
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.057224

ARTICLE

MixerKT: A Knowledge Tracing Model Based on Pure MLP Architecture

Jun Wang1,2, Mingjie Wang1,2, Zijie Li1,2, Ken Chen1,2, Jiatian Mei1,2 and Shu Zhang1,2,*

1Key Laboratory of Education Informatization for Nationalities, Ministry of Education, Yunnan Normal University,
Kunming, 650000, China
2Yunnan Key Laboratory of Smart Education, Yunnan Normal University, Kunming, 650000, China
*Corresponding Author: Shu Zhang. Email: zhangshu@ynnu.edu.cn
Received: 11 August 2024 Accepted: 07 October 2024 Published: 03 January 2025

ABSTRACT

In the field of intelligent education, the integration of artificial intelligence, especially deep learning technologies,
has garnered significant attention. Knowledge tracing (KT) plays a pivotal role in this field by predicting students’
future performance through the analysis of historical interaction data, thereby assisting educators in evaluating
knowledge mastery and tailoring instructional strategies. Traditional knowledge tracing methods, largely based on
Recurrent Neural Networks (RNNs) and Transformer models, primarily focus on capturing long-term interaction
patterns in sequential data. However, these models may neglect crucial short-term dynamics and other relevant
features. This paper introduces a novel approach to knowledge tracing by leveraging a pure Multilayer Perceptron
(MLP) architecture. We propose MixerKT, a knowledge tracing model based on the HyperMixer framework, which
uniquely integrates global and local Mixer feature extractors. This architecture enables more effective extraction of
both long-term interaction trends and recent learning behaviors, addressing limitations in current models that may
overlook these key aspects. Empirical evaluations on two widely-used datasets, ASSISTments2009 and Algebra2005,
demonstrate that MixerKT consistently outperforms several state-of-the-art models, including DKT, SAKT, and
Separated Self-Attentive Neural Knowledge Tracing (SAINT). Specifically, MixerKT achieves higher prediction
accuracy, highlighting its effectiveness in capturing the nuances of learners’ knowledge states. These results indicate
that our model provides a more comprehensive representation of student learning patterns, enhancing the ability
to predict future performance with greater precision.
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Nomenclature

MixerKT Knowledge tracing model based on HyperMixer
KT Knowledge tracing

1 Introduction

With the ongoing advancement of artificial intelligence, the topic of smart education has garnered
significant attention among researchers [1]. The rise of deep learning technologies presents new avenues
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for application in the education sector, particularly making the integration of multilayer perceptron
neural networks into educational intelligence algorithms a burgeoning area of interest. Central to
smart education research is the concept of knowledge tracing, which seeks to forecast students’ future
performance by analyzing their historical interactions, primarily focusing on responses to previous
questions. Fig. 1 illustrates the knowledge tracking task. This approach empowers educators and dig-
ital learning platforms to understand learners’ current knowledge levels, identify misunderstandings,
and tailor future teaching methods or learning trajectories accordingly. Knowledge tracing has found
applications in online education platforms like Duolingo and Shanbei English [2].

Figure 1: Knowledge tracing task

From the perspective of sequence modeling, knowledge tracing techniques are generally cate-
gorized into two groups: those based on Recurrent Neural Networks (RNN) and those leveraging
Transformers [3]. These methodologies adopt a common framework for sequence tasks, encapsulating
historical data through an encoder and employing the resultant hidden states for predictions at
designated time intervals. This makes the adaptation of strategies from areas such as recommendation
systems and natural language processing to knowledge tracing not only viable but also highly effective.

Recently, researchers have developed a new pure multilayer perceptron (MLP) architecture known
as MLP-Mixer [4]. This architecture, with its unique feature mixing layers, achieves impressive
performance in various tasks, especially in handling sequence data, demonstrating its strong potential.
A key characteristic of MLP-Mixer is its ability to mix feature information globally, enabling the model
to capture long-range dependencies while maintaining detailed processing of local features, which is
crucial for sequence tasks. Following this, Li et al. [5] successfully applied the MLP-Mixer architecture
to recommendation system tasks, showcasing its effectiveness in sequence recommendation. Subse-
quently, Mai et al. [6] applied MLP-Mixer in the field of natural language processing, proving its
potential in processing language sequences.

