
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.057460

ARTICLE

DKP-SLAM: A Visual SLAM for Dynamic Indoor Scenes Based on Object
Detection and Region Probability

Menglin Yin1, Yong Qin1,2,3,4,* and Jiansheng Peng1,2,3,4

1College of Automation, Guangxi University of Science and Technology, Liuzhou, 545000, China
2Department of Artificial Intelligence and Manufacturing, Hechi University, Hechi, 546300, China
3Key Laboratory of AI and Information Processing, Education Department of Guangxi Zhuang Autonomous Region, Hechi,
546300, China
4Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering,
Hechi University, Hechi, 546300, China
*Corresponding Author: Yong Qin. Email: 05005@hcnu.edu.cn
Received: 18 August 2024 Accepted: 23 October 2024 Published: 03 January 2025

ABSTRACT

In dynamic scenarios, visual simultaneous localization and mapping (SLAM) algorithms often incorrectly incor-
porate dynamic points during camera pose computation, leading to reduced accuracy and robustness. This paper
presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability. Firstly, a
parallel thread employs the YOLOX object detection model to gather 2D semantic information and compensate for
missed detections. Next, an improved K-means++ clustering algorithm clusters bounding box regions, adaptively
determining the threshold for extracting dynamic object contours as dynamic points change. This process divides
the image into low dynamic, suspicious dynamic, and high dynamic regions. In the tracking thread, the dynamic
point removal module assigns dynamic probability weights to the feature points in these regions. Combined with
geometric methods, it detects and removes the dynamic points. The final evaluation on the public TUM RGB-D
dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms, providing
better pose estimation accuracy and robustness in dynamic environments.
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1 Introduction

Simultaneous localization and mapping (SLAM) is a crucial component of mobile robots,
helping them perceive their surroundings through sensors, establish their current pose in unknown
environments, and progressively build a globally consistent map. SLAM systems are categorized into
two main types based on the sensors used: laser SLAM and visual SLAM, corresponding to the use of
lidar and cameras on mobile robots. lidar is expensive, bulky, and often used in autonomous vehicles.
With advancements in camera technology, we can now use more affordable, faster, higher-quality, and
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smaller cameras as sensors in systems. Cameras can provide rich color information, enabling human-
machine interaction and making vision-based SLAM applications more versatile and popular. Over
time, many excellent vision-based SLAM systems have been developed, such as ORB-SLAM3 [1],
LSD-SLAM [2], and VINS-Mono [3].

However, most visual SLAM algorithms assume static scenes, but mobile robots often operate in
dynamic environments where moving objects like people and animals can degrade system performance
by causing errors to accumulate over time. Accurately distinguishing between dynamic and static
areas is crucial for precise pose estimation. To address this challenge, some researchers use geometric
constraints like RANSAC (random sample consensus) [4] to remove mismatched points that do not
meet certain criteria. However, this approach is only effective when dynamic points occupy a small
area and struggles with larger dynamic objects. In recent years, the integration of deep learning into
SLAM systems has become popular, with researchers applying semantic constraints to identify and
remove potential dynamic objects within a scene. This typically involves detecting dynamic objects
through object detection or semantic segmentation to obtain their position information in the image,
which is then combined with geometric techniques to filter out feature points. Research on Crowd-
SLAM [5] suggests that object detection is more effective and faster than semantic segmentation in
handling unseen moving objects. However, the drawback of object detection is that detection boxes
are often larger than the actual dynamic objects. If all feature points within the detection box are
rejected, the SLAM system might lack sufficient static points for pose estimation, potentially leading
to localization failure. On the other hand, semantic segmentation methods are harder to train, and
balancing accuracy with real-time performance during segmentation is challenging, making it difficult
to achieve an optimal balance.

To tackle the problem of moving objects in dynamic environments, this paper proposes the DKP-
SLAM algorithm. This algorithm aims to reduce the impact of dynamic objects by integrating three
key processes: YOLOX [6] object detection, an improved K-means++ clustering method, and a
dynamic point removal strategy. By refining dynamic object contours and segmenting regions, along
with utilizing dynamic probability and geometric constraints, dynamic feature points are effectively
eliminated. The main contributions of this paper are as follows:

(1) Based on the ORB-SLAM3 framework, a real-time RGB-D visual SLAM system is proposed.
It adds a YOLOX object detection thread, optimized using TensorRT [7] to speed up inference,
which obtains 2D semantic information of dynamic objects for subsequent operations, and provides
a method to compensate for missed detections.

(2) An improved K-means++ clustering algorithm is proposed. This algorithm can adaptively
determine the number of clusters based on depth information from image streams and changes in
dynamic points, reducing noise interference and more accurately extracting dynamic object contours.

