
Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.056930

ARTICLE

Unmasking Social Robots’ Camouflage: A GNN-Random Forest Framework
for Enhanced Detection

Weijian Fan1,*, Chunhua Wang2, Xiao Han3 and Chichen Lin4

1School of Data Science and Intelligent Media, Communication University of China, Beijing, 100024, China
2School of Computer and Cyber Sciences, Communication University of China, Beijing, 100024, China
3Institute of Communication Studies, Communication University of China, Beijing, 100024, China
4State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, 100024, China
*Corresponding Author: Weijian Fan. Email: wjfan@cuc.edu.cn
Received: 02 August 2024 Accepted: 12 October 2024 Published: 03 January 2025

ABSTRACT

The proliferation of robot accounts on social media platforms has posed a significant negative impact, necessitating
robust measures to counter network anomalies and safeguard content integrity. Social robot detection has emerged
as a pivotal yet intricate task, aimed at mitigating the dissemination of misleading information. While graph-
based approaches have attained remarkable performance in this realm, they grapple with a fundamental limitation:
the homogeneity assumption in graph convolution allows social robots to stealthily evade detection by mingling
with genuine human profiles. To unravel this challenge and thwart the camouflage tactics, this work proposed an
innovative social robot detection framework based on enhanced HOmogeneity and Random Forest (HORFBot).
At the core of HORFBot lies a homogeneous graph enhancement strategy, intricately woven with edge-removal
techniques, to meticulously dissect the graph into multiple revealing subgraphs. Subsequently, leveraging the power
of contrastive learning, the proposed methodology meticulously trains multiple graph convolutional networks,
each honed to discern nuances within these tailored subgraphs. The culminating stage involves the fusion of
these feature-rich base classifiers, harmoniously aggregating their insights to produce a comprehensive detection
outcome. Extensive experiments on three social robot detection datasets have shown that this method effectively
improves the accuracy of social robot detection and outperforms comparative methods.
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1 Introduction

Social media platforms, such as Twitter (now known as X), Facebook, and Sina Weibo, have
become an indispensable part of people’s daily lives for sharing information and communicating with
each other. However, these platforms are being undermined by automated programs called social
bots. The presence of social bots poses numerous problems for social media. They are often used to
disseminate false information [1], manipulate elections [2], promote conspiracy theories [3], and cause
significant negative social impacts [4–6]. Detecting bots on social media is crucial for ensuring the

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.056930
https://www.techscience.com/doi/10.32604/cmc.2024.056930
mailto:wjfan@cuc.edu.cn


468 CMC, 2025, vol.82, no.1

stability of the platform and safeguarding user interest. Therefore, a critical demand exists for precise
and effective techniques to detect social bots and counteract their detrimental impacts.

Researchers have proposed a large number of social bot detection methods, which can be broadly
categorized into three categories: feature-based, text-based, and graph-based. The feature-based
methods involve extracting features from user metadata [7], temporal features [8], and tweets [9,10].
These features are then input into various classifiers, such as Random Forest (RF) or deep neural
networks, to detect social bots. However, social bots can evade detection by simulating real users
through sophisticated strategies [5]. Moreover, such methods rarely consider the diverse relationships
between social accounts (such as follows, comments, etc.), making it challenging to guarantee detection
accuracy [11]. Text-based methods often utilize NLP techniques such as word embeddings [12],
recurrent neural networks [13], and pretrained language models [14,15] to encode tweet content and
identify malicious intent. However, text-based methods cannot effectively identify social bots that mix
malicious tweets with regular tweets [16].

Graph neural networks, through their efficient capture of semantic relationship features by
leveraging the relationships between nodes in the graph structure, have been pivotal in the advancement
of social bot detection. These methods, treating social bot detection as a node classification problem,
consider social media platform accounts as nodes, the relationships between accounts as edges, and
then employ graph neural networks (such as GCN [17,18], RGCN [9], RGT [10]) to learn user node
representations for bot detection. This practical application of graph neural networks has led to the
achievement of state-of-the-art performance in social bot detection, effectively detecting new social
bots with better generalization [9,10].

Although graph-based social bot detection methods have made significant progress, they ignore
the negative impact of heterogeneity (i.e., connections between different types of accounts) due to their
homogeneity assumption. Existing graph-based social bot detection methods use a low-pass filter to
smooth the user features within neighborhoods, i.e., using the sum of neighboring representations
as the representation of the central node. This allows social bots to evade detection by engaging in
inter-action behaviors with real accounts [19]. Fig. 1 illustrates the camouflage behavior of a social
bot, which establishes connections with many real users. Its suspicious features are smoothed and
weakened by its genuine account neighbors, thus evading detection by homogenous graph-based
detection algorithms.