Given the architecture’s excellent performance in related fields, we believe that Mixer has signif-
icant potential in sequence modeling and may outperform LSTM or Transformer in some scenarios.
To further enrich the modeling techniques used for knowledge tracing tasks, this paper attempts to
introduce Mixer into the knowledge tracing field to discuss whether the technology can achieve similar
performance. The applications of pure MLP solutions in the current research that we discussed in
Related Work and the advantages of Mixer in various fields and Mixer introduced the advantages of
using MLP and Mixer to solve the field of knowledge tracking. Subsequently, we introduced MixerKT
in the Model section, introduced Embedding Layer and the core Mixer Layer, and used the binary
cross-entropy loss for training. We conducted experiments on the Assistments2009 and Algebra2005
data sets, and chose the more classic models in the field of knowledge tracking and the recent
new models as the baseline for comparative experiments. We have conducted ablation experiments
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to verify the contribution of each key module to MixerKT. We also experimented with several
key super parameters of MixerKT. Our specific contributions are: (1) proposing a new knowledge
tracing model based on the Mixer architecture, known as MixerKT, which to our knowledge, is
the first application of the Mixer architecture in the field of knowledge tracing; (2) introducing a
method combining global Mixer feature extractors and local Mixer feature extractors. The global
Mixer models the entire data sequence. We recognize the importance of short-term performance in
evaluating a learner’s knowledge. Therefore, we use a local Mixer to focus on recent learner features;
(3) demonstrating through empirical evidence that MixerKT achieves competitive performance on
datasets like ASSISTments2009 compared to advanced baseline models. Distinctively, MixerKT
surpasses existing MLP-based models, such as MLP-Mixer and MLP4Rec, by integrating global and
local Mixer feature extractors, enabling a more nuanced understanding of learners’ interaction patterns
and recent learning behaviors.

2 Related Work
2.1 Knowledge Tracing

The goal of knowledge tracing is to predict students’ future performance in interactions based on
their historical interaction records. Currently, the field has established a stable paradigm where the
model input is the student’s interaction record, and the output is the student’s performance at a future
moment. Existing datasets record students’ responses to a sequence of exercises over a period, either
through automatic system collection or manual gathering, making this task highly related to other
sequence modeling tasks. The task definition of knowledge tracing can be formalized as follows: for a
given learner interaction sequence, the interactions produced by the learner are represented as a series
of triplets, st = [(c1, q1, r1), (c2, q2, r2), . . . , (ct, qt, rt)]. Here, qt represents the exercise answered by
the learner at time t, ct represents the concept of the knowledge point corresponding to the exercise at
time t, and rt indicates whether the learner answered the exercise correctly at time t, with a value of 1
if correct. The task of a knowledge tracing model is to predict the learner’s subsequent interaction
performance based on the sequence st, specifically predicting the performance of the subsequent
interaction exercise qt+1, i.e., given st and qt+1 to predict rt+1.

From the perspective of capturing learner sequence features, knowledge tracing can be broadly
divided into methods based on Recurrent Neural Networks (RNN) and those based on Transformer
architecture. RNN-based methods appeared earlier, with DKT [7] being the first model to implement
knowledge tracing tasks using LSTM/RNN. Subsequent improvements by researchers include the
DKT+ model [8], which optimizes the model training objective using a loss function to make DKT
comply with basic cognitive principles, the DKT-forget model [9] that integrates the forgetting process,
and the AT-DKT [10] through multi-objective optimization. Recent models like LPKT [11] and QIKT
[12] are also based on the RNN architecture. After achieving outstanding results in natural language
processing, researchers also introduced the Transformer architecture to knowledge tracing. SAKT
[13] uses a self-attention mechanism, similar in structure to the Transformer. SAINT: Separated Self-
Attentive Neural Knowledge Tracing [14] was the first to use the original Transformer architecture
to build a knowledge tracing model. AKT [15] achieved exceptional performance with Rasch-based
embeddings and a custom attention mechanism. Additionally, models utilizing other technologies or
training methods have also at least adopted the RNN and Transformer architectures, such as GKT
[16] using Graph Neural Networks, BiCLKT [17], and CL4KT [18] based on contrastive learning.
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2.2 Mixer

In the field of computer science, compared to models based on the Transformer architecture,
MLP (Multilayer Perceptron) architectures generally exhibit lower time and space complexity. Recent
research has shown that MLP architectures, with their straightforward design, can achieve perfor-
mance comparable to state-of-the-art technologies.