(3) A dynamic point removal strategy is proposed. By using detection boxes and masks to
divide the image into low dynamic, suspicious dynamic, and high dynamic areas, different dynamic
probability weights are assigned to feature points in each area. Combining geometric constraints,
dynamic points are removed to accurately solve the camera pose.

2 Related Work
2.1 Dynamic SLAM Improved by Geometry Method

Geometric methods primarily focus on retaining only feature points that satisfy geometric
constraints to avoid interference from dynamic objects. Kundu et al. [8] constructed two geometric
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constraints using multi-view geometry. The most commonly used is the epipolar constraint. However,
the choice of threshold directly affects system performance, as it may not effectively distinguish
between static and dynamic points. Li et al. [9] introduced a static weighting method for keyframe edge
points to reduce dynamic object influence on pose estimation. Additionally, Dai et al. [10] proposed
separating dynamic objects by analyzing static point cloud distribution, thus minimizing moving object
interference. Wang et al. [11] utilized two fundamental matrix constraints to filter dynamic objects by
identifying dynamic regions through mismatched points. They then segmented these regions using
depth information clustering for more accurate dynamic region identification. In addition to these
methods, direct methods for motion detection have also been explored. Nguyen et al. [12] developed
a fast and efficient dynamic-static separation method based on optical flow, effectively distinguishing
between moving and static objects. Sun et al. [13] proposed an innovative online motion removal
method based on RGB-D data, which incrementally updates the foreground model without requiring
prior information about moving objects, such as semantics or visual appearance. Cheng et al. [14]
detected dynamic feature points by combining optical flow vectors with the fundamental matrix. While
optical flow methods can achieve effective dynamic segmentation, they may lose accuracy in cases of
sudden changes in scene lighting or severe camera shake.

2.2 Dynamic SLAM Improved by the Semantic Method

Recent research in dynamic visual SLAM has increasingly concentrated on integrating deep
learning to acquire semantic information, which provides prior knowledge for enhancing SLAM
systems. Several methods have been developed, primarily utilizing semantic segmentation and object
detection model. For example, DS-SLAM [15] introduces a semantic segmentation thread that uses
SegNet [16] to create masks within the ORB-SLAM2 [17] framework. It then analyzes these masks
through optical flow and motion consistency detection; if the number of dynamic points within a mask
exceeds a threshold, all feature points within that mask are discarded, leaving only the points necessary
for pose estimation. On the other hand, DynaSLAM [18] adopts Mask-R-CNN [19] for pixel-level
image segmentation and combines it with multi-view geometry to address the challenge of incomplete
dynamic point coverage due to limited semantic information. Although its performance is impressive,
this combination faces slower operational speeds due to network demands. In response, RDS-SLAM
[20] proposes a novel keyframe selection strategy aimed at reducing delays in the acquisition of
semantic information, thus enhancing system responsiveness. PR-SLAM [21] combines an improved
lightweight semantic segmentation model SOLOv2 [22], with dynamic probability propagation to
effectively eliminate dynamic points, while YOLO-SLAM [23] utilizes the lightweight object detection
model Darknet19-YOLOv3 to identify dynamic objects and applies depth-enhanced RANSAC to
filter feature points in those regions.

In addition, certain methods optimize model performance by deploying them on accelerated
platforms. CDS-SLAM [24] accelerates object detection model inference using TensorRT in ORB-
SLAM3, proposing a nine-part detection algorithm and adaptive thresholds to better handle dynamic
objects and benefit from a wider array of detection categories. SG-SLAM [25] integrates an object
detection model on NCNN (ncnn convolutional neural network), combining geometric and semantic
information to quickly remove dynamic points, thereby maintaining high speeds while creating
semantic metric maps. However, it encounters robustness issues where the loss of semantic information
due to model inference performance results in tracking failures during system operation. Semantic
SLAM [26] attempts to strengthen the detection framework and reduce semantic information loss by
tracking adjacent frames and using epipolar constraints to filter feature points, but it may misclassify
some static points as outliers. In the current advanced detection domain, Ge et al. [27] proposed
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the NEAL (neural attention learning approach) method, which enhances the attention response of
detection models through an end-to-end training process without introducing additional network
structures, allowing the models to focus more accurately on important features in dynamic scenes,
effectively improving detection accuracy. Additionally, DFD-SLAM [28] implements a precise strategy
for removing dynamic points, enabling the identification of partially static regions on dynamic objects,
while MDP-SLAM [29] introduces an adaptive mask expansion algorithm that utilizes semantic
information from previous frames to extend the mask coverage of the current frame. This method
applies K-means clustering to extract contours of dynamic objects within the mask, effectively
combining semantic and geometric techniques to eliminate dynamic points. These systems aim to
improve the real-time performance and accuracy of pose estimation by effectively managing the
operational performance of network models and mitigating the impact of dynamic elements in various
scenarios.

