
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.057353

ARTICLE

Offload Strategy for Edge Computing in Satellite Networks Based on Software
Defined Network

Zhiguo Liu1,#, Yuqing Gui1,#, Lin Wang2,* and Yingru Jiang1

1Communication and Network Laboratory, Dalian University, Dalian, 116622, China
2College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China
*Corresponding Author: Lin Wang. Email: wanglin1@dlu.edu.cn
#These authors contributed equally to this work
Received: 15 August 2024 Accepted: 21 October 2024 Published: 03 January 2025

ABSTRACT

Satellite edge computing has garnered significant attention from researchers; however, processing a large volume of
tasks within multi-node satellite networks still poses considerable challenges. The sharp increase in user demand
for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on
individual satellite edge servers, making it necessary to implement effective task offloading scheduling to enhance
user experience. In this paper, we propose a priority-based task scheduling strategy based on a Software-Defined
Network (SDN) framework for satellite-terrestrial integrated networks, which clarifies the execution order of
tasks based on their priority. Subsequently, we apply a Dueling-Double Deep Q-Network (DDQN) algorithm
enhanced with prioritized experience replay to derive a computation offloading strategy, improving the experience
replay mechanism within the Dueling-DDQN framework. Next, we utilize the Deep Deterministic Policy Gradient
(DDPG) algorithm to determine the optimal resource allocation strategy to reduce the processing latency of
sub-tasks. Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,
effectively reducing task processing latency and thus improving user experience and system efficiency.

KEYWORDS
Satellite network; edge computing; task scheduling; computing offloading

1 Introduction

With the rapid advancement of communication technology, humanity is faced with the challenge
of processing vast amounts of data. In different usage scenarios, users have varying requirements
for task processing, such as the need for extremely low latency in certain situations [1]. Due to
physical size and energy supply limitations, the computing power of devices is often limited, and local
processing of tasks can increase computational delays and degrade user experience [2]. The European
Telecommunications Standards Institute (ETSI) introduced Mobile Edge Computing (MEC). This
technology offers IT and cloud computing capabilities near users within the network and can be
deployed in various locations, including base stations, access points, and satellites [3]. Computing
offloading technology enables users to leverage the computational power at the network edge [4–6].

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.057353
https://www.techscience.com/doi/10.32604/cmc.2024.057353
mailto:wanglin1@dlu.edu.cn

864 CMC, 2025, vol.82, no.1

Satellite edge networks utilize geostationary orbit (GEO) or low Earth orbit (LEO) satellites as
network nodes to extend edge computing capabilities to the satellite level, allowing for long-distance
data processing and storage, thereby reducing latency. Mobile edge networks offer high-density user
services in localized areas, while satellite edge networks can cover remote regions and oceans that
traditional mobile networks struggle to reach, finding applications in emergency communication,
navigation, and positioning scenarios [7,8]. Satellite networks can enhance and expand terrestrial
networks, achieving seamless global coverage [9]. Utilizing satellite networks allows us to bypass the
constraints of terrestrial networks, particularly in regions with challenging terrain, while also offering
multicast and broadcast functionalities.

Leveraging the strengths of satellite and ground-based networks, the hybrid architecture of
satellite-terrestrial networks is expected to facilitate global coverage of 6G networks and provide
ubiquitous communication support for the Internet of Things (IoT) [10,11]. Nonetheless, given the
constraints on the computing capabilities of mobile devices, users aim to delegate as many tasks as
they can to satellite-edge computing nodes to minimize the latency in processing. Nevertheless, due to
the limited nature of satellite resources, how to effectively manage task scheduling and computation
offloading in a satellite-terrestrial network environment to minimize task processing delays has
become a major challenge in the current research on satellite network edge computing.

Thus, the following are the main contributions of this paper:

• A model of application handling delay is developed regarding the dependencies between tasks
in the case of satellite edge computing, where tasks need to be dealt with on multiple satellite
edge nodes.

• A task scheduling algorithm is proposed to derive the sequence of task performance. According
to the priority of the tasks, the task execution sequence is obtained.

• An improved Dueling-DDQN algorithm is presented to address the mission computation
unloading problem. Improve the experience playback mechanism in the Dueling-DDQN
algorithm.

• An optical unloading strategy is obtained through the improved Dueling-DDQN algorithm.
An optimal resource allocation strategy is obtained through DDPG.

The rest of the paper is organized as follows:

In Section 2, we analyze related work on satellite networks that integrate edge computing.
Section 3 describes the system model, formulates the task latency model, and outlines the task
scheduling algorithms, specifically the improved Dueling-DDQN algorithm and the DDPG algo-
rithm. In Section 4, we conduct experiments to evaluate the performance of the proposed satellite
edge computing offloading methods. Finally, Section 5 presents a summary of this paper.

2 Related Research

Currently, resource allocation in edge computing has become a research hotspot for scholars
both domestically and internationally. Tang et al. [12] proposed a hybrid cloud-edge computing
scheme that optimizes total energy consumption using the Alternating Direction Method of Multi-
pliers (ADMM) algorithm; however, it only considered a single LEO satellite and did not account
for collaborative offloading among multiple LEO satellites. Furthermore, Tang et al.’s subsequent
research [13] constructed a three-layer computing framework based on distributed deep learning to
address computing offloading issues and reduce execution latency but neglected the potential task
dependencies. Within the framework of ground satellite IoT with MEC, Song et al. [14] proposed