The introduction of MLP-Mixer has provided a purely MLP-based methodology for computer
vision tasks. This architecture integrates two MLPs, one for feature mixing and another for token
mixing, effectively simulating spatial and feature-level interactions within the data. This strategy allows
the model to capture the intrinsic structure of the data without relying on complex mechanisms specific
to certain data types. In the research by Li and others, MLP4Rec [5] was proposed, applying the MLP-
Mixer [6] architecture to the domain of sequence recommendation. It addresses the limitations of self-
attention models (such as quadratic computational complexity and dependency on positional embed-
dings) and proposes a tri-directional fusion scheme to capture correlations across sequences, channels,
and features, while maintaining linear computational complexity and fewer model parameters. To
overcome the limitations of MLP4Rec in handling users’ long/short-term interests, Li et al. further
introduced AutoMLP [19], incorporating an automated and adaptive algorithm to determine the
length of short-term interests. This approach not only maintains linear computational complexity
but also demonstrates comparable performance to advanced methods in sequence recommendation
tasks. In the study of HyperMixer, the MLP architecture was applied to the field of natural language
processing. This model, by dynamically forming token-mixing MLPs using hypernetworks, effectively
addresses the limitations of MLP-Mixer in natural language understanding. HyperMixer not only
rivals traditional Transformer models in performance but also significantly reduces costs in terms of
processing time, training data, and hyperparameter tuning.

Overall, from the initial practice of MLP-Mixer to the application of MLP4Rec and AutoMLP in
sequence recommendation, and the innovation of HyperMixer in the NLP domain, the MLP archi-
tecture has undergone continuous development and refinement. It has brought new developmental
potential and application possibilities to multiple areas of machine learning.

3 Model

We propose a pure MLP knowledge tracing model based on the Hyper-Mixer architecture, named
MixerKT. This model comprises an embedding layer, Mixer layers, and a prediction layer, with
its structure illustrated in Fig. 2. The embedding layer is used to achieve vector representations of
knowledge points and exercises. The Mixer layers are responsible for capturing the temporal and
feature information of the knowledge point sequences. The prediction layer extracts the necessary
sequence information and exercise details for making predictions and outputs the results. To train
the model, this section will also introduce the loss function and training process used for MixerKT.
The choice of a Multilayer Perceptron (MLP) architecture over traditional Recurrent Neural Networks
(RNN) or Transformer architectures is rooted in the unique requirements of knowledge tracing. MLPs
provide a straightforward and efficient means of capturing the non-sequential relationships between
learning interactions, allowing for faster training and inference. Unlike RNN, which can struggle
with long-term dependencies, or Transformers, which may introduce unnecessary complexity for the
specific task of knowledge tracing, the MLP architecture effectively balances model simplicity with
the capacity to learn from historical interaction data. This enables MixerKT to focus on both local
and global features without the drawbacks of sequential processing limitations.
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Figure 2: MixerKT model structure

3.1 Embedding Layer

In accordance with the task definition of knowledge tracing, MixerKT implements vector
representations of knowledge points and exercises in the embedding layer, a process similar to other
knowledge tracing works. Specifically, we embed each concept within a set of N knowledge points,
C = {c1, c2, . . . , cN}, with an embedding dimension of d. This results in a knowledge point embedding
matrix EC in RN×d. The embedding approach for exercises is consistent with that of knowledge points,
using the same embedding dimension d, leading to an embedding matrix EQ in RM×d, where M is the
number of exercises. Since a learner’s response can only be correct or incorrect, it is necessary to embed
these response scenarios, denoted as: ERinR2×d. As illustrated, for the interactions already generated
by the learner, the final representation of a student’s interaction at time t is processed based on their
response to the knowledge point, such that the final representation at time t, et is the sum of the
embeddings of the knowledge point and the response at that time, et = ect + ert .