Figure 1: Social bot evades detection by camouflage behavior
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This article proposes a social robot detection framework based on enhanced homogeneity and
random forest (HORFBot). Specifically, this article first designs a graph homogeneity enhancement
method that includes node enhancement and topo-logical structure enhancement. By combining
with existing edge perturbation enhancement methods, different subgraphs are obtained. Then, using
contrastive learning in a cross-view manner, we obtain node representations that are class-consistent
between different subgraphs. Finally, to effectively harness the benefits of ensemble learning and GNN
for encoding node relationships, we employ GNN as the foundational classifier within the RF, while
utilizing the selected features as input for the fully connected neural network. The outputs from the
GNN base classifier are then aligned through a straightforward fusion mechanism. Our experimental
results demonstrate that HORFBot attains exceptional performance on three benchmark datasets for
social robot detection, surpassing existing methods significantly. Furthermore, numerous experiments
validate the efficacy of the graph enhancement technique proposed in this article and the enhancement
in the performance of GNN base classifiers when utilizing RF as a traditional ensemble learning
algorithm. The main contributions of this work are as follows:

a) Introducing a graph augmentation method that enhances information homogeneity and aggre-
gates both low-frequency and high-frequency information under the supervision of contrastive
learning, ultimately facilitating improved learning of node representations.

b) Effectively integrating the random forest algorithm with GNN, harnessing GNN’s ability in
encoding relationships and capitalizing on RF’s strengths to enhance model performance and
robustness.

c) Presenting a straightforward fusion mechanism that leverages the remaining features post-
selection, effectively utilizing features not utilized by the GNN-based classifier.

d) Performing experiments on three benchmark datasets for social bot detection. The outcomes
demonstrate that HORFBot consistently surpasses previous state-of-the-art methodologies.

2 Related Work
2.1 Feature-Based Social Bot Detection

Discriminative features are designed from user metadata [7], temporal features [8], tweets [9,10],
and follower relationships [20] through the process of feature engineering. Subsequently, these features
are fed into traditional classifiers, including support vector machines, naive Bayes, and random forests
[6], to identify social bot accounts. Mazza developed a system named BotOrNot, which utilizes
RF for evaluating and detecting social bots [8]. Fernquist et al. conducted a study examining the
impact of political bots on the 2018 Swedish election [21]. The study assessed several algorithms,
such as AdaBoost, support vector machines, and RF, and discovered that RF outperformed the
other algorithms, achieving an accuracy of 0.957. Cresci evaluated multiple classifiers, such as
RF, AdaBoost, support vector machines, and K-Nearest Neighbors, for the purpose of detecting
bots [16]. Upon analyzing the performance of these classifiers, it was found that the use of radio
frequency mixing provided the most optimal results. Although the RF demonstrates effectiveness in
bot detection, new camouflage and adversarial techniques continue to evolve, posing a persistent threat
and evading detection [22].

However, the detectability of these features can be easily mimicked and evaded by social bots.
Over time, social bot manipulators can deliberately disguise themselves by creating bot features [16],
rendering feature-based detection methods ineffective.
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2.2 Graph-Based Social Bot Detection

Alhosseini et al. utilize account and relationship graphs as graph structural features and apply
graph convolutional networks (GCN) to social robot detection for the first time [17]. Satar model
utilizes GCNs in a feature engineering manner and utilizes self-supervision for social robot detection
[20]. BotRGCN [9] utilizes relational graph convolutional networks within an information aggregation
mechanism, considering different relationships. Building upon this work, Feng et al. add relationship
categories and applies graph transformers to better aggregate information from neighbors [10].
Yang et al. propose the RoSGAS framework for social robot detection, which utilizes heterogeneous
information networks to effectively model multiple nodes and relationships in social networks and
introduces reinforcement learning to acquire subgraph embeddings [23]. Most existing methods
are based on the homogeneity assumption, where nodes in the graph tend to interact more with
similar nodes. For example, RSGCN considers the similarity of features among similar nodes,
applies weighted feature propagation, and ensures effective information aggregation by assigning
higher weights to similar neighboring nodes. It can aggregate information from distant neighboring
node features without excessive smoothing and gradient vanishing [24]. However, heterogeneity is
widespread in social media, and social robots interact with real users. Existing graph-based methods
that assume homogeneity significantly degrade their detection performance.