3 System Overview
3.1 System Framework

The DKP-SLAM algorithm enhances the classical ORB-SLAM3 system by integrating three
key components: the detection module, the K-means++ clustering module, and the dynamic point
removal module. In Fig. 1, red areas highlight these improvements, while blue areas show the
unmodified ORB-SLAM3 parts. The detection module adds a parallel thread to process new RGB
image frames, using the YOLOX model, accelerated by TensorRT, to extract 2D detection boxes.
If detections are missed, optical flow matching is used for camera pose tracking. The clustering
module then applies an improved adaptive threshold K-means++ algorithm to more accurately define
dynamic object contours in the depth image. Lastly, the dynamic point removal module assigns weights
to feature points based on their varying dynamic probabilities within different regions and effectively
filters out dynamic points while retaining static ones by combining these weights with geometric
constraints.

Figure 1: DKP-SLAM system diagram
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3.2 Object Detection

In selecting the model for our system, we considered the portability of the system and the
construction of accelerated inference with TensorRT, choosing from the relatively mature YOLO series.
We compared YOLOv5, YOLOv8 [30], and YOLOX, as shown in Table 1.

Table 1: Comparison of different object detection models on the COCO dataset

Method MAP (%) PARAMS (M) GFLOPs

YOLOv8n 37.3 3.2 8.7
YOLOv8s 44.9 11.2 28.6
YOLOv8m 50.2 25.9 78.9
YOLOv5s 36.7 7.3 17.1
YOLOv5m 44.5 51.4 51.4
YOLOXs 39.6 9 26.8
YOLOXm 46.4 25.3 73.8

It is important to state that the accuracy of semantic information does not have a significantly
influence on the SLAM system. Due to the geometric verification strategy for dynamic objects,
subsequent operations can still proceed even with detection errors. However, MAP (mean average
precision) is not completely useless in this field. If a missed detection occurs, it will lead to a loss
of semantic information, which in turn causes the removal of consecutive dynamic points to be
incomplete, potentially leading to a system crash. Therefore, we need to refer to MAP, but it should
not be considered an absolute reference. In contrast, we are more concerned with the number of model
parameters, as this metric directly impacts the inference speed and computational power requirements.
Naturally, we want each frame to be processed as quickly as possible.

The data in the Table 1 is based on the official COCO [31] test results, and we selected rel-
atively small weight files for each model for comparison. We found that most M-level weights
significantly increased processing time per frame without improving the system’s accuracy. YOLOv8n
and YOLOv5s exhibited numerous missed detections, while the differences between YOLOv8s and
YOLOXs were negligible. Therefore, we ultimately selected YOLOXs as our inference model, and
subsequent experiments confirmed that this model is sufficiently effective for our SLAM system.

To better acquire prior semantic information in dynamic environments, we use object detection to
extract the location of various objects in RGB images. Specifically, in the detection module, we added a
parallel thread to deploy the YOLOX model on the TensorRT platform. This platform leverages GPU
(graphics processing unit) acceleration to improve the inference speed of object detection results. This
setup avoids blocking while waiting for semantic information, optimizing system performance and
ensuring that the SLAM system can perform real-time localization and mapping.

3.3 Missed Detection Compensation

We also considered the issue of detection failures that the YOLOX detection algorithm may
encounter in certain situations. For instance, as shown in Fig. 2, detection failures are more common
when dynamic objects are at the edge of the image or moving quickly. In dynamic scenarios, prior
semantic information is crucial, and our goal is to avoid tracking failures caused by missed detections.
Therefore, we have incorporated a missed detection compensation method in the detection module
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to address these potential detection failures. Due to the continuity of object movement and camera
frame capture, two frames of images are captured within a short time interval. Therefore, we can utilize
the distribution of dynamic points within the detection box from the previous frame to determine
whether any semantic information related to dynamic points is missing in the current frame. If a loss
is identified, we employ the Lucas-Kanade (LK) optical flow method to directly track the positions
of all feature points from the previous frame to the current frame.

Figure 2: Missed detection compensation process

Our goal is to retain as many static points as possible to mitigate the issue of semantic loss.
Consequently, the matching points of dynamic feature points on dynamic objects from the previous
frame will be discarded in the current frame, leaving the remaining points for tracking. However,
the optical flow method may lead to static feature points from the previous frame being incorrectly
tracked to dynamic objects. To address this, we utilize RANSAC to further filter outliers. The primary
reason for selecting RANSAC is its ability to effectively estimate model parameters in the presence of
outliers. RANSAC can identify and discard these incorrect matches by randomly sampling points and
evaluating their consistency, thus preserving point pairs that more accurately reflect the environment.
This is crucial for camera pose estimation as it ensures the quality of the input feature points.