CMC, 2025, vol.82, no.1 865

an energy-efficient computing offloading and resource allocation algorithm aimed at minimizing
the total energy consumption of IoT devices, but did not consider the interference management
between multiple satellite terminals. Yu et al. [15] introduced a framework for Space-Air-Ground
Integrated Networks enhanced by edge computing, which incorporates a real-time decision-making
offloading and caching algorithm based on Deep Imitation Learning (DIL), but it only considered a
singular satellite edge server environment. Chen et al. [16] applied deep reinforcement learning (DRL)
to address the integrated optimization challenges regarding computation offloading and resource
distribution in mobile edge computing, thereby offering innovative insights to boost the overall system
efficiency. Zhou et al. [17] proposed a distributed algorithm based on ADMM to address the mobile-
aware computing offloading problem. Jiang et al. [18] proposed an online Joint Offloading and
Resource Allocation (JORA) framework under persistent MEC energy constraints, utilizing Lyapunov
optimization to maximize long-term Quality of Experience (QoE) and establishing an energy deficit
queue to guide energy consumption, offering a solution for resource scheduling in the face of severe
energy limitations. Zhang et al. [19] proposed a satellite peer offloading scheme that addresses the time-
varying offloading cooperation problem under system resource and backlog constraints. However,
the study assumes all tasks have the same priority, while in practice, different tasks may have varying
priorities that require scheduling based on their urgency.

In addition, Wang et al. [20] developed a meta-reinforcement learning-driven approach for
computation offloading, leveraging a tailored sequence-to-sequence neural network, proposing a
collaborative training method incorporating first-order approximation and clipped target for the
agent, but did not consider multi-task offloading. Sahni et al. [21] introduced a heuristic algorithm
for joint task offloading and flow scheduling (JDOFH), which considered task dependencies and
network flow scheduling aimed at minimizing average completion time, although their research
primarily focused on handling task dependency relationships. Wei et al. [22] proposed an algorithm
based on DRL to resolve issues related to joint trajectory planning and Directed Acyclic Graph
(DAG) task scheduling. Song et al. [23] addressed the problem of dependent task offloading in
multi-access edge computing, proposing a multi-objective reinforcement learning approach aimed at
minimizing application completion time, energy consumption of mobile devices, and edge computing
usage fees simultaneously. Fu et al. [24] assigned priorities to all sub-tasks executed on various
edge devices and introduced a DAG task offloading algorithm that is based on these priority and
dependency relationships. Zheng et al. [25] introduced a computation task processing scheduling
(CTPS) mechanism based on Rubinstein’s bilateral bargaining game, aimed at reducing latency and
energy consumption. Tang et al. [26] proposed a dual-time-scale framework to address the service
deployment and task scheduling issues in satellite edge computing. By optimizing at two levels, the
framework improves the computational performance of the network while ensuring service quality.

However, these studies have only singularly addressed either the handling of task dependency
relationships or task resource allocation. This inspires us to consider the combined effects of task
scheduling and resource allocation on task offloading. In conclusion, when numerous users concur-
rently offload a substantial number of latency-sensitive tasks, bottlenecks in offloading inevitably
occur at a single satellite edge server. The dependency relationships between tasks and the locations
where tasks need to be offloaded in a multiple satellite edge server environment significantly impact the
completion time of applications. Thus, it is essential to consider the influence of task dependencies on
task computing offloading and resource allocation, a consideration that has not been comprehensively
addressed in existing research. Therefore, this paper considers the satellite edge environment and
proposes a task scheduling and offloading algorithm among multiple satellite edge nodes.

866 CMC, 2025, vol.82, no.1

3 System Model and Problem Formulation
3.1 Network Model

SDN-based satellite ground network structure is used for the network framework, in which three
GEO satellites are placed with SDN controllers, and multiple LEO satellites are fitted with edge
computing nodes to serve directly to terminal users, reducing the terminal equipment’s response delay.
Multiple devices in the network scenes, including subscriber terminals, data monitoring equipment,
and IoT devices, are accessed in the LEO satellite network, and the LEO satellites assume the
calculation service. Each DAG task has different priority levels. The handling order of the tasks is
derived based on the different priority levels. As shown in Fig. 1.

Figure 1: Schematic of the satellite edge network architecture

3.2 Task Model

3.2.1 Application Model

The application framework includes tasks that are interdependent and have strict deadlines. We
consider that each application can be divided into several dependent tasks. We represent the application
as a DAG with entry tasks. The entry tasks are simple, with no direct predecessor tasks, and the exit
tasks have no direct successor tasks. We represent a collection of tasks within the application. These
tasks must be completed before the application deadline.

In a system with a total of M mobile devices, M = {1, 2, 3 · · · m} is denoted as the set of device
numbers, indexed by i, and the mobile device generates an application to be processed when each
time slot starts. Generated applications on a mobile device can be partitioned into several interrelated
tasks by computing the set of tasks denoted as N = {1, 2, 3 · · · n} and indexed by j. Since there are

CMC, 2025, vol.82, no.1 867

dependencies among the tasks of an application, its structure can be expressed as a directed acyclic
graph, often referred to as Gi = (Vi, Ei), which Vi = (

vi,1, vi,2 . . . vi,n

)
denotes the sub-task nodes set in

the ith application. In Gi = (Vi, Ei), for a sub-task vi,j = (Ci,j, Di,j), where Ci,j denotes the CPU cycles
needed to process the task in cycles, Di,j expresses the current task’s size in bits, and the application
ending latency is denoted as Ti

d. Ei indicates the set of oriented edges between computational tasks
Ei = {

ei
j,k = (

vi,j, vi,k

) ∣∣vi,j, vi,k ∈ Vi

}
, where directed edges represent dependencies between computing

tasks. In the set of directed edges, if there is a directed edge from vertex A to vertex B in the set of
directed edges, it implies that task B must be processed after task A, meaning the ending moment of
B cannot be earlier than the moment of A.

The satellite edge nodes that can provide task processing are s = {1, 2 . . . S}. The MEC server
allocates resources to a task when it is unloaded and does not release them until the task is done
handling. Each mobile device requests to process one application and the task treatment process is
described below:

1© Multiple users on the ground send application processing requests to the corresponding covered
satellites.