3.2 Mixer Layer

In the Mixer layer, the focus is on capturing global sequence features and local features. In past
knowledge tracing work, models typically use LSTM or Transformer to model sequences, employing
the hidden states outputted by LSTM or Transformer as representations of a student’s knowledge
state. Similarly, the function of Mixer is to capture the hidden states of the sequence, with the notable
difference that Mixer’s capture does not rely on the results of the previous time step. Furthermore, since
MixerKT is based on a pure MLP architecture, it also benefits from lower computational overhead.
The Mixer layer is composed of two independent Mixer Blocks: one known as the global Mixer feature
extractor and the other as the local Mixer feature extractor. Each Block contains a Sequence Mixer
and a Channel Mixer, following their respective operational mechanisms, as shown in Fig. 3.
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Figure 3: The structure of mixer. (a) Illustrates sequence and channel mixing operations in the mixer
layer. (b) Illustrates nonlinear activation function (GELU) in the mixer layer

The Mixer layer is implemented using a Sequence Mixer and a Channel Mixer, where the Sequence
Mixer’s purpose is to mix information between different tokens of the sequence, and the Channel
Mixer aims to mix information across different feature channels, as illustrated in Fig. 3a. Assuming a
sequence representation X in RN×d, where N is the sequence length and d is the feature dimension, the
forms of the Sequence Mixer and Channel Mixer are as shown in Eqs. (1) and (2).

Sequence Mixer (X) = Activation (X · W1 + b1) (1)

Channel Mixer (X) = Activation (X T · W2 + b2) (2)

In the Mixer layer, the weight matrices for the Sequence Mixer and Channel Mixer are denoted as
W1 and W2, respectively, with bias vectors b1 and b2. The nonlinear activation function used is GELU,
as depicted in Fig. 3b.

The weight matrices W1 and W2 are generated by parameterized functions h1, h2 : RN×d → RN×d′ ,
where we choose to independently generate the rows of each weight matrix from each token using
another MLP. The definition of the hypernetwork function is given in Eq. (3), with pj in Rd being the
vector that includes additional information through position encoding.

hi (x) =
⎛
⎜⎝

MLPWi(x1 + p1)
...

MLPWi(xN + pN)

⎞
⎟⎠ ∈ R

N×d′
(3)

The global Mixer feature extractor is designed to model the entire sequence, thus considering
the sequence features at time t from the perspective of the entire sequence. The local Mixer feature
extractor aims to capture the features from the most recent k time steps before t, motivated by the
idea that a student’s recent interactions could be highly significant. Here, k is a hyperparameter of the
model. Assuming a maximum sequence length of max, the input to the global Mixer feature extractor
is SG = [e0, e1, . . . , et−1, et, . . . , emax−1] in Rmax×d, and for the local Mixer feature extractor, the input
is SL = [et−k+1, . . . , et−1, et] in Rk×d, where et represents the result of the knowledge point completed
by the student at time t. We utilize seq to facilitate interactions between sequences and Channel for
interactions within features, enabling the generated sequence features to possess temporal information
while also integrating internal feature information, as shown in Eqs. (4) and (5).
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HG = Channel Mixer (Sequence Mixer (SG)) (4)

HL = Channel Mixer (Sequence Mixer (SL)) (5)

The fused results are HG = [hG
0 , . . . , hG

t−1, hG
t , . . . , hG

max] in Rmax×d and HL = [hL
t−k+1, . . . , hL

t−1, hL
t ] in

Rk×d. It is important to note that when predicting the student’s performance at time t+1, all moments
in the [t + 1, max] interval are masked to prevent label leakage. Finally, the output results of the two
feature extractors at time t are concatenated to form ht, as illustrated in Eq. (6).

ht = hG
t ⊕ hL

t ∈ R
2d (6)

The sequence feature at time t, represented as ht, is then used to predict the student’s performance
at time t + 1.

3.3 Prediction Layer

The prediction layer is utilized to achieve the prediction of results. If predicting the student’s
performance at time t + 1, denoted as ŷt+1, the input to this layer is the output result ht from the
Mixer layer and the exercise qt+1 that is to be predicted at time t + 1. The prediction layer computes
the prediction result using an MLP layer and a Sigmoid function, as shown in Eq. (7).

ŷ = σ (W [ht ⊕ qt+1] + b) (7)

Here, σ denotes the sigmoid function, and W represents the parameters of the fully connected
layer. This layer operates to reduce dimensions through a neural network while adjusting the output
to fall within the [0, 1] interval.