Fig. 2 illustrates our entire compensation process for omitted detections. Image (a) depicts the
previous frame, which includes semantic information and the detected dynamic feature points. Image
(b) shows the tracking of feature points from the previous frame to the current frame using the optical
flow method, with matching pairs of dynamic points within the detection box connected by red lines.
Image (c) displays the current frame with semantic information lost due to missed detections, along
with the results of further RANSAC filtering applied to the remaining feature point pairs to eliminate
incorrect matches. It is evident that there are almost no dynamic points left on the dynamic objects,
indicating that our method effectively compensates for the semantic loss caused by missed detections.

3.4 Clustering Module

Although YOLOX object detection can quickly obtain detection boxes for dynamic objects, these
boxes are often large and cannot provide precise contours of dynamic objects. Directly removing these
boxes would result in the loss of many static feature points. Therefore, we designed a clustering module
based on the K-means++ clustering algorithm for a more detailed extraction of dynamic objects.
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The K-means++ clustering algorithm is an unsupervised clustering algorithm that is simple
to implement and operates quickly. Compared to the traditional K-means clustering algorithm, K-
means++ can better optimize the selection of initial cluster centers, usually converging to the optimal
solution more quickly and avoiding local optima more effectively, leading to better clustering results.
However, it is very sensitive to changes in the number of clusters, which can lead to under-clustering or
over-clustering, preventing dynamic objects from being correctly distinguished. To address this issue,
this paper proposes an adaptive threshold K-means++ clustering algorithm based on prior depth
information and 2D semantic information. This algorithm can adaptively determine the number of
clusters during SLAM operation. Algorithm 1 demonstrates our specific improvements. The steps are
as follows:

(1) First, we extract the target detection boxes from both the previous and current frames. This step
aims to reduce computational load and focus on the detection box areas to achieve better clustering
results. Subsequent clustering is limited to the target box regions.

(2) During the SLAM system’s operation, the time interval between two consecutive frames is
very short, and the average depth of dynamic objects between the two frames falls within a small
range. Therefore, we use the dynamic points and their average depth value T from the previous frame
as priors for the current frame. By calculating the proportion R of dynamic object pixels within the
detection box in the previous frame, we search the depth value range in the current frame starting from
the average depth T , ensuring that the proportion in the current frame approximates R. This determine
the number of dynamic points N in the current frame.

(3) To accurately segment the dynamic objects, we determine the number of clusters using the
maximum depth value of the current frame and the number of dynamic points N, which results in
determining the number of clusters K:

K = Dmax

N
. (1)

We use the value K as the number of clusters for the K-means++ algorithm to segment the image.
The category with the smallest distance between its average depth value and the previous frame’s
average depth value T is identified as the dynamic object. This object is marked in red.

(4) We performed post-processing on the image to ensure it met our expectations. After converting
the image to a binary image, we applied morphological erosion and dilation operations, filtering
out color blocks with morphological differences and mismatched appearances. This reduced noise
interference and ultimately obtained the contours of the dynamic objects.

Fig. 3 illustrates the comparison between the improved K-means++ clustering algorithm and
the original version, highlighting the effectiveness of the enhancements. Image (a) displays the
original depth image, which serves as the baseline for comparison. In Image (b), the original K-
means++ algorithm is applied; however, due to an improper setting of the number of clusters, both
underclustering and overclustering are observed. This inadequacy results in incomplete and inaccurate
contours of the dynamic objects, causing them to partially blend into the background environment,
thereby making it difficult to distinguish between dynamic objects and the surrounding area. As
demonstrated in Image (c), our improved method significantly enhances the clustering process by
more effectively determining the optimal number of clusters. This improvement allows for a much
clearer separation between dynamic objects and the background in the depth images, resulting in
more accurate and complete object contours. The enhanced algorithm better captures the details of
the dynamic objects, ensuring they are distinctly separated from the background. Finally, Image (d)
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demonstrates the binary image of the dynamic object contours after noise has been removed through
the post-processing process, leaving only clean contours.

(a) Depth Image (b) Before Improvement (c) After Improvement (d) Post-processing

Figure 3: Comparison of clustering effects

Algorithm 1: Improve adaptive threshold K-means++ clustering algorithm
Input: Previous frame depth image F_pre, Current frame depth image F_cur
Output: Dynamic object mask
1: F_pre_box, F_cur_box = ExtractDetectionBoxRegion (F_pre, F_cur)
2: T = CalculateMeanDepthOfDynamicPoints (F_pre_box)
3: R = CalculateProportionOfDynamicPoints (T, F_pre_box)
4: N = MatchDomainPixels (R, T, F_cur_box)
5: K = MaxDepthValue (F_cur_box)/N
6: labels = KMeansPlusPlus (F_cur_box, K)
7: mask = ComputeMinDepthDistance (labels, F_cur_box, T)
8: Convert the mask into a binary image and perform image opening operation on it
9: Remove color blocks with morphological differences and appearance that do not match

10: Return the filtered mask

3.5 Dynamic Point Removal Module

In this module, to eliminate the impact of dynamic points on the SLAM system, we have
designed a dynamic feature point removal algorithm that combines regional probability and geometric
constraints. The specific improvements are detailed in Algorithm 2.