To address the challenge of heterogeneity, researchers have proposed various methods. These can
be roughly divided into two categories: non-local neighbor information aggregation and adaptive
message passing. GeMo-GNN [25] addresses heterogeneity by precomputing unsupervised node
embedding and defining a two-level aggregation process. LINKX [26] embeds both the adjacent
matrix and node features separately and combines them using a simple MLP. H2GCN [27] addresses
heterogeneity with three key design choices: self-neighbor feature separation, high-order neighbor
aggregation, and a combination of intermediate representations. CPGNN [28] annotates relevance
through a compatibility matrix and propagates prior confidence estimation through this matrix to
learn discriminative representations of heterogeneous graphs. However, in the social robot detection
task, social robots exhibit higher heterogeneity, while real users exhibit higher homogeneity. Therefore,
directly applying heterogeneous GNNs to social robot detection may not produce optimal results.

2.3 Graph Contrastive Learning

Supervised contrastive learning is a widely used strategy in deep learning that involves learning
by comparing the differences in labels of various instances. This approach enables the model to
effectively handle noisy, imbalanced, or complex data. Graph contrastive learning (GCL) extends this
technique to the realm of graph data, with the primary objective of learning the inherent structure
and patterns by comparing different representations or views of graph data. GRACE [29] generates
views by applying edge removal and feature masking and considers the same nodes in different
views as positive pairs. DGI [30], on the other hand, learns node representations by maximizing the
mutual information between local and global embeddings. However, self-supervised graph contrastive
learning methods face the challenge of class inconsistency, where representations of samples from
the same class may be distant, while representations of different classes may be close [31]. Originally
applied in computer vision, supervised contrastive learning treats intra-class images as positive pairs
to achieve representations that are closer to the same class than those from different classes [32].
This paper leverages this property to train an encoder capable of adapting to both homogeneous and
heterogeneous edges using a supervised contrastive loss to aggregate effective information.
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3 Methodology
3.1 Preliminaries

Let G = (V , E ,R, A) denotes a social network, where V = {vi|1, 2, . . . , N} is the set of all users; E =
{Ee = e ∈ 1, 2, . . . , E} denotes the collection of edges without self-loops formed by different relations
R; A ∈ R

N∗N is the symmetric adjacency matrix. The features of user vi are represented as X ∈ R
N∗NF ,

where NF is the dimension of user node features. The social bot detection task is to use the network
graph G and the users’ labels Ytrain to predict the user label Ŷtest by model f . The detection process can
be formalized as Eq. (1).

f (G, Ytrain) → Ŷtest. (1)

To gain a deeper understanding of homophily and heterophily in the task of detecting social bots,
this paper employs the class-insensitive homophily metric [26] for calculation. The homophily and
heterophily values are determined using Eqs. (2) and (3), respectively.

ho = 1
R − 1

∑R

r=1
max

(
0, hor − |Rr|

|V|
)

, (2)

he = 1 − ho, (3)

where R is the number of relations; Rr is the number of users of class r; hor represents the relation
homophily of users of class r.

3.2 Graph Augmentor

To deal with the camouflage behavior of social robots, this paper proposes a simple method of
graph enhancement to improve homogeneity in heterogeneous graphs. This method mainly consists of
three steps. Firstly, this paper trains a two-layer multilayer perceptron (MLP) classification network
using the train dataset and takes the output of the last layer as user representation.

ŷc = soft max (w2 ∗ ReLU (w1X + b1) + b2), (4)

mlpv = w1X + b1, (5)

where w1, w2, b1, b2 are learnable parameters. Since MLP does not use the original graph structure, the
user representation based on MLP is still not affected by the heterogeneity of the original graph.

Then, the cosine similarity is used to calculate the k most similar users simKi for a certain user vi.

simKi = TopK
(
cos

(
mlpvi , mlpvj

))
, vi, vj ∈ Vtrain; i �= j, (6)

where cos (·, ·) is the cosine similarity between two different users’ representation.

Finally, the paper performs a two-step enhancement on the original graph: first, for each user
node, applied randomly replace with one of the same-category users in the similar nodes simKi; second,
merged the subgraph composed of the k most similar users simKi without the replaced node with the
original graph.

