel classification,” in Proc. 25th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Min., Anchorage, AK, USA, Aug. 04–08, 2019, pp. 3187–3188.

https://doi.org/10.3390/app11031064
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1016/j.compbiomed.2020.103735
https://doi.org/10.1016/j.biosystemseng.2023.11.002
https://doi.org/10.1016/j.jss.2023.111650
https://doi.org/10.1007/s10660-019-09383-2
https://doi.org/10.4018/JOEUC.322553
https://doi.org/10.1016/j.knosys.2022.108839
https://doi.org/10.1016/j.neucom.2021.01.033
https://doi.org/10.1007/s10115-022-01772-8
https://doi.org/10.1007/s10462-022-10186-5
https://doi.org/10.1016/j.neucom.2017.11.018
https://doi.org/10.26599/TST.2020.9010021


772 CMC, 2025, vol.82, no.1

[46] Z. Wang et al., “An industrial framework for personalized serendipitous recommendation in E-commerce,”
in Proc. 17th ACM Conf. Recommender Syst. (RecSys’23), Singapore, Sep. 18–22, 2023, pp. 1015–1018.

[47] I. Islek and S. G. Oguducu, “A hierarchical recommendation system for E-commerce using online user
reviews,” Electr. Commer. R. A, vol. 52, Mar.–Apr. 2022, Art. no. 101131. doi: 10.1016/j.elerap.2022.101131.

[48] S. Wei, Z. Wang, X. An, Q. Li, H. Xiao and Y. Xiao, “A recommendation model for e-commerce platforms
oriented to explicit information compensation and hidden information mining,” Knowl.-Based Syst., vol.
286, Feb. 2024, Art. no. 111359. doi: 10.1016/j.knosys.2023.111359.

[49] Z. Movafegh and A. Rezapour, “Improving collaborative recommender system using hybrid clustering and
optimized singular value decomposition,” Eng. Appl. Artif. Intel., vol. 126, Nov. 2023, Art. no. 107109. doi:
10.1016/j.engappai.2023.107109.

[50] K. Patel and H. B. Patel, “A state-of-the-art survey on recommendation system and prospective extensions,”
Comput. Electron. Agr., vol. 178, Nov. 2020, Art. no. 105779. doi: 10.1016/j.compag.2020.105779.

[51] Y. Pérez-Almaguer, R. Yera, A. A. Alzahrani, and L. Martínez, “Content-based group recommender
systems: A general taxonomy and further improvements,” Expert Syst. Appl., vol. 184, Dec. 2021, Art.
no. 115444. doi: 10.1016/j.eswa.2021.115444.

[52] Y. Lu and Y. Duan, “Online content-based sequential recommendation considering multimodal contrastive
representation and dynamic preferences,” Neural Comput. Appl., vol. 36, no. 13, pp. 7085–7103, Feb. 2024.
doi: 10.1007/s00521-024-09447-x.

[53] Y. Koren, S. Rendle, and R. Bell, “Advances in collaborative filtering,” in Recommender Syst. Handbook,
New York, NY, USA: Springer, Nov. 2021, pp. 91–142. doi: 10.1007/978-1-0716-2197-4_3.

[54] S. Sharma, V. Rana, and M. Malhotra, “Automatic recommendation system based on hybrid filtering
algorithm,” Educ. Inf. Technol., vol. 27, pp. 1523–1538, Jul. 2021. doi: 10.1007/s10639-021-10643-8.

[55] Z. Z. Darban and M. H. Valipour, “GHRS: Graph-based hybrid recommendation system with appli-
cation to movie recommendation,” Expert Syst. Appl., vol. 200, Aug. 2022, Art. no. 116850. doi:
10.1016/j.eswa.2022.116850.

[56] A. Da’u and N. Salim, “Recommendation system based on deep learning methods: A systematic review and
new directions,” Artif. Intell. Rev., vol. 53, pp. 2709–2748, Apr. 2020. doi: 10.1007/s10462-019-09744-1.

[57] M. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, “Human activity recognition using tools
of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects,”
Comput. Biol. Med., vol. 149, Oct. 2022, Art. no. 106060. doi: 10.1016/j.compbiomed.2022.106060.

[58] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural networks for time series forecasting:
Current status and future directions,” Int. J. Forecasting., vol. 37, no. 1, pp. 388–427, Jan.–Mar. 2021. doi:
10.1016/j.ijforecast.2020.06.008.