First, we used the LK optical flow to track the positions of the feature points from the previous
frame to the current frame and eliminated the matching point pairs with morphological differences.
Then, the RANSAC 7-point method is used to calculate the matching point pairs, which are divided
into inliers and outliers. The inliers can obtain the stable basic matrix of the previous and subsequent
frames, and the epipolar line of the current frame is calculated. Specifically:

P1 = [u1, v1, 1], P2 = [u2, v2, 1], (2)
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where P1 and P2 represent the matching points from the previous and current frames, with u and v
denoting the horizontal and vertical coordinates of the feature points in the image. If we denote the
fundamental matrix as F , the calculation formula for the polar line L1 is as follows:

L1 =
⎡
⎣X

Y
Z

⎤
⎦ = FP1 = F

⎡
⎣u1

v1

1

⎤
⎦ , (3)

where X , Y , and Z represent the line vector of the epipolar line. The epipolar line constraint can be
expressed as follows:

PT
2 FP1 = PT

2 L1 = 0. (4)

The distance D between the matching point and its corresponding epipolar line can be calculated
as follows:

D =
∣∣PT

2 FP1

∣∣√
‖X‖2 + ‖Y‖2

. (5)

If the distance D between the feature point and the epipolar line exceeds a predefined threshold, the
feature point is considered an outlier. However, relying solely on geometric methods has its limitations
and may not be very effective. In the previous sections, semantic information was obtained from
the detection and clustering modules. To achieve a more accurate initial pose, we further refined the
dynamic probability within the region. The steps are as follows:

(1) Divide the mask obtained from clustering into highly dynamic regions. The parts within the
object detection box that do not belong to the mask are classified as suspicious dynamic regions, while
the remaining parts are classified as low dynamic regions.

(2) For highly dynamic and low dynamic regions, dynamic weight values W ranging from 1 to
10 are introduced based on their likelihood of movement. For example, a person usually maintains a
motion posture, so W = 10; whereas tables and bookshelves typically serve as static backgrounds, so
W = 1. Dynamic points are detected using these weights in conjunction with our predefined empirical
thresholds.

(3) For suspicious dynamic regions, we consider that the mask may sometimes be incomplete due
to missing depth values in the depth image. As the feature points become closer to the dynamic object,
the probability of being dynamic increases accordingly, and vice versa. Therefore, to better handle the
feature points in suspicious dynamic regions, we design the dynamic weight values as follows:

W = Whigh − (
Whigh − Wlow

) ·
(

1 − d
dmax

)s

, (6)

where Whigh and Wlow represent the dynamic weights of the high and low regions, respectively, d
represents the distance of the feature points from the mask, dmax is the maximum distance of the feature
points within the detection box from the mask, and S represents the proportion of the suspicious region
within the detection box area.

Fig. 4 illustrates the detailed process of our dynamic point removal. In Image (a), after obtaining
the 2D semantics, our clustering method, as shown in Image (b), successfully captures the dynamic
object mask marked in red. Image (c) shows the post-processing step, where the mask is refined to
remove any excess dynamic mask portions. The final binary image provides prior knowledge for
our dynamic point removal module. In Image (d), the image is divided into different regions: green
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represents low dynamic areas, blue represents suspicious areas, and red represents high dynamic areas.
Image (e) depicts the optical flow vector map for feature point tracking. Finally, in Image (f), by
combining the dynamic weights of feature points with epipolar constraints, dynamic feature points
are successfully detected. Image (g) shows the clean feature point map without the epipolar lines, and
Image (h) displays the final result after removal.

(a) Object Detection (b) Clustering (c) Post-processing  (d) Region Probability

(e) Optical Flow  (f) Epipolar Constraint (g) Detected Dynamic Points (h) Removal of Dynamic

Points

Figure 4: Dynamic feature point removal process

Algorithm 2: Dynamic feature point removal algorithm
Input: Previous frame, F1; Current frame, F2; Previous frame’s feature points, P1; Current frame’s

feature points, P2; Standard empirical thresholds, εstd;
Output: The set of static points, S;
1: P2 = CalcOpticalFlowPyrLK(F1, F2, P1)
2: Remove outliers in P2