This graph augmenter cannot only effectively improve the homogeneity of graphs in social
networks and reduce the impact of social robot interaction behaviors but also enable GNN to learn
neighborhood invariant features through the exchange of Rene similarity features. However, it should
be noted that this method does not eliminate the camouflage behavior of social robots and may
introduce redundant edges during the introduction of similar nodes. To mitigate these negative effects,
this paper introduces a contrastive learning framework into the GNN training process.
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3.3 Node Representation

Following the traditional graph contrastive learning framework, based on the graph augmentor
in Section 3.2, this paper uses edge removing method to construct two different subgraph views. The
specific process is described as follows:

Unlike using a two-layer MLP classification network for user node similarity, this section uses the
Transformer encoder to represent node features. As shown in Eq. (7), different types of feature vectors
are treated as different tokens.

tr0
i = Transformer

([
x1

i , x2
i , . . . , xt

i

])
, (7)

where xt
i references the feature of user node vi with type t; tr0

i is Transformer encoder output.

Then, as shown in Eq. (8), applying an MLP to tr0
i as the GNN input.

h(0)

i = ReLU
(
w3 ∗ tr0

i + b3

)
. (8)

Next, inspired by the previous work [33] on graphs with heterophily, the paper uses high-pass
filters to capture differentiating neighbor features in the spatial domain and uses low-pass filtering to
aggregate information from neighboring nodes. This can be formulated as Eqs. (9) and (10).(

h(l)
i

)
Low

= W {l−1}
∑(

h{l−1}
i + h{l−1}

j

)
, (9)

(
h(l)

i

)
High

= W {l−1}
∑ (

h{l−1}
i − h{l−1}

j

)
, (10)

where hj is one of the neighbors of user vi representation.

To use the contrastive learning framework, this paper uses a projection head consisting of another
MLP layer to obtain zi as Eq. (11).

zi = w5 ∗ ReLU
(

w4∗
[
h(L−1)

i ;
(
h(L)

i

)
Low

⊕ (
h(L)

i

)
High

]
+ b4

)
+ b5, (11)

where w4, w5, b4, b5 are learnable parameters; L is the last layer of GNN; [·; ·] represents concat
operation.

Thus, following the above process, user vi in two subgraph views can be calculated as zG1
i and zG2

i .

Finally, to avoid overfitting, this paper uses cross-subgraph-view contrastive learning. The same-
class nodes in two subgraphs are positive pairs. The different class nodes are negative pairs. The final
loss for all user nodes can be calculated as Eq. (12).

L = 1
2V ∗

V∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝− 1

Vyi

V∑
j=1

1yi=yj · log
e

cos
(

z
G1
i ,z

G2
j

)
/τ

V∑
k=1

e
cos

(
z
G1
i ,z

G2
k

)
/τ

⎞
⎟⎟⎟⎟⎠

+⎛
⎜⎜⎜⎜⎝− 1

Vyi

V∑
j=1

1yi=yj · log
e

cos
(

z
G1
i ,z

G2
j

)
/τ

V∑
k=1

e
cos

(
z
G1
i ,z

G2
k

)
/τ

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)
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where Vyi references the number of user vi with same class; τ is the temperature coefficient.

3.4 HORFBot

Based on the proposed graph augmentor and node representation based on contrastive learning,
this paper combines the random forest algorithm to propose the social robot detection framework
HORFBot. Fig. 2 shows the overall structure of HORFBot, including the base classifier construction
module, feature alignment module, and base classifier integration module.

Figure 2: Overall structure of HORFBot

3.4.1 Base Classifier

Constructing subgraphs is to obtain subgraphs as the training data for base classifiers. This paper
uses two methods, node sampling and feature selection, to ensure the diversity of the sustaining sets.

Due to the characteristics of social graph data, this paper does not use the RF algorithm itself
to randomly select nodes for replacement in the node sampling process. Instead, while preserving the
nodes, they also select the edges connected to them. The probability of preserving nodes α follows
an i.i.d. uniform distribution. In feature selection, this work randomly selects a β proportion of the
feature vector from the subgraph Gni , named Xni , which is used as the input feature matrix of the i-th
GNN base classifier. The GNN basic classifier has been described in detail in Section 3.3.

3.4.2 Aligning Mechanism

As show in Fig. 2, the i-th branch utilizes only a subset of the feature dimensions Xni for training
the base classifier Gni . The remaining features X̃ni , which are selected through feature selection, are
employed to train a fully connected neural network (FCN) Fni . The outputs of the GNN-based
classifier and the FCN are aligned using the Hadamard product, as described in Eq. (13).

outputni = Gni

(
Xni

) � Fni

(
X̃ni

)
, (13)

where � is the Hadamard product function.