3.4 Loss and Training

The model employs a binary cross-entropy loss function to compute scores for each sequence at
every time step, with the loss for a single sequence represented as shown in Eq. (8).

L = −
∑T

t=1
(yt log ŷt + (1 − yt) log (1 − ŷt) (8)

In this equation, yt represents the true label of the student’s interaction. The model is optimized
using the Adam optimizer, with the training objective being the minimization of loss.

4 Experiment

We conducted experiments on the ASSISTment2009 [20] and Algebra2005 [21] datasets using
the pyKT toolkit [22], comparing performance with baseline models such as DKT, SAKT, and
SAINT under a five-fold cross-validation setting through both Question Level and KC (Knowledge
Component) Level approaches. Additionally, ablation studies and hyperparameter experiments were
conducted on the ASSISTment2009 dataset. All experiments were completed on a uniform platform:
the computational core was powered by an Intel Xeon E-2288G octa-core processor, and the GPU core
was supported by an NVIDIA A100 PCIe (80 GB HBM2e) to facilitate high-load deep learning tasks.
During training, an early stopping strategy was employed with training epochs set to 50 and batch sizes
chosen from {32, 64}. The learning rates were set within {0.001, 0.005}, and the embedding dimension
d for exercises was chosen from {64, 128, 256} to prevent overfitting, a dropout of 0.2 was set.
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4.1 Dataset

The ASSISTment2009 dataset (abbreviated as AS2009) is a collection designed for student
cognitive diagnostics and knowledge tracing research. After processing by pyKT, the dataset comprises
a total of 337,415 interaction records, 4661 sequences, 17,737 problems, and 123 distinct knowledge
points. It contains student exercise data collected during the 2009 to 2010 academic year through the
ASSISTments online teaching platform. This dataset includes information about students’ interaction
records, sequential data, the problems themselves, and related knowledge points. The AS2009 dataset
provides real-world data for evaluating student model construction and knowledge tracing algorithms,
making it widely used in performance assessment and comparative analysis of various knowledge
tracing methods.

The Algebra2005 dataset (abbreviated as AL2005), originating from the KDD Cup 2010 edu-
cational data mining challenge, encompasses responses of 13 to 14-year-old students to algebra
problems. The processed Algebra2005 dataset includes 884,098 student interaction records, covering
4712 learning sequences and 173,113 problems, as well as 112 different knowledge points.

4.2 Comparative Experiment

The MixerKT model was compared with several benchmark models in experimental studies.
These benchmarks include the deep knowledge tracing model DKT and its variant DKT+, as well as
the attention-mechanism-incorporating SAKT model. Each of these models underwent performance
evaluations at both Question Level and KC Level on the AS2009 and AL2005 datasets. The MixerKT
model employs a pure Multilayer Perceptron (MLP) architecture, distinctly contrasting with the
common knowledge tracing models based on Recurrent Neural Networks (RNN) or attention
mechanisms.

Table 1 shows the performance comparison of the MixerKT model with baseline models on the
AS2009 and AL2005 datasets at both Question Level (All-in-One) and KC Level (All-in-One). It was
found that the MixerKT model outperforms other baseline models in both Question Level and KC
Level performance on these two datasets.

Table 1: Comparative experimental results of the MixerKT model with baseline models at Question
Level and KC Level on the AS2009 and AL2005 datasets. �DKT represents a value that is superior
to the suboptimal alternative

Model Question level (all-in-one) KC level (all-in-one)
AS2009 AL2005 AS2009 AL2005

DKT [7] 0.7541 0.8149 0.7419 0.8146
DKT+ [8] 0.7547 0.8156 0.7424 0.8144
DKT-F [9] – 0.8147 – 0.8163
KQN [23] 0.7477 0.8027 0.7361 0.8005
DKVMN 0.7473 0.8054 0.7330 0.7891
ATKT [24] 0.7470 0.7995 0.7337 0.7964
GKT [16] 0.7424 0.8110 0.7227 0.8025
SAKT [13] 0.7246 0.7880 0.7085 0.7682
SAINT [14] 0.6958 0.7775 0.6865 0.6662

(Continued)
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Table 1 (continued)