3: FundmentalMatrix = FindFundamentalMat(P1, P2, 7-point method based on RANSAC)
4: for each matched pair p1, p2 in P1, P2 do
5: if (IsWithinMask(p2)) then
6: if (CalcEpiLineDistance(p1, p2, FundmentalMatrix) × GetMaskWeight (p2) < εstd) then
7: Append p2 to S
8: end if
9: else if (IsWithinDetectionBox(p2)) then
10: if (CalcEpiLineDistance(p1, p2, FundmentalMatrix) × GetBoxWeight (p2) < εstd) then
11: Append p2 to S
12: end if
13: else
14: if (CalcEpiLineDistance(p2, p1, FundmentalMatrix) < εstd) then
15: Append p2 to S
16: end if
17: end if
18: end for
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4 Experiment and Analysis
4.1 Experiment Introduction

In this paper, we conducted experiments using the TUM RGB-D dataset [32], a well-recognized
benchmark in the field of SLAM. The dataset includes a substantial number of image sequences
captured by an RGB-D camera in dynamic environments, along with the corresponding ground truth
trajectory data. We selected four sequences from highly dynamic environments and two sequences from
less dynamic environments to test performance. These sequences are labeled as “W/half,” “W/rpy,”
“W/static,” “W/xyz,” “S/static,” and “S/xyz.” Here, “W” denotes sequences involving a walking
person, while “S” refers to sequences with a sitting person. The latter part of the labels indicates the
different camera motion patterns: “half” represents hemispherical motion, “rpy” signifies rotation
about different angles, “static” indicates a stationary state, and “xyz” denotes movement along the
xyz axes.

In the experiment, we rigorously evaluate the performance of SLAM algorithms using two
essential error metrics: Absolute Trajectory Error (ATE) and Relative Pose Error (RPE). These
metrics are assessed through root mean square error (RMSE) and standard deviation (S.D). ATE is a
crucial metric that quantifies the deviation between the estimated trajectory of the SLAM algorithm
and the actual ground truth trajectory. By measuring this discrepancy, ATE offers insights into the
algorithm’s precision, accuracy, and global consistency, which are vital for applications requiring
reliable navigation and mapping. On the other hand, RPE focuses on the incremental errors between
consecutive poses, evaluating both rotational (r.RPE) and translational (t.RPE) components. These
errors are directly obtained from odometry data, which is fundamental for understanding the short-
term consistency and stability of the SLAM system. The experiments were performed on a laptop
equipped with an Intel i7-11700 CPU, NVIDIA GeForce RTX 2080Ti GPU, and 16 GB of RAM,
running Ubuntu 18.04.

The algorithm proposed in this paper, DKP-SLAM, is an improvement based on ORB-SLAM3.
To ensure a unified experimental benchmark, we selected RDS-SLAM and CDS-SLAM, which are
also improved based on ORB-SLAM3, for comparison. Additionally, to further evaluate the advance-
ment of the DKP-SLAM algorithm, we conducted detailed experimental comparisons with various
other advanced SLAM algorithms. To comprehensively validate the effectiveness of each module of
our algorithm, we designed ablation experiments and conducted real-time analysis. These experiments
and analyses collectively confirmed the performance of DKP-SLAM in different application scenarios.

4.2 Comparative Experimental Results

As shown in Tables 2 and 3, the comparison between our proposed DKP-SLAM and ORB-
SLAM3 (denoted as O3 in the table), along with other systems based on ORB-SLAM3, such as RDS-
SLAM and CDS-SLAM, indicates that DKP-SLAM achieved the best ATE performance for both
highly dynamic and low dynamic sequences. RDS-SLAM’s dynamic probability propagation struggles
in complex scenarios, while CDS-SLAM removes non-dynamic static points within detection boxes.
In contrast, our algorithm more effectively distinguishes dynamic objects, preserving static points
within detection boxes and yielding higher accuracy. This leads to significantly improved localization
accuracy in dynamic scenes by avoiding error accumulation caused by dynamic objects.

To further evaluate our algorithm, Tables 4 and 5 compare our system with other advanced SLAM
systems using ATE and t.RPE metrics. This includes two semantic segmentation-based algorithms,
DS-SLAM and DynaSLAM, and three object detection-based systems: Crowd-SLAM, YOLO-
SLAM, and SG-SLAM. The results show that DKP-SLAM performs well across both high and low
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dynamic sequences. In the high-dynamic W/rpy sequence, involving camera rotation, object detection’s
semantic information becomes less accurate due to camera movement, degrading system performance.
DynaSLAM, which uses pixel-level semantic segmentation, effectively segments dynamic objects
during rotation but suffers from slow frame processing, reducing overall performance. In contrast,
DKP-SLAM operates in real-time and achieves state-of-the-art pose estimation accuracy across all
tested sequences.