Then, by passing the output embedding outputni to a classification layer can be achieved the i-th
brunch prediction result Ŷni .

Ŷni = soft max
(
w6 ∗ outputni + b6

)
, (14)

where w6, b6 are learnable parameters.
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3.4.3 Ensemble Mechanism

The base classifiers can be trained simultaneously. Once the base GNN classifiers are finished
in the training stage. Their outputs can be combined to produce the ultimate classification result, as
shown in Eq. (15).

Ŷ =
∑N

i=1
Ŷni . (15)

4 Experiment and Parameter Setup
4.1 Dataset

In this study, we evaluate social bot detection models on three graph-structured datasets: Cresci-15
[4], TwitBot-20 [34] and TwitBot-22 [35]. Here is a detailed description of these datasets:

a) The Cresci-15 dataset is a collection of real and fake followers on Twitter from 01 May to 31
July 2015. It contains 5301 users and provides metadata for each account, including the number
of followers, friends, and the account’s registration time, as well as textual information for the
accounts.

b) The TwitBot-20 dataset is a large-scale benchmark for Twitter bot detection that includes
229,573 users (11,826 accounts are labeled), 33,488,192 tweets, 8,723,736 user attributes, and
455,958 follower relations. This dataset covers a diverse range of bots and genuine users to
better represent the real-world Twitter landscape.

c) The TwitBot-22 dataset collects four types of entities: users, tweets, lists, and hashtags. It also
provides relationships between these entities, such as follows, posts, top tweets, likes, mentions,
retweets, quotes, replies, ownerships, memberships, and contains. Furthermore, TwitBot-22
provides detailed information for each entity, such as user metadata and tweet content. This
dataset provides 50,538 annotated users and involves different user types, such as genuine users,
spammers, and commercial accounts. Compared to TwitBot-20, TwitBot-22 has a larger graph
size with more nodes and edges.

Table 1 summarizes the statistical data of these datasets. Consistent with the Shi et al. method
[11], this work uses a 10%, 10%, and 80% random split as the train, validation, and test sets for
the experimental stage and report the average performance of five runs to ensure a fair comparison
between HORFBot and baseline models.

Table 1: The statistic of Cresci-15, TwiBot-20 and TwiBot-22

Dataset Number of nodes Number of edges Class Each class number

Cresci-15 [4] 5301 14,220 Human 1950
Bot 3351

TwiBot-20 [34] 229,580 227,979 Human 5237
Bot 6589

TwiBot-22 [35] 11,000,000 3,743,634 Human 860,057
Bot 139,943
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4.2 Compare Models

To validate the effectiveness of HORFBot, this paper compares it with multiple social bot
detection models and heterogeneous graph learning methods. Here are the detailed descriptions of
these compare models:

a) SGBot [7] extracts feature from user metadata and utilizes a random forest classifier for
scalable and generalizable bot detection.

b) RoBERTa [36] encodes user descriptions and tweets using a pretrained RoBERTa model, and
feeds user characteristics into an MLP for bot identification.

c) LOBO [37] extracts feature from user metadata and tweets and uses a random forest to identify
different bots.

d) GCN [18] represents spectral graph convolution methods. It simplifies Chebyshev polynomials
to first-order neighborhoods, gathers features from neighbors to obtain node embedding
vectors, and passes user representations to an MLP for classification.

e) SGC [38] is a streamlined version of the GCN, designed to simplify its intricate nature by
systematically eliminating non-linearities between GCN layers and condensing the resultant
function into a solitary linear transformation. This method guarantees comparable perfor-
mance to GCNs while significantly decreasing the parameter size.

f) GAT [39] is a semisupervised graph model that incorporates attention mechanisms to deter-
mine the significance of adjacent users during aggregation. By assigning weights to various
neighborhoods in an adaptive manner, it enhances the performance of graph neural networks.
The representations obtained through learning are then passed to an MLP for classification.

g) BoostingGNN [40] is a graph ensemble learning technique that integrates GNNs with
AdaBoost to enhance GNN performance in situations with imbalanced classes.

h) BotBuster [41] enhances cross-platform bot detection by processing user metadata and text
information through a hybrid expert architecture.

i) RGT [10] models inherent heterogeneity in the Twittersphere using a relational graph trans-
former, enhancing social bot detection.

j) BIC [42] proposes a text-graph interaction module and models semantic consistency to improve
bot detection performance and defend against evolving bots.

k) BotRGCN [9] establishes a heterogeneous social network and employs relational graph convo-
lutional networks to learn user representations and detect social bots.

l) LINKX [26] is a simple and scalable method that separately embeds node features and
adjacency matrices and feeds them into an MLP for heterogeneous graph representation
learning.

m) H2GCN [27] embeds self- and higher-order neighborhood features, performing well in hetero-
geneous benchmark tests.