Model Question level (all-in-one) KC level (all-in-one)
AS2009 AL2005 AS2009 AL2005

AT-DKT [10] 0.7421 0.7799 0.7498 0.7911
MixerKT 0.7646 0.8266 0.7581 0.8193
�DKT 0.0105 0.0117 0.0162 0.0047

Specifically, at the Question Level, the accuracy of the MixerKT model on the AS2009 dataset
improved by 1.05% compared to the DKT model and by 4% compared to the SAKT model. On
the AL2005 dataset, the improvement was 1.17% over the DKT model. At the KC Level, the
MixerKT model also showed significant improvements. On the AS2009 dataset, its accuracy was 1.62%
higher than the DKT model and 4.96% higher than the SAKT model. On the AL2005 dataset, it
outperformed the DKT model by 0.47% and the SAKT model by 5.11%. These results indicate that
even without adopting complex sequence model structures, a pure MLP architecture can effectively
capture students’ knowledge states and learning progress.

4.3 Ablation Study

In the ablation study, we aimed to quantitatively analyze the contributions of various components
of the MixerKT model. The experiment involved removing specific components from the base
architecture of MixerKT and evaluating their impact on the overall performance of the model. The
performance metrics considered included AUC (Area Under the Receiver Operating Characteristic
Curve) and ACC (Accuracy), both of which are widely used in the machine learning field to assess
the performance of classifiers. The experimental setup comprised four configurations: Configuration I
utilized the basic Mixer module, testing the model’s performance without the HyperMixer component;
Configuration II removed the Local Mixer Block to assess its impact on local feature processing;
Configuration III further removed both the Local Mixer Block and the HyperMixer module, helping
to understand the combined effect of these two components; Configuration IV represented the
complete MixerKT model, combining all components as a performance benchmark.

The results of the ablation study, as shown in Table 2, indicate that the complete MixerKT model
(Configuration IV) outperformed other configurations in both AUC and ACC metrics. Compared
to Configuration I, replacing HyperMixer with Mixer resulted in a decline of 0.33%, 0.34%, 0.31%,
and 0.3% in AUC and ACC at both Question Level and KC Level, respectively. This finding suggests
that while the contribution of HyperMixer to accuracy is small, it still has a positive effect, playing
an active role in local context modeling and feature extraction. In Configuration II, where the Local
Mixer Block was removed, there was a more significant performance drop of 0.42% in AUC and
0.49% in ACC at the Question Level, highlighting the role of the Local Mixer Block in the overall
architecture. It not only enhanced the model’s sensitivity to local context but also improved the capture
of fine-grained changes in students’ knowledge states. Configuration III further demonstrated the
performance decline when both key components were removed, with a decrease of 0.71% in AUC
and a drop to 0.75% in ACC at the Question Level. The significance of this combined effect indicates
that the Local Mixer Block and HyperMixer not only function independently within the model but
their interactive effects are crucial for enhancing model performance. The HyperMixer may engage in
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feature interactions at a global level, while the Local Mixer Block enhances the representation of local
features. Together, they provide the model with richer and more robust learning capabilities.

Table 2: Ablation study results of MixerKT

Model Question level
(all-in-one)

KC level (all-in-one)

AUC ACC AUC ACC

I w/o HyperMixer (using mixer) 0.7613 0.7211 0.7549 0.7176
II w/o Local Mixer Block 0.7604 0.7197 0.7536 0.7158
III w/o Local Mixer Block and HyperMixer 0.7575 0.7171 0.7506 0.7136
IV MixerKT 0.7646 0.7246 0.7580 0.7206

The superior performance of the MixerKT model is attributed to the synergistic operation
of its internal components, with both the Local Mixer Block, enhancing local features, and the
HyperMixer, facilitating the integration of global information, playing indispensable roles in the
model’s effectiveness and accuracy.

4.4 Hyperparameter Experiment

We conducted hyperparameter tuning experiments focusing on the most critical hyperparameters:
the embedding dimension d and the number of recent learning interactions k captured by the short
sequence. The goal was to assess the impact of different hyperparameter values on the performance
of the MixerKT model.

Initially, experiments were conducted on varying embedding dimensions d, with values set at 64,
128, and 256. These experiments were evaluated at the Question Level and KC Level on the AS2009
dataset, using AUC and ACC as performance metrics.