Table 2: Compared with SLAM systems based on ORB-SLAM3, the RMSE of ATE

Sequence ATE (RMSE)

O3 RDS CDS OURS

W/half 0.2953 0.0807 0.0295 0.0243
W/rpy 0.5947 0.1604 0.0384 0.0345
W/static 0.2641 0.0206 0.0082 0.0068
W/xyz 0.3796 0.0571 0.0165 0.0156
S/static 0.0112 0.0084 0.0080 0.0053
S/xyz 0.0095 0.0135 0.0091 0.0072

Table 3: Compared with SLAM systems based on ORB-SLAM3, the RMSE of t.RPE

Sequence t.RPE (RMSE)

O3 RDS CDS OURS

W/half 0.0195 0.0274 0.0187 0.0183
W/rpy 0.0533 0.0245 0.0352 0.0374
W/static 0.0251 0.0221 0.0064 0.0081
W/xyz 0.0267 0.0269 0.0176 0.0174
S/static 0.0128 0.0050 0.0053 0.0051
S/xyz 0.0081 0.0113 0.0121 0.0079

Table 4: Compared with other advanced SLAM systems, the RMSE of ATE

Sequence ATE (RMSE)
DS Dyna Crowd YOLO SG OURS

W/half 0.0303 0.0289 0.026 0.0283 0.0268 0.0243
W/rpy 0.4442 0.0298 0.044 0.2164 0.0324 0.0345
W/static 0.0081 0.0071 0.007 0.0073 0.0073 0.0068
W/xyz 0.0247 0.0176 0.020 0.0146 0.0152 0.0156
S/static 0.0065 0.0058 0.008 0.0066 0.0060 0.0053
S/xyz 0.0084 0.0136 0.018 – 0.0093 0.0072
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Table 5: Compared with other advanced SLAM systems, the RMSE of t.RPE

Sequence t.RPE (RMSE)

DS Dyna Crowd YOLO SG OURS

W/half 0.0297 0.0273 0.037 0.0268 0.0279 0.0183
W/rpy 0.1503 0.0236 0.065 0.0933 0.0450 0.0374
W/static 0.0102 0.0079 0.010 0.0094 0.0100 0.0081
W/xyz 0.0333 0.0242 0.025 0.0198 0.0191 0.0174
S/static 0.0078 0.0057 0.010 0.0089 0.0075 0.0051
S/xyz 0.0092 0.0145 0.020 – 0.0084 0.0079

Fig. 5 shows the processing details of different RGB-D frames by our proposed algorithm during
system operation. The clustering module effectively segments dynamic object contours, benefiting
from the improved adaptive threshold K-means++ algorithm. Clustering is performed only within the
detection box area, as shown in the third row, allowing accurate segmentation even of small dynamic
objects. The number of clusters is determined based on prior knowledge of dynamic point depth
information, followed by post-processing to remove noise. For instance, in the first row of frames,
the dynamic object and the chair are initially classified together, and in the second and fourth rows, the
dynamic object is grouped with the table edge. Our method filters these out, leaving cleaner contours of
dynamic objects. Finally, after obtaining semantic priors, the dynamic point removal module divides
the scene into three regions and filters dynamic feature points based on probability and motion
constraints. In the second row, static feature points are retained on the stationary person on the left,
while all feature points on the moving person in black on the right are marked as dynamic and correctly
removed during system tracking. Fig. 6 illustrates the error between the ground truth trajectory and
the estimated trajectories by ORB-SLAM3, DynaSLAM, CDS-SLAM, and DKP-SLAM, showing
that ORB-SLAM3 deviates noticeably from the ground truth, whereas DKP-SLAM closely matches
the actual trajectory.

Figure 5: (Continued)
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Figure 5: Example of system operation diagram

W
/h

al
f

W
/r

p
y

W
/s

ta
ti

c
W

/x
y
z

S
/s

ta
ti

c

Figure 6: (Continued)



CMC, 2025, vol.82, no.1 1343
S

/x
y

z

ORB-SLAM3 DynaSLAM CDS-SLAM DKP-SLAM

Figure 6: Comparison of ORB-SLAM3, DynaSLAM, CDS-SLAM, and DKP-SLAM trajectories.
The figure shows the ground truth trajectory (black), estimated trajectory (blue), and the difference
(red) between the estimated and ground truth trajectories. The x and y axes represent the position in
meters on a 2D plane

4.3 Ablation Experiment

In this section, we conducted ablation experiments on DKP-SLAM to analyze the impact of each
module, using ATE (RMSE) and standard deviation (S.D) metrics. We incrementally added modules
for experimental analysis. Specifically, in the D-SLAM module, YOLOX is used to detect image
frames, remove all feature points within dynamic object detection boxes, and perform missed detection
compensation. DK-SLAM builds on D-SLAM by integrating an improved clustering module to
eliminate all feature points within the masks. Finally, we tested the proposed DKP-SLAM. The
experiments were structured into the above three parts for testing.