4.3 Variant Models

For a comprehensive understanding of the operational mode of HORFBot and a thorough
evaluation of each module’s contribution to performance enhancement, this work developed several
variant models based on the three improved components of HORFBot. These components include
graph augmentation methods, node representations based on contrastive learning, and alignment
mechanisms. For ablation studies, we selectively enable or disable these components. The following
are detailed descriptions of these variant models:
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a) HORFBot+w/o HO: This variant does not use the graph augmentation method proposed
in this paper. To ensure the integrity of the entire framework, we adopt the node sampling
enhancement method as a replacement.

b) HORFBot+w/o CL: This variant does not use contrastive learning to complete node vectors
and replaces it with RGAT.

c) HORFBot+w/o AM: This variant does not use the alignment mechanism, and each base
classifier only retains the selected features.

d) HORFBot+w/o RF: This variant does not use the random forest ensemble algorithm and only
uses a single base classifier.

4.4 Implementation Details

This paper implements all baseline models using PyTorch, PyTorch geometry, Scikit-learn, and
PyGCL. Only edge deletion is used to enhance the original graph. The number of attention heads in
GAT is set to 4. The hyperparameter configuration of HORFBot proposed in this paper is shown in
Table 2. Different learning rates and batch sizes are set according to the size of the dataset. In addition,
dropout mechanisms are adopted to prevent overfitting. For MLPs, the dropout rate is set to 0.5; for
generated edge embeddings, the dropout rate is set to 0.3. Since a smaller temperature coefficient in
contrastive learning means more attention to difficult samples, the temperature coefficient is set to
0.07 in this paper.

Table 2: Hyperparameter setting on Cresci-15, TwiBot-20 and TwiBot-22

Parameter Cresci-15 TwiBot-20 TwiBot-22

Optimizer Adam Adam Adam
Learning rate 0.01 0.001 0.0005
Batch 128 128 512
Dropout 0.5 0.5 0.5
Temperature 0.07 0.07 0.07
Epochs 100 200 60

4.5 Evaluation Metrics

Due to the class imbalance problem in social bot detection tasks, both in real-world scenarios and
in benchmark datasets, we evaluate the performance of the model’s using accuracy and F1-score. The
specific calculation formulas are as Eqs. (16) and (17).

Acc = TP + TN
TP + FP + FN + TN

, (16)

F1 =
2 ∗ TP

TP + FP
∗ TP

TP + FN
TP

TP + FP
+ TP

TP + FN

, (17)

where TP is True Positive; TN is True Negative; FP is False Positive; and FN is False Negative.
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5 Results and Discussion

In this section, we conduct experiments on the three datasets to evaluate the effectiveness of
HORFBot in social robot detection. Specifically, this paper proposes the following four research
questions (RQs) to guide the experiment:

a) RQ1: Does heterogeneity affect the performance of social robot detection models (Section 5.1)?
b) RQ2: Is HORFBot superior to state-of-the-art methods in the detection task of social robots

(Section 5.2)?
c) RQ3: Does each module in HORFBot effectively improve the overall performance

(Section 5.3)?
d) RQ4: Is the performance of HORFBot impacted by the quantity of base classifiers used

(Section 5.4)?

5.1 Heterogeneity Tendency (RQ1)

Before conducting the overall experiments, this paper analyzes the levels of homogeneity and
heterogeneity of the three datasets. As shown in Table 3, compared with the TwiBot-20 and TwiBot-22
datasets, the homogeneity score of the Cresci-15 dataset is 0.99, significantly higher than the other two
datasets. This indicates that in the early stage of social robot development, there is still a clear social
circle division between robot accounts and real user accounts, and there is no interaction between them.

Table 3: Homogeneity score on Cresci-15, TwiBot-20 and TwiBot-22

Dataset Node class Relation type Homogeneity

Cresci-15 All All 0.99
TwiBot-20 Human Follower 0.82

Following 0.34
Bot Follower 0.29

Following 0.75
TwiBot-22 Human Follower 0.88

Following 0.96
Bot Follower 0.17

Following 0.06

In the TwiBot-20 dataset, compared with real users, social robots show obvious heterogeneity
tendencies in follower relationships, while in TwiBot-20’s following relationships, they show stronger
homogeneity tendencies. In the TwiBot-22 dataset, social robots show extremely high heterogeneity
in both follower and following relationships. This is because the number of social robot accounts in
this dataset is far less than that of real human users. At the same time, compared with Cresci-15,
social robot accounts involved in the relationship account type are more real human users, rather than
similar robot accounts. This further indicates that with the development of technology, social robots
are increasingly interacting with humans.