2© The receiving satellites send task information to the GEO satellite, which hosts a global
SDN controller. The SDN controller gathers information about the entire satellite network and task
information, using a scheduling algorithm to calculate the optimal offloading location.

3© The GEO controller then transmits the corresponding control information to the LEO
satellites.

4© The low Earth orbit satellites forward the tasks to the designated deployment locations using
flow table control.

5© The edge computing nodes process the tasks and return the results to the ground users.

3.2.2 Delay Model

1© The time taken by the sub-tasks to be delivered from a mobile device to a satellite edge
computing server s. This transmission delay considers the time taken by the data to travel through
the satellite network and is expressed as:

Tus
i,j =

⎧⎪⎪⎨
⎪⎪⎩

Di,j

Ri,j
us

s = access satellites

Di,j

Ri,j
us

+ Di,j

Ri,j
ss

+ 2
d1,s

v
otherwise

(1)

d1,s represents the inter-satellite routing distance (single hop or multi-hop), Ri,j
ss represents the inter-

satellite transmission rate, and v represents the speed of light. Ri,j
us represents the uplink transmission

rate (unit: Mbps) and it is expressed as:

Ri,j
us = B log2

(
1 + Pi,j gi,j

N

)
(2)

The transmission power of sub-task vi,j is expressed as Pi,j, channel gain can be expressed as gi,j,
Gaussian white noise power is expressed as N, representing the noise power in the transmission process,
B indicating the transmission bandwidth (unit: MHz).

868 CMC, 2025, vol.82, no.1

2© The handling latency of the sub-tasks offloading to the satellite MEC server s can be expressed
as follows, the handling latency is the time of the sub-task’s computing accomplishment on the satellite
MEC server:

Tsec
i,j,s = Ci,j

F s
i,j

(3)

Fs
i,j represents the computing resources (unit: cycle/s) allocated to the task by satellite edge node s.

3© The expression is: The handling latency of a local computing task involves processing latency
and waiting latency. Since only a single task can be handled once locally, the task’s waiting time is
summed by the computation time of all tasks before the task in the task set. The expression is:

Tl
i,j = Ci,j

F l
+ Tl,w

i,j (4)

Fl indicates local computing capability (unit: cycles/s). Tl,w
i,j represents the waiting time.

4© The actual handling latency of the task is:

Ti,j =
(

1 − as

i,j

)
Tl

i,j + as

i,j

(
T sec

i,j,s + Tus
i,j + 2

h
v

)
(5)

where as
i,j

is the task’s handling mode, the range from the mobile device to the satellite node is denoted
as h, and the velocity of light is represented as v. If a task vi,j is processed locally, as

i,j
is denoted as 0

with s being 0. If a task vi,j is processed on a satellite, as
i,j

is denoted as 1 with the corresponding satellite
number for s. In a DAG, each task is finished at a distinct time, and this requires us to properly indicate
the point at which every task is completed to minimize the whole latency of the DAG. As a consequence
of the dependencies among tasks, the completion delay of task vi,j is related to the delay required for
the full accomplishment of its preceding tasks as well as the task’s data transmission delay, defining
the actual completion time of task vi,j as EFTi,j.

5© The time delay for the actual completion of the mission is:

EFTi,j = Ti,j + max
k∈prep(j)

EFTi,k (6)

where max
k∈prep(j)

EFTi,k indicates the maximum accomplishment time for the precursor task of the task vi,j.

When the task is the exit task of the DAG, its completion time is the completion delay of the entire
DAG application.

6© To ensure that dependent tasks are executed before tasks they depend on to fulfill the
relationship between tasks, the overall completion delay of the entire DAG application is calculated
using equation:

EFTi,exit = Ti,exit + max
k∈prep(exit)

EFTi,k = EFTi (7)

7© Optimization is required for task unloading decisions, scheduling decisions, and resource
assignment jointly.

CMC, 2025, vol.82, no.1 869

min
1
m

m∑
i=1

EFTi

s.t. C1:
m∑

i=1

n∑
j=1

as
i,j

F s
i,j ≤ Fs

max s ∈ {0, 1, 2 . . . S}
C2: Fs

i,j ≥ 0 i ∈ M, j ∈ N, s ∈ {0, 1, 2 . . . S}
C3: as

i,j
∈ {0, 1} i ∈ M, j ∈ N, s ∈ {0, 1, 2 . . . S}

C4: EFTi ≤ Ti
d i ∈ M

(8)

where m is the overall amount of applications to be addressed. When application i finishes within
a bounded time latency Ti

d and returns the result, EFTi ≤ Ti
d , A is defined as the set of sub-task

unloading strategies, A = {as
i,j
} i ∈ M, j ∈ N. F is defined as computational resource assignment

strategies set, F = {
Fs

i,j

}
. Fs

max
is the computational resources that can be assigned to the satellite edge

node s.

3.3 Task Scheduling Models

3.3.1 Priority-Based Scheduling Model

Each task within different DAG applications may have dependencies, meaning that the execution
of a task can be influenced by the tasks it is associated with. Therefore, it is essential to consider
these dependencies before scheduling the sub-tasks. Different types of applications have varying
requirements for completion times, so to reduce processing latency in the system and ensure that all
applications complete within their respective deadlines, we first need to construct a priority queue
at the outset. After receiving the application information, we sort the applications based on priority,
which is represented by the deadline; the tighter the deadline, the greater the priority. Since there are
dependencies between sub-tasks, we also need to sort the tasks to describe the current dependencies
among them. To comply with the inter-dependencies among sub-tasks within the applications, we
sequence the tasks in order of their decreasing order values, and the sub-tasks are prioritized as follows:

Pri
(
vi,j

) =
{

Ti,exit if Ti,j is exit subtask
max

vi,k∈succ(vi,j)
Pri

(
vi,k

) + Ti,j otherwise (9)

succ
(
vi,j

)
represents the set of successor nodes for vi,j. The priority of the last node in the sequence

can be denoted by Ti,exit. Therefore, the sub-task preference sequence, sorted by the priorities of all
sub-tasks, is derived.