As shown in Table 6, the experimental results indicate that for all highly dynamic sequences
prefixed with “W,” D-SLAM outperforms DK-SLAM. Although clustering refines dynamic object
detection and retains more static feature points, the presence of more dynamic feature points and their
greater motion amplitude in the four highly dynamic sequences we selected means dynamic points have
a larger impact than static points. Therefore, removing more dynamic points within the detection boxes
results in higher accuracy compared to mask-based methods. Specifically, in the W/static sequence,
D-SLAM and DK-SLAM exhibit similar accuracy, indicating a balance between the influence of
dynamic and static points on the system.

Table 6: Comparison of absolute trajectory error ATE of ablation experiment

Sequence D-SLAM DK-SLAM DKP-SLAM

RMSE S.D RMSE S.D RMSE S.D

W/half 0.0293 0.0134 0.0316 0.0141 0.0243 0.0105
W/rpy 0.0632 0.0435 0.0841 0.0523 0.0345 0.0321
W/static 0.0082 0.0044 0.0085 0.0045 0.0068 0.0037
W/xyz 0.0184 0.0103 0.0228 0.0116 0.0156 0.0073
S/static 0.0090 0.0058 0.0076 0.0053 0.0053 0.0045
S/xyz 0.0173 0.0083 0.0121 0.0074 0.0072 0.0057

In contrast, in the “S/static” and “S/xyz” sequences, DK-SLAM outperforms D-SLAM. In these
sequences, the dynamic objects are in a sitting posture, and more refined masks can retain more
static feature points for camera estimation. DKP-SLAM, by adding a dynamic point removal strategy,
achieved the highest accuracy across all sequences. By combining regional probability and geometric
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methods to differentiate feature points, it effectively distinguishes which areas of dynamic objects are
moving and which feature points can be retained. Retaining more static feature points thus led to the
highest pose estimation accuracy.

4.4 Real Time Analysis

In the practical applications of mobile robots, system real-time capability is crucial. As shown in
Table 7, we tested the processing time of different modules in DKP-SLAM. Module A represents
the YOLOX detection module; B represents the improved K-means++ module; and C represents
the dynamic point removal module. The results show that our modules (A and B) obtained accurate
dynamic object contours in a very short time, increasing the track time by 20.72 milliseconds compared
to ORB-SLAM3.

Table 7: Average running time of different modules

Sequence A (ms) B (ms) C (ms) Tracking (ms)

ORB-SLAM3 / / / 21.65
DKP-SLAM 11.62 8.12 6.33 42.37

In Table 8, we also recorded the processing times of other systems. DynaSLAM, due to its
pixel-level semantic segmentation, incurs a high time cost per frame and cannot achieve real-time
performance. Similarly, RDS-SLAM and DS-SLAM, which also use semantic segmentation model,
face speed limitations. SG-SLAM and CDS-SLAM, on the other hand, accelerate their object
detection model using the NCNN and TensorRT platforms, respectively, resulting in faster system
operation. Additionally, while YOLO-SLAM uses an end-to-end object detection model, it did not
employ GPU acceleration in the experiments, resulting in a high per-frame processing time of 696.09
milliseconds. DKP-SLAM also employs TensorRT for GPU acceleration of the object detection model
and performs clustering only within the detection boxes, resulting in a total processing time of 42.37
milliseconds per frame, thereby meeting the real-time requirements for robot operation.

Table 8: Time analysis of different systems

Algorithm Average processing (ms) Experimental Platform

CDS-SLAM 37.96 Ryzen7-5800H CPU, RTX 3070 GPU
RDS-SLAM 57.5 RTX 2080Ti GPU
DS-SLAM 58.4 RTX 1060 GPU
DynaSLAM 192 Tesla M40 GPU
SG-SLAM 39.51 Ryzen7-4800H CPU, GTX 1650 GPU
YOLO-SLAM 696.09 Inter i5-4288U CPU
DKP-SLAM 42.37 Inter i7-11700 CPU, RTX 2080Ti GPU

5 Conclusion

This paper proposes a real-time DKP-SLAM algorithm for dynamic scenes. Based on ORB-
SLAM3, DKP-SLAM deploys the YOLOX model through TensorRT to obtain semantic priors
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and implements compensation measures for missed detections. The K-means++ algorithm in the
clustering module is then improved to obtain more accurate dynamic object contours. Finally, in
our dynamic point removal module, the current frame is divided into multiple regions, with dynamic
probability weights assigned to feature points in different regions. By combining geometric methods,
our algorithm effectively removes dynamic feature points to reduce the interference of dynamic objects
on the SLAM system. Experiments conducted on the TUM dataset compared our method with
other advanced SLAM systems, demonstrating excellent localization accuracy in many sequences and
showcasing its effectiveness in dynamic scenes. Future work will consider more precise probability
allocation for regional feature points and address the issue of inaccurate semantic information caused
by camera rotation.
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