In Table 4, the work of various researchers on social robot detection at different time stages
is presented. It is evident that as the heterogeneity of the dataset increases, the performance of
the detection model decreases to varying degrees. This also indicates the importance of studying
heterogeneous camouflage behavior.
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Table 4: Accuracy on Cresci-15, TwiBot-20 and TwiBot-22

Cresci-15 TwiBot-20 TwiBot-20

SGBot [7] 96.30 79.93 78.44
BIC [42] 96.13 75.78 73.78
BotRGCN [9] 96.56 85.75 79.58

5.2 Performance Comparison (RQ2)

Table 5 summarizes the detection results of 13 baseline methods and the proposed HORFBot on
Cresci-15, TwiBot-20, and TwiBot-22. The symbol “–” indicates out-of-memory on the experimental
machine. HORFBot outperforms the other 13 baseline models on all three datasets.

Table 5: Performance comparison on Cresci-15, TwiBot-20 and TwiBot-22

Model Cresci-15 TwiBot-20 TwiBot-22

Acc F1 Acc F1 Acc F1

SGBot [7] 96.30 96.18 79.93 83.89 78.44 54.97
RoBERTa [36] 96.41 92.22 72.46 76.72 78.30 50.57
LOBO [37] 96.01 96.32 76.18 80.45 79.05 45.27
GCN [18] 95.19 94.78 77.53 79.96 78.29 54.86
SGC [38] 95.69 94.69 68.01 67.73 71.02 44.19
GAT [39] 96.10 95.29 83.05 85.12 79.58 54.96
BoostingGNN [40] 95.69 94.90 68.80 68.36 79.92 45.17
BotBuster [41] 96.68 96.52 79.34 82.47 79.82 46.07
RGT [10] 96.63 98.24 86.57 87.81 76.04 42.54
BIC [42] 96.13 96.23 75.78 79.24 73.78 32,06
BotRGCN [9] 96.56 96.97 85.75 86.65 79.58 56.50
LINKX [26] 91.65 93.27 76.22 80.35 78.03 54.37
H2GCN [27] 95.15 96.03 78.17 80.17 – –
HORFBot 97.32 98.04 87.06 88.49 81.99 60.53

The Cresci-15 dataset does not interact much between social bots and real users. Therefore, most
detection methods achieve an accuracy rate of over 95%, and there is little room for improvement
on the Cresci-15 dataset. However, the HORFBot based on the RF framework still has room for
improvement, indicating that the overall algorithm framework with GNN as the base classifier is
effective for social bot detection tasks. With the increase of graph heterogeneity, the advantage of
HORFBot over the baseline will also increase. On the TwiBot-22 and TwiBot-20 datasets, compared
with the current best results, the proposed method can improve accuracy by 2.07 and 0.49, respectively.
These results indicate that HORFBot has higher effectiveness in addressing social bot camouflage
behavior. This excellent performance also demonstrates the importance of considering both homo-
geneity and heterogeneity modeling for detecting social bots with interactive behavior, and it also
verifies the effectiveness of the random forest algorithm framework with GNNs as the base classifier.
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Among all the comparison models, SGBot and LOBO models, like this article, both used the
random forest algorithm. But they only consider user metadata and tweets as features. In contrast,
the graph-based classifier construction method proposed in this article performs better in social
robot detection tasks, with improvements of 4.5% and 3.7% on the TwiBot-22 dataset, respectively.
BotBuster, LINKX, and H2GCN have been optimized from the perspectives of cross platform
and heterogeneity, and their performance on TwiBot-22 is superior to TwiBot-20, indicating their
effectiveness in addressing the heterogeneous camouflage behavior of current social robots. Compared
to these three models, HORFBot performs better in detecting heterogeneous camouflage behavior,
achieving an accuracy of 81.99% and a recall rate of 60.53% on the TwiBot-22 dataset.

5.3 Ablation Study (RQ3)

To answer RQ3, this paper conducted an ablation study to investigate the impact of different
module designs on the performance of HORFBot. To achieve this goal, four ablation models were
constructed as described in Section 4.3: w/o HO, w/o CL, w/o AM, and w/o RF. The experimental
results of these ablation models on Cresci-15, TwiBot-20, and TwiBot-22 are shown in Table 6.