3.3.2 Computational Offloading Method Based on Improved Dueling-DDQN’s Algorithm

Due to the dynamic nature of the satellite-ground link states in satellite edge computing scenarios,
it is essential to update offloading strategies promptly to reduce computation offloading latency costs.
In this paper, there are a total of s + 1 offloading locations, and each satellite edge computing node
can be allocated a certain amount of computing resources, allowing for different processing methods
for the generated tasks. Deep reinforcement learning merges the advantages of deep learning with
those of reinforcement learning, making it effective for solving sequential decision-making problems
in complex systems. We first determine the computation offloading decisions based on the Dueling-
DDQN network, followed by resource allocation decisions based on the DDPG network.

870 CMC, 2025, vol.82, no.1

Extensive experiments indicate that the traditional DQN algorithm suffers from overestimation
issues, non-uniqueness problems, and correlations among experience samples. To address these draw-
backs, we employ the Double DQN algorithm, which improves the stability of learning by separating
action selection from Q-value estimation. Dueling DQN is an enhancement of DQN that divides the
Q-value into two components: the value function (Value) and the advantage function (Advantage).
The Value represents the importance of the current state, while the Advantage corresponds to a value
for each action indicating its advantage. Therefore, we use the Dueling-DDQN algorithm to solve the
offloading problem by modeling it as a Markov Decision Process (MDP), defining the action space
A, the state space S, and the reward function R.

(1) State Space

In the scenario studied in this chapter, the state will change over time, and can be represented as:

St = {Da, Pr, F} (10)

where Da represents information about the currently pending DAG application, including the sub-
task structure of the application, CPU processing cycles, and task sizes. Pr is the priority sequence
information of the application and Ft = {

Ft,1, Ft,2 . . . Ft,s

}
is the available computing resources.

(2) Action Space

Next, the action space should include the offloading position of the user’s current task and the
resource allocation result. The resource allocation can be derived from the DDPG algorithm. Define
the action of the sub-task as at = {

a1
i,j, a2

i,j, . . . , aL
i,j, F 1

i,j, F 2
i,j, . . . , FL

i,j

}
, if as

i,j
is 0, it means that it is handled

locally, and if the task vi,j is handled on the satellite, as
i,j

is 1. The set of all actions is At.

(3) Reward Function

The reward function is an essential component in achieving the optimal Q-network, as well as the
rationale behind the algorithm’s convergence. This paper mainly focuses on minimizing the processing
delay, thus the reward function Rt, which shall be inversely proportional to the delay, can be expressed
as:

Rt = − 1
m

m∑
i=1

EFTi (11)

Traditional DQN algorithm due to the use of maximization step leads to overestimation problem,
while the DDQN algorithm makes the selection of action and the generation of target value decoupled
so that the model learning speed achieves a faster and more stable state. The DDQN optimal action
am is defined as:

am = arg max
at+1

Q (st+1, at+1, θ) (12)

θ are the parameters of the neural network.

The target Q-value is denoted as:

Qtar = Rt + γ Q
(
st+1, am; θ−)

(13)

θ− is the parameter of the target neural network, where γ represents the discount factor for reward
importance.

CMC, 2025, vol.82, no.1 871

Dueling Double DQN network structure is based on the Double DQN algorithm, Dueling DQN
divides the Q-value into two parts: value function Value and advantage function Advantage, Value
indicates the importance of the current state; this structure is suitable for the dynamically changing
environment. The Q-value consists of the value function and advantage function, and its calculation
formula is denoted as:

Q (st, at; θ) = V
(
st; θV

) + A
(
st, at; θA

)
(14)

The Dueling Network structure changes the way of calculating Q-value, both are improvements
to the DQN algorithm. Dueling-DDQN fuses them to find the loss function as in equation:

loss = E
[
(Qtar − Q (si, ai; θ))

2] (15)

The traditional DQN algorithm saves the empirical sample data acquired by the multi-agent
interacting with the environment at every time step into an empirical pool, and adopts random
sampling for the experience playback. Given that different data have different importance for the
training of the model, random and uniform sampling may lead to low learning efficiency, or even
overfitting. TD error signifies the discrepancy between the present estimation and the target value,
whereby the TD error is denoted as:

δ = rt + γ max
action′ Q

(
st+1, at+1, θ−) − Q (st, at, θ) (16)

where θ and θ− represent the parameter values of the estimation network and the target network,
respectively. The larger the empirical error, the higher the priority, which is defined as:

Pi = |σ | + ε, ε > 0 (17)

A sample’s TD error has a higher probability of being sampled the larger the absolute value of
its TD error. The probability of the sample being sampled is dependent on the TD error. To solve the
problems of learning inefficiency and overfitting, the random sampling method can be combined with
pure greedy sampling and uniformly distributed sampling to ensure that the probability of sampling
in the priority of the training data is monotonous, then the probability of preferential sampling can
be expressed as:

P (i) = P∂

i∑
j P∂

j

(18)

where ∂ is a hyperparameter that is used to regulate the degree of prioritization. When ∂ = 0 the
sampling becomes uniform.