[59] M. A. Chatti, M. Guesmi, and A. Muslim, “Visualization for recommendation explainability: A survey
and new perspectives,” ACM T. Interact. Intel., vol. 14, no. 3, pp. 1–40, Aug. 2024. doi: 10.1145/3672276.

[60] C. Chen, A. D. Tian, and R. Jiang, “When post hoc explanation knocks: Consumer responses to
explainable AI recommendations,” J. Interact. Mark., vol. 59, no. 3, pp. 234–250, Dec. 2023. doi:
10.1177/10949968231200221.

[61] R. Dwivedi et al., “Explainable AI (XAI): Core ideas, techniques, and solutions,” ACM Comput. Surv., vol.
55, no. 9, pp. 1–33, Jan. 2023. doi: 10.1145/3561048.

[62] M. Li et al., “Scaling distributed machine learning with the parameter server,” in Proc. 11th USENIX Conf.
Oper. Syst. Design Implementation, Broomfield, CO, Oct. 06–08, 2014, pp. 583–598.

[63] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int.
Conf. Knowl. Discov. Data Min., San Francisco, CA, USA, Aug. 13–17, 2016, pp. 785–794.

[64] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Ann. Stat., vol. 29, no.
5, pp. 1189–1232, Oct. 2001.

[65] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for ad click predictions,” in Proc. ADKDD’17,
Halifax, NS, Canada, Aug. 14, 2017, pp. 1–7.

https://doi.org/10.1016/j.elerap.2022.101131
https://doi.org/10.1016/j.knosys.2023.111359
https://doi.org/10.1016/j.engappai.2023.107109
https://doi.org/10.1016/j.compag.2020.105779
https://doi.org/10.1016/j.eswa.2021.115444
https://doi.org/10.1007/s00521-024-09447-x
https://doi.org/10.1007/978-1-0716-2197-4_3
https://doi.org/10.1007/s10639-021-10643-8
https://doi.org/10.1016/j.eswa.2022.116850
https://doi.org/10.1007/s10462-019-09744-1
https://doi.org/10.1016/j.compbiomed.2022.106060
https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1145/3672276
https://doi.org/10.1177/10949968231200221
https://doi.org/10.1145/3561048


CMC, 2025, vol.82, no.1 773

Appendix A. Suppression Loss Feasibility Proof

A loss function must be continuous and differentiable in R. Therefore, we will prove the continuity

and differentiability of Lsp, which requires us to prove that f (x) = x
1 + |x| is continuous and

differentiable.

f (·) is a piecewise function. When x > 0, f (x) = x
1 + x

, and f (·) is obviously continuous and

differentiable. When x < 0, f (x) = x
1 − x

, and again, f (·) is obviously continuous and differentiable.

Therefore, we only need to prove that f (·) is continuous and differentiable at x = 0.

We first prove that f (·) is differentiable at point 0.

f+(x) = x
1 + x

(A1)

f− (x) = x
1 − x

(A2)

f
′
+(x) = 1 + x − x

(1 + x)2
= 1

(1 + x)2
(A3)

f
′
−(x) = 1 − x + x

(1 − x)2
= 1

(1 − x)2
(A4)

When x = 0, f ′
+ (x) = f ′

− (x) = 1. Therefore, f (·) is differentiable in the real domain.

We next prove that f (·) is continuous at 0.

f (0+) = limx→0+
x

1 + x
= limx→0+

1
1
x

+ 1
= 0 (A5)

f (0−) = limx→0−
x

1 − x
= limx→0+

1
1
x

− 1
= 0 (A6)

f (0) = 0 = f (0+) = f (0−) (A7)

Therefore, f (·) is continuous in the domain of R.

Thus f (·) is continuous and differentiable in the domain of R, so Lsp can be used as a loss function.
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Appendix B. Experiment Supplementary Diagram

Figure A1: Receiver operating characteristic (ROC) curve of shrinkage and suppression loss. The ROC
curve is generally used to reflect the threshold sensitivity and prediction accuracy of a model. The value
of AUC represents the area under the ROC curve. The larger the area the better the prediction effect.
We can see that the AUC value of the suppression loss is greater than that of shrinkage, indicating that
suppression loss has better predictive performance

Figure A2: (Continued)
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Figure A2: Distribution of predicted score by shrinkage loss and suppression loss. In the scoring
process, we hope that the scores are concentrated at both ends, i.e., there are many sample points
with low and high scores, but the scores are relatively small. A more concentrated number of scores, at
a certain value (such as (a)), means that the algorithm does not distinguish the scores. It demonstrates
that suppression loss is better than shrinkage loss and focal loss in classification performance
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