Table 6: Ablation study on Cresci-15, TwiBot-20 and TwiBot-22

Variant Cresci-15 TwiBot-20 TwiBot-22

Acc F1 Acc F1 Acc F1

w/o HO 96.42 96.23 78.02 80.91 74.07 73.16
w/o CL 96.45 96.18 81.69 81.34 80.13 47.39
w/o AM 96.40 96.11 82.21 81.87 81.99 60.44
w/o RF 95.23 94.92 71.41 71.19 72.82 72.04
HORFBot 97.32 98.04 87.06 88.49 81.99 60.53

On the Cresci-15 dataset, each ablation model achieves over 95% accuracy rate since there is no
camouflage behavior in the social robot accounts in this dataset. This result also indicates that this
dataset fails to truly represent the behavior characteristics of social robots in real environments. On the
TwiBot-20 and TwiBot-22 datasets, compared with HORFBot, w/o HO and w/o RF show significant
performance degradation in model performance. This suggests that the proposed graph enhancement
method can effectively aggregate information of the same or different categories during message
passing. The w/o RF model demonstrates that training base classifiers on different feature spaces
can increase model diversity. Combining the predictions of multiple base classifiers can significantly
improve the overall model performance. Additionally, w/o AM only uses a subset of features,
sometimes leading to performance degradation. Although the w/o CL model has less performance
degradation, it is still evident that the contrastive learning strategy is beneficial for improving model
performance.

Through comparisons between these ablation models and the complete model, this paper demon-
strates the proposed HORFBot’s effectiveness in terms of each submodule’s design choices.

5.4 Study on Base Classifiers Quantity (RQ4)

The importance of the number of base classifiers in a random forest cannot be ignored, as it
directly affects the model’s performance, generalization ability, and computational complexity. In
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this work, the core concept of constructing HORFBot is derived from the random forest algorithm.
Therefore, the number of base classifiers S is also a key factor affecting the performance of HORFBot.
This section focuses on the impact of the number of base classifiers on the performance of HORFBot
and conducts experiments on three datasets to further determine the optimal setting of the number of
base classifiers.

As shown in Fig. 3, for all three datasets, when the number of base classifiers is small, the
classification accuracy of HORFBot is very low, and the performance is poor. With the increase in
base classifiers, its accuracy has significantly improved. On the TwiBot-22 dataset, when N increases
from 2 to 10, the accuracy significantly improves. On the TwiBot-20 and Cresci-15 datasets, when it
is less than 6, the accuracy rate shows an upward trend. On all datasets, when N increases to 10, the
classification accuracy of HORFBot no longer increases and starts to fluctuate. This may be because
when the number of base classifiers is too large, the complexity of the model increases, and the risk of
overfitting increases. Increasing the number of base classifiers also increases computational complexity
and memory requirements, leading to decreased model efficiency. Therefore, in this paper, the number
of base classifiers on Cresci-15, TwiBot-20, and TwiBot-22 is set to 11, 8, and 10, respectively.

Figure 3: HORFBot with different numbers of base classifiers on three datasets

6 Conclusion

Detecting social bots is a vital and complex task that is crucial for protecting user interests and
ensuring the stable functioning of social media platforms. This paper finds that compared with earlier
social bots, modern bots tend to engage in interactive behavior with real users to evade detection.
To address this issue, this paper proposes a new social bot detection framework called HORFBot,
which includes a graph enhancement module targeting camouflage behavior and uses GNN as the
base classifier for RF. The framework constructs subgraphs, selects features, and aligns different
subgraphs to train base classifiers. Then, it integrates the whole branch’s results. Experiments show
that HORFBot achieves state-of-the-art performance on three social bot detection benchmarks. Other
studies further demonstrate the effectiveness of the proposed graph enhancement module and the
combination of RF and showcase HORFBot’s ability to identify camouflage interactive behavior
in social bot detection. HORFBot has the potential to serve as a pivotal tool for bolstering social
media security and enhancing user protection in the future. Its capabilities can aid in mitigating the
dissemination of misinformation and fostering a more credible online environment.

However, there are some limitations of the HORFBot model: firstly, in the training stage, this
paper adopts a three-stage training mode, which may lead to suboptimal performance of the model.
Secondly, due to limited data sources, this paper can only detect social robot accounts on Twitter.
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Future research directions include extending to other social platforms and building an end-to-end
training framework.
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