Due to the introduction of the degree of prioritization, a change in the distribution of sample data
can result in training bias or overfitting. To mitigate this bias, the priority empirical replay algorithm
corrects the bias through the importance sampling weight method (Algorithm 1). The important
sampling weights of the samples are specified below:

Wis =
(

1
N

· 1
P (i)

)β

(19)

Algorithm 1: PE-Dueling-DDQN algorithm
1. Initialize the empirical pool capacity as C, parameters θ and θ− for the estimation and the target
network, the parameters ε, γ , ρ, number of iterations X and the target network update frequency D

(Continued)

872 CMC, 2025, vol.82, no.1

Algorithm 1 (continued)
2. for episode = 1 to X do
3. Initialize the environment and obtain the current satellite edge computing network state

St = {Da, Pr, F} through the SDN controller
4. for t = 1 to H do
5. Randomly choose an action At with probability ε, or select the action that is optimal for the

current sub-task according to the model
6. Execute the action At, enter the new state St+1 and derive Rt

7. Place the experience tuple (St, At, Rt, St+1) into the experience pool
8. Sample the experience of the experience pool by Eq. (18)
9. for each experience sample selected do
10. Calculate the error through Eq. (16)
11. Update the priority by Eq. (17)
12. Calculate experience importance sampling weights according to Eq. (19)
13. Compute the Q-value corresponding to the target network
14. end for
15. Compute the loss function from Eq. (15) and update the estimated network parameter θ by

gradient descent algorithm
16. Assign the estimation network parameters θ to the target network θ− after each step D times of

training
17. end for
18. end for
19. Return the optimal offloading result

3.3.3 Resource Allocation Method Based on DDPG Algorithm

The DDPG algorithm possesses symmetrical properties. It adheres to the Actor-Critic architecture
and is capable of effectively addressing challenges in continuous action spaces by employing deep
neural networks for policy approximation. The DDPG algorithm evaluates the quality of state-action
pairs through the use of two neural network models: the policy function and the Q-value function. The
Actor network determines actions based on the observed state, whereas the Critic network evaluates
the actions taken by the Actor. We use the DDPG network to address resource allocation problems
with continuous variables.

Each policy μ of DDPG defines an action-state pair value function Qμ (st, at), which denotes the
expected return of an action when a given state st is executed, with a Q-value of:

Qμ (st, at) = E [Rt + γ Q (st+1, μ (st+1))] (20)

The update parameters for the action goal network and critic goal network are θμ and θQ,
respectively. Similar to the structure of DQN, the critic network’s loss function can be derived below:

L
(
θQ

) = Eμ

[(
yt − Q

(
st, at

∣∣θQ
))2

]
(21)

yt = Rt + γ Q
(
st+1, μ (st+1)

∣∣θQ
)

(22)

CMC, 2025, vol.82, no.1 873

The strategy gradient can be figured out:

∇θμJ = 1
C

∑
j

[
∇aQ

(
s, a

∣∣θQ
) ∣∣∣∣s=s

t,a=μ(st|θμ)

] [
∇θμQ

(
s, a

∣∣θQ
) ∣∣∣∣s=s

t,a=μ(st|θμ)
θμ∇θμμ (st |θμ)

∣∣
s=st

]
(23)

To make the loss function, the critic network Q will be updated with a given optimizer. After that,
the actor network will small batch the action critic network, which will result in the gradient change
of action a. With these two gradients and the parameters (which can be derived from your optimizer),
the actor network can be refined using the subsequent equation:

∇θμJ = 1
C

∑
j

[
∇aQ

(
s, a

∣∣θQ
) ∣∣∣s=st ,a=μ(st|θμ) ∇θμQ

(
s, a

∣∣θQ
) ∣∣

s=st

]
(24)

The DDPG algorithm uses the parameters θμ and θQ of the current actor and critic networks
respectively and soft updates them as follows:

θQ′ ← θQ + (1 − τ) θQ′

θμ′ ← θμ + (1 − τ) θμ′
(25)

4 Simulation Experiment

This simulation experiment uses STK simulation software to model the information transfer
network and Python and Pytorch to build neural networks for training. In the simulation, the Walker
constellation of 66 satellites is used, and the SDN controller is placed on the GEO satellites to monitor
the individual satellites of the Walker constellation. The parameter settings for the simulation are
shown in Table 1 [27–31].

Table 1: Simulation parameters

Parameters Value

Number of GEO satellites 3
Number of LEO satellites 66
Number of GEO Orbits 1
Number of LEO Orbits 6
Number of satellites in a single orbit 11
Orbital inclination 90°
Satellite MEC maximum available computing resources 10 Gcycles/s
Local computing resource 2.5 Gcycles/s
Satellite MEC maximum available bandwidth resources 10 MHZ
Sub-task size [50 kb, 100 kb]
Number of sub-tasks per DAG 10–15
CPU computing power 1000 cycles/bit
The application tolerates latency 0.5–1.5 s
Learning rate ρ 0.01
Discount factor 0.9
Experience pool capacity 500

(Continued)

874 CMC, 2025, vol.82, no.1

Table 1 (continued)

Parameters Value

Number of iterations 50,000
Batch size 200
Priority weight 0.6
Importance weight 0.4

Simulations are performed on the above parameters. This section will compare and analyze the
completion rates of the applications. The simulation results will be shown and analyzed in terms of
changes in resources, number of DAGs, and number of DAG sub-tasks.

As shown in Fig. 2, as the satellite computing resources increase, the completion latency of
the application for all schemes shows a downward trend. The task processing based on DQN and
DDPG (D-DDPG) and random processing (RA) have lower completion latency, while the method
proposed in this chapter (combining Dueling-DDQN and DDPG, D3-DDPG) outperforms other
algorithms in terms of completion latency. As the satellite computing resources gradually increase,
the latency difference between D3-DDPG and RA decreases from 0.37 to 0.11 s. This is because
as the satellite computing resources increase, the computational resources allocated to tasks also
increase accordingly, reducing computation latency. The RA method randomly selects processing
locations, failing to achieve optimal results, thus resulting in relatively high completion latency for
this algorithm. The proposed method demonstrates lower processing latency compared to D-DDPG,
indicating the effectiveness of the improved DQN algorithm. Additionally, compared to the RA
method, the proposed D3-DDPG also exhibits lower completion latency, highlighting the importance
of appropriate task offloading decisions. Finally, the average allocation algorithm (AV) has a higher
latency, indicating the importance of reasonable resource allocation for tasks offloaded to the satellites.