Table 3: Performance of MixerKT at different embedding dimensions

Model Question level (all-in-one) KC level (all-in-one)

AUC ACC AUC ACC

d = 64 0.7609 0.7204 0.7546 0.7170
d = 128 0.7581 0.7181 0.7516 0.7143
d = 256 0.7630 0.7215 0.7569 0.7184

The results, as shown in Table 3, indicate significant differences in model performance across
various embedding dimensions. Specifically, at the Question Level, with d = 64, the model achieved
an AUC of 0.7609 and an ACC of 0.7204. Increasing the dimension to d = 128 resulted in a slight
decrease in AUC to 0.7581 and ACC to 0.7181, suggesting that a lower dimension might be sufficient
to capture patterns in the dataset. Further increasing the dimension to d = 256 led to an increase in
AUC to 0.7630 and ACC to 0.7215, indicating that higher dimensions provide a richer representation
space, potentially improving model performance. At the KC Level, with d = 64, the model’s AUC and
ACC were 0.7546 and 0.7170, respectively. With d = 128, AUC slightly decreased to 0.7516, but ACC



CMC, 2025, vol.82, no.1 495

marginally increased to 0.7143, implying that an increase in dimension at this level did not significantly
enhance performance. With d = 256, the model’s performance improved again, with AUC and ACC
reaching 0.7569 and 0.7184, respectively, reiterating the positive impact of higher dimensions on model
performance.

The results reveal a correlation between model dimension and performance, showing an upward
trend in AUC and ACC as the dimension increases, particularly when increasing from 128 to 256.
However, the performance improvement was not as pronounced when increasing from 64 to 128,
indicating a possible dimensional threshold for the given dataset and task. Beyond this threshold,
the model might more effectively learn complex patterns in the data.

We then evaluated the performance of the Local Mixer feature extractor with different k values,
where k represents the number of recent features captured by the model before time point t. This was
achieved by observing changes in window AUC values under different sequence lengths.

From Fig. 4, it is observed that as k increased from 1 to 7, the window AUC rose from 0.7493 to
0.7569, indicating that expanding the context window significantly enhances model performance. A
smaller k value may limit the amount of information captured by the model. However, as this window
expands, the model gains access to more historical interaction data, leading to better understanding
and prediction at the current moment. In the k range of 7 to 10, the window AUC showed a decreasing
trend, dropping from 0.7569 to 0.7530. The model might have already captured sufficient information
for effective prediction at k = 7, and additional information did not lead to performance improvement.
Between k = 10 and k = 15, the window AUC displayed stability but with a slight downward trend.
Specifically, the AUC was 0.7530 at k = 10 and slightly decreased to 0.7520 at k = 15. As k increased,
the model began to consider more distant historical interactions, which might be less relevant to the
current prediction, resulting in a performance decline.

Figure 4: Experimental results of window AUC values at different sequence lengths k
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The results suggest that there exists an optimal k value, or window size, where the model
achieves peak performance. Beyond this optimal point, performance decline may be due to the model
overfitting or processing too much less relevant information, reducing its focus on the most recent and
significant interactions.

5 Conclusion

In this study, we successfully introduced the MLP-Mixer architecture into the field of knowledge
tracing and developed the innovative MixerKT model. This model integrates both global and local
Mixer feature extractors, effectively capturing students’ overall and recent interaction features to
enhance the accuracy of predicting their future performance. Experimental results demonstrate that
MixerKT outperforms existing knowledge tracing models based on recurrent neural networks and
Transformer architectures on standard datasets such as Assistment2009 and Algebra2005. This
breakthrough not only confirms the applicability of the Mixer architecture in the domain of education
but also opens new technological pathways and research perspectives for the development of future
intelligent educational systems. By deeply understanding students’ learning patterns and knowledge
states, MixerKT paves the way for improving educational quality and efficiency through intelligent
technology.

Future research directions for MixerKT could involve exploring its application in other domains,
such as personalized learning systems or adaptive assessment environments, where understanding
learner interactions is crucial. Additionally, efforts to further optimize the model’s computational effi-
ciency could enhance its scalability, making it applicable to larger datasets and real-time educational
settings.
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