Figure 2: Task average delay vs. Satellite computing resources

CMC, 2025, vol.82, no.1 875

As shown in Fig. 3, as local computing resources increase, the processing latency of the application
for all schemes shows a downward trend. The task processing method based on D-DDPG and the
random processing (RA) exhibit lower completion latency, while the method proposed in this chapter
(D3-DDPG) demonstrates superior performance in terms of completion latency, primarily due to the
increased computational resources available at the user end, effectively reducing task computation
delays. The RA method selects processing locations randomly, and since it does not pursue an optimal
solution, its completion latency is relatively high. The proposed D3-DDPG outperforms D-DDPG in
processing latency, indicating a significant improvement achieved by the enhanced DQN algorithm.
However, as local computing resources increase, the latency difference between D3-DDPG and D-
DDPG gradually diminishes. This is because the improvements in this study mainly target satellite edge
computing nodes, enhancing the user’s ability to independently compute tasks, thus reducing reliance
on edge computing. Additionally, the proposed method shows lower completion latency compared
to RA, highlighting the importance of reasonable task-offloading decisions for improving system
efficiency. The scheme that offloads all tasks to the local (All local, AL) results in higher completion
latency compared to the method proposed in this chapter, further confirming the necessity of rational
offloading in task processing.

Figure 3: Task average delay vs. Local computing resources

As shown in Fig. 4, as the number of applications that need to be processed increases, the appli-
cation processing latency for all schemes shows an upward trend. Additionally, the task processing
method based on D-DDPG demonstrates superior performance in task processing latency compared
to random processing (RA). Although the proposed D3-DDPG method also gradually increases in
completion latency, it consistently remains below that of other algorithms. This is because, as the
number of DAG tasks to be processed increases, the resources of the satellite edge nodes become
increasingly limited. The RA method does not seek an optimal solution, resulting in relatively high
completion latency for this algorithm. The processing latency of the proposed method is lower
than that of D3-DDPG, further proving the effectiveness of the improved DQN-based algorithm.
Simultaneously, the completion latency of this method is also lower than that of RA, emphasizing the
importance of appropriate task-offloading decisions in enhancing system performance. Furthermore,

876 CMC, 2025, vol.82, no.1

the average allocation algorithm (AV) has a higher latency compared to the average completion latency
of the proposed method, highlighting the critical importance of reasonable resource allocation when
offloading tasks to satellites.

Figure 4: Task average delay vs. Number of DAG tasks

As shown in Fig. 5, as the number of sub-tasks increases, the processing latency of the application
for all schemes shows an upward trend. This phenomenon reflects the direct impact of increased task
complexity on system performance, especially in resource-limited scenarios. The task processing meth-
ods based on D-DDPG and random processing (RA) also experience an increase in completion latency
as the number of tasks grows, highlighting the limitations of both approaches. However, the proposed
D3-DDPG method consistently maintains a lower completion latency, outperforming other algo-
rithms. This is mainly because as the number of DAG sub-tasks increases, the resources of the satellite
edge nodes become increasingly constrained, leading to increased task computation delays. D3-DDPG
optimizes task offloading decisions, making more efficient use of available resources and thereby
reducing overall computation latency. The RA method relies on randomly selecting task processing
locations and does not seek an optimal solution, which results in higher completion latency. This
further emphasizes the importance of rational decision-making in enhancing system performance. The
D3-DDPG method shows lower processing latency compared to D-DDPG, validating the effectiveness
of the improved DQN algorithm, particularly in resource-constrained environments. Additionally,
the completion latency of this method is lower than that of RA, underscoring the significance of
appropriate task-offloading in improving system performance, as rational task-offloading can not
only reduce delays but also enhance resource utilization efficiency. Finally, the average allocation
algorithm (AV) exhibits higher latency than the proposed method, further indicating the importance
of reasonable resource allocation in the distribution of resources.

CMC, 2025, vol.82, no.1 877

Figure 5: Task average delay vs. Number of sub-tasks

5 Conclusions

This paper addresses the offloading bottlenecks caused by the significant increase in demand
for latency-sensitive tasks in a satellite-ground integrated network architecture. The insufficient
computing power of a single satellite edge server requires effective scheduling to enhance user
experience. It also considers that satellites can process tasks via inter-satellite links to reduce processing
time. First, we propose an efficient priority-based task scheduling strategy to determine task priorities
and clarify execution order. Then, we introduce an improved Dueling-DDQN algorithm to derive the
computation offloading strategy by enhancing its experience replay mechanism. Using this improved
algorithm, we obtain the optimal offloading strategy and apply the DDPG algorithm for resource
allocation to reduce the processing latency of sub-tasks. Simulation results show that our proposed
algorithm outperforms other solutions in reducing task processing latency.

Acknowledgement: We appreciate the insightful feedback from the anonymous reviewers, which has
significantly contributed to enhancing the quality of this paper.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm their contribution to the paper as follows: study conception
and design: Zhiguo Liu; data collection: Yuqing Gui; analysis and interpretation of results: Lin Wang;
draft manuscript preparation: Yingru Jiang. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: Given the nature of this research, the participants have not
consented to public sharing of their data; therefore, supporting data is not accessible.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

878 CMC, 2025, vol.82, no.1

References
[1] Y. Shi, Y. Zhou, D. Wen, Y. Wu, C. Jiang and K. B. Letaief, “Task-oriented communications for

6G: Vision, principles, and technologies,” IEEE Wirel. Commun., vol. 30, no. 3, pp. 78–85, 2023. doi:
10.1109/MWC.002.2200468.

[2] M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient acceleration of deep learning
inference on resource-constrained edge devices: A review,” Proc. IEEE, vol. 111, no. 1, pp. 42–91, 2023.
doi: 10.1109/JPROC.2022.3226481.

[3] Y. Ma, W. Liang, M. Huang, W. Xu, and S. Guo, “Virtual network function service provisioning in MEC
via trading off the usages between computing and communication resources,” IEEE Trans. Cloud Comput.,
vol. 10, no. 4, pp. 2949–2963, 2022. doi: 10.1109/TCC.2020.3043313.

[4] H. Zhang, H. Zhao, R. Liu, A. Kaushik, X. Gao and S. Xu, “Collaborative task offloading optimization
for satellite mobile edge computing using multi-agent deep reinforcement learning,” IEEE Trans. Vehicular
Technol., vol. 73, no. 10, pp. 1–16, 2024. doi: 10.1109/TVT.2024.3405642.

[5] M. Tang and V. W. S. Wong, “Deep reinforcement learning for task offloading in mobile edge computing
systems,” IEEE Trans. Mob. Comput., vol. 21, no. 6, pp. 1985–1997, 2022. doi: 10.1109/TMC.2020.3036871.

[6] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep reinforcement learning for energy-efficient
computation offloading in mobile-edge computing,” IEEE Internet Things J., vol. 9, no. 2, pp. 1517–1530,
2022. doi: 10.1109/JIOT.2021.3091142.

[7] L. Liu, W. Mao, W. Li, J. Duan, G. Liu and B. Guo, “Edge computing offloading strategy for space-air-
ground integrated network based on game theory,” Comput. Netw., vol. 243, no. 10, 2024, Art. no. 110331.
doi: 10.1016/j.comnet.2024.110331.

[8] P. Zhang, Y. Zhang, N. Kumar, and M. Guizani, “Dynamic SFC embedding algorithm assisted by federated
learning in space-air-ground integrated network resource allocation scenario,” IEEE Internet Things, vol.
10, no. 11, pp. 9308–9318, 2022. doi: 10.1109/JIOT.2022.3222200.

[9] Y. Lin, W. Feng, Y. Wang, Y. Chen, Y. Zhu and X. Zhang, “Satellite-MEC integration for 6G Internet
of Things: Minimal structures, advances, and prospects,” IEEE Open J. Commun. Soc., vol. 5, no. 1, pp.
3886–3903, 2024. doi: 10.1109/OJCOMS.2024.3418860.

[10] S. B. R. Tirmizi, Y. Chen, S. Lakshminarayana, W. Feng, and A. A. Khuwaja, “Hybrid satellite-terrestrial
networks toward 6G: Key technologies and open issues,” Sensors, vol. 22, no. 21, 2022, Art. no. 8544. doi:
10.3390/s22218544.

[11] Y. Sun, M. Peng, S. Zhang, G. Lin, and P. Zhang, “Integrated satellite-terrestrial networks: Architec-
tures, key techniques, and experimental progress,” IEEE Netw., vol. 36, no. 6, pp. 191–198, 2022. doi:
10.1109/MNET.106.2100622.

[12] Q. Tang, Z. Fei, B. Li, and Z. Han, “Computation offloading in LEO satellite networks with hybrid
cloud and edge computing,” IEEE Internet Things J., vol. 8, no. 11, pp. 9164–9176, 2021. doi:
10.1109/JIOT.2021.3056569.

[13] Q. Tang, Z. Fei, and B. Li, “Distributed deep learning for cooperative computation offloading in low earth
orbit satellite networks,” China Commun., vol. 19, no. 4, pp. 230–243, 2022. doi: 10.23919/JCC.2022.04.017.

[14] Z. Song, Y. Hao, Y. Liu, and X. Sun, “Energy-efficient multiaccess edge computing for terrestrial-
satellite Internet of Things,” IEEE Internet Things J., vol. 8, no. 18, pp. 14202–14218, 2021. doi:
10.1109/JIOT.2021.3068141.

[15] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, “EC-SAGINs: Edge-computing-enhanced space-air-
ground-integrated networks for internet of vehicles,” IEEE Internet Things J., vol. 9, no. 8, pp. 5742–5754,
2021. doi: 10.1109/JIOT.2021.3052542.

[16] J. Chen, H. Xing, Z. Xiao, L. Xu, and T. Tao, “A DRL agent for jointly optimizing computation offloading
and resource allocation in MEC,” IEEE Internet Things, vol. 8, no. 24, pp. 17508–17524, 2021. doi:
10.1109/JIOT.2021.3081694.

[17] J. Zhou, Q. Yang, L. Zhao, H. Dai, and F. Xiao, “Mobility-aware computation offloading in satellite
edge computing networks,” IEEE Trans. Mob. Comput., vol. 23, no. 10, pp. 9135–9149, 2024. doi:
10.1109/TMC.2024.3359759.

https://doi.org/10.1109/MWC.002.2200468
https://doi.org/10.1109/JPROC.2022.3226481
https://doi.org/10.1109/TCC.2020.3043313
https://doi.org/10.1109/TVT.2024.3405642
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/JIOT.2021.3091142
https://doi.org/10.1016/j.comnet.2024.110331
https://doi.org/10.1109/JIOT.2022.3222200
https://doi.org/10.1109/OJCOMS.2024.3418860
https://doi.org/10.3390/s22218544
https://doi.org/10.1109/MNET.106.2100622
https://doi.org/10.1109/JIOT.2021.3056569
https://doi.org/10.23919/JCC.2022.04.017
https://doi.org/10.1109/JIOT.2021.3068141
https://doi.org/10.1109/JIOT.2021.3052542
https://doi.org/10.1109/JIOT.2021.3081694
https://doi.org/10.1109/TMC.2024.3359759

CMC, 2025, vol.82, no.1 879

[18] H. Jiang, X. Dai, Z. Xiao, and A. Iyengar, “Joint task offloading and resource allocation for energy-
constrained mobile edge computing,” IEEE Trans. Mob. Comput., vol. 22, no. 7, pp. 4000–4015, 2023. doi:
10.1109/TMC.2022.3150432.

[19] X. Zhang, J. Liu, R. Zhang, Y. Huang, J. Tong and N. Xin, “Energy-efficient computation peer offloading
in satellite edge computing networks,” IEEE Trans. Mob. Comput., vol. 23, no. 4, pp. 3077–3091, 2024. doi:
10.1109/TMC.2023.3269801.

[20] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive task offloading in edge computing
based on meta reinforcement learning,” IEEE Trans. Parall. Distrib. Syst., vol. 32, no. 1, pp. 242–253, 2021.
doi: 10.1109/TPDS.2020.3014896.

[21] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multihop offloading of multiple DAG tasks in collaborative edge
computing,” IEEE Internet Things J., vol. 8, no. 6, pp. 4893–4905, 2021. doi: 10.1109/JIOT.2020.3030926.

[22] X. Wei, L. Cai, N. Wei, P. Zou, J. Zhang and S. Subramaniam, “Joint UAV trajectory planning, DAG task
scheduling, and service function deployment based on DRL in UAV-empowered edge computing,” IEEE
Internet of Things J., vol. 10, no. 14, pp. 12826–12838, 2023. doi: 10.1109/JIOT.2023.3257291.

[23] F. Song, H. Xing, X. Wang, S. Luo, P. Dai and K. Li, “Offloading dependent tasks in multi-access edge
computing: A multi-objective reinforcement learning approach,” Future Gener. Comput. Syst., vol. 128, no.
1, pp. 333–348, 2022. doi: 10.1016/j.future.2021.10.013.

[24] X. Fu, B. Tang, F. Guo, and L. Kang, “Priority and dependency-based dag tasks offloading in fog/edge col-
laborative environment,” in 2021 IEEE 24th Int. Conf. Comput. Support. Cooperat. Work Des. (CSCWD),
Dalian, China, 2021, pp. 440–445. doi: 10.1109/CSCWD49262.2021.9437784.

[25] G. Zheng, Q. Ni, K. Navaie, and H. Pervaiz, “Semantic communication in satellite-borne edge cloud
network for computation offloading,” IEEE J. Sel. Areas Commun., vol. 42, no. 5, pp. 1145–1158, 2024.
doi: 10.1109/JSAC.2024.3365879.

[26] Q. Tang, R. Xie, Z. Fang, T. Huang, T. Chen and R. Zhang, “Joint service deployment and task scheduling
for satellite edge computing: A two-timescale hierarchical approach,” IEEE J. Sel. Areas Commun., vol. 42,
no. 5, pp. 1063–1079, 2024. doi: 10.1109/JSAC.2024.3365889.

[27] F. Chai, Q. Zhang, H. Yao, X. Xin, R. Gao and M. Guizani, “Joint multi-task offloading and resource
allocation for mobile edge computing systems in satellite IoT,” IEEE Trans. Vehicular Technol., vol. 72, no.
6, pp. 7783–7795, 2023. doi: 10.1109/TVT.2023.3238771.

[28] Y. Zhang, J. Chen, Y. Zhou, L. Yang, B. He and Y. Yang, “Dependent task offloading with energy-
latency trade off in mobile edge computing,” IET Commun., vol. 16, no. 17, pp. 1993–2001, 2022. doi:
10.1049/cmu2.12454.

[29] J. Sun, H. Wang, L. Nie, G. Feng, Z. Zhang and J. Liu, “A joint strategy for service deployment and
task offloading in satellite-terrestrial IoT,” Comput. Netw., vol. 225, no. 14, 2024, Art. no. 109656. doi:
10.1016/j.comnet.2023.109656.

[30] J. Li, Y. Shang, M. Qin, Q. Yang, N. Cheng and W. Gao, “Multiobjective oriented task scheduling in
heterogeneous mobile edge computing networks,” IEEE Trans. Vehicular Technol., vol. 71, no. 8, pp. 8955–
8966, 2022. doi: 10.1109/TVT.2022.3174906.

[31] X. Cao, B. Yang, Y. Shen, C. Yuen, Y. Zhang and Z. Han, “Edge-assisted multi-layer offloading optimiza-
tion of leo satellite-terrestrial integrated networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 2, pp. 381–398,
2023. doi: 10.1109/JSAC.2022.3227032.

https://doi.org/10.1109/TMC.2022.3150432
https://doi.org/10.1109/TMC.2023.3269801
https://doi.org/10.1109/TPDS.2020.3014896
https://doi.org/10.1109/JIOT.2020.3030926
https://doi.org/10.1109/JIOT.2023.3257291
https://doi.org/10.1016/j.future.2021.10.013
https://doi.org/10.1109/CSCWD49262.2021.9437784
https://doi.org/10.1109/JSAC.2024.3365879
https://doi.org/10.1109/JSAC.2024.3365889
https://doi.org/10.1109/TVT.2023.3238771
https://doi.org/10.1049/cmu2.12454
https://doi.org/10.1016/j.comnet.2023.109656
https://doi.org/10.1109/TVT.2022.3174906
https://doi.org/10.1109/JSAC.2022.3227032

	Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network
	1 Introduction
	2 Related Research
	3 System Model and Problem Formulation
	4 Simulation Experiment
	5 Conclusions
	References

