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ABSTRACT

Existing semi-supervised medical image segmentation algorithms use copy-paste data augmentation to correct the
labeled-unlabeled data distribution mismatch. However, current copy-paste methods have three limitations: (1)
training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled
information; (2) low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled
data; (3) the segmentation performance in low-contrast and local regions is less than optimal. We design a Stochastic
Augmentation-Based Dual-Teaching Auxiliary Training Strategy (SADT), which enhances feature diversity and
learns high-quality features to overcome these problems. To be more precise, SADT trains the Student Network
by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data, which
prevents the loss of rare labeled data. We introduce a bi-directional copy-paste mask with progressive high-entropy
filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision. For the mixed
images, Deep-Shallow Spatial Contrastive Learning (DSSCL) is proposed in the feature spaces of Teacher Network 2
and the Student Network to improve the segmentation capabilities in low-contrast and local areas. In this procedure,
the features retrieved by the Student Network are subjected to a random feature perturbation technique. On two
openly available datasets, extensive trials show that our proposed SADT performs much better than the state-of-
the-art semi-supervised medical segmentation techniques. Using only 10% of the labeled data for training, SADT
was able to acquire a Dice score of 90.10% on the ACDC (Automatic Cardiac Diagnosis Challenge) dataset.

KEYWORDS
Semi-supervised; medical image segmentation; contrastive learning; stochastic augmented

1 Introduction
1.1 Background

Segmenting medical images is a core task in medical image processing that plays an indispensable
role in assisting diagnosis. By separating lesions or other regions of interest from the backdrop of the
picture, it lays the groundwork for accurate localization and in-depth examination of the lesions. Large
volumes of labeled data have enabled supervised medical image segmentation networks [1,2] to achieve
impressive results. However, medical imaging variety and complexity provide difficulties. These include
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high annotation costs and data scarcity, which restrict the training of models for segmenting medical
images. Learning with semi-supervision (SSL) strategies train models by combining scarce labeled data
with abundant unlabeled data. They effectively address the issue of sparse annotations by leveraging
precious labeled information to provide a wealth of a priori knowledge for unlabeled images, thereby
helping to establish connections between labeled and unlabeled images. As a result, medical image
segmentation techniques based on SSL have emerged as a promising area of study.

SSL has advanced significantly in the realm of medical image segmentation [3,4] in recent years.
Its core strategies can be summarized as: pseudo-supervision techniques [5], prior knowledge-based
techniques [4], and consistency regularization techniques [6]. Learning strategies based on the Mean
Teacher structure [7–9] or cross-task consistency learning strategies [10] have demonstrated their
usefulness. Recently, consistency regularization paradigms have gained more attention through the
application of strong-weak augmentation [6] or the introduction of contrastive learning [11]. Strong-
weak augmentation strategies involve processing the same image in different ways and use consistency
loss to ensure that predictions from different views remain consistent. By calculating the distances
(measured by cosine similarity) between positive and negative sample pairs taken from the data,
contrastive learning seeks to reduce the gap between similar characteristics and increase the distance
between dissimilar features. The significance of contrastive learning approaches is heightened in
clinical settings due to the ease with which unlabeled data may be obtained.

1.2 Motivation

A crucial presumption for SSL’s effectiveness is that the dataset’s labeled and unlabeled data
have the same distribution. However, with a relatively little quantity of labeled data in clinical data
collection, it is not viable to extrapolate the distribution of the complete dataset. An empirical
distribution mismatch between labeled and unlabeled data results from this [12]. To address this
issue, References [6,13] proposed a copy-paste augmentation technique, generating partially labeled
images by copying small patches from labeled images and pasting them onto unlabeled images. Strictly
depending on these partially labeled images means that the Teacher Network’s pseudo-labels are
crucial. Confirmation bias and the widespread disregard of sparsely labeled data may result from this.
Additionally, these methods perform poorly in low-contrast regions and local area segmentation.

In order to solve the aforementioned problems, we created SADT specifically for medical image
segmentation tasks. In order to reduce confirmation bias, we suggest using a bidirectional copy-paste
mask with progressive high-entropy filtering to weed out untrustworthy pixels in the early training
phases. We introduce the use of pseudo-supervised and supervised learning to train the Student
Network, addressing the issue of losing valuable labeled information. For mixed images, we design
DSSCL in the feature spaces of Student Network with random feature perturbation and Teacher
Network 2 to learn high-quality features, thereby improving segmentation capabilities in low-contrast
and local regions.

1.3 Contributions

Two publicly accessible datasets, the ACDC [14] and ISIC (International Skin Imaging Collabora-
tion) [15] datasets, were used to validate the designed SADT. Through a series of comparison trials, our
offered SADT technique shows greater efficiency than existing leading methods in the semi-supervised
medical image segmentation area, namely Bidirectional Copy-Paste (BCP [13]). Using the ACDC data
collection, our model using just 5% labeled data achieved an 88.68% Dice score, and at 10% labeled
data, it outperformed the leading BCP method by 1.26%. The distribution gap between labeled and
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unlabeled data is reduced by the provided SADT. It preserves scarce labeled information. It improves
segmentation in low-contrast and local regions. Ablation studies were conducted to further confirm
the efficiency of each component. We used Unet [1] as segmentation network baseline.

To sum up, this paper’s primary contributions are as follows:

(1) Proposing a bidirectional copy-paste mask with progressive high-entropy filtering to reduce
confirmation bias caused by unreliable pixels and narrow the discrepancy in distribution
between data with and without labels.

(2) Proposing a dual-teacher-assisted training strategy that combines supervision, pseudo-
supervision, and contrastive learning to assist in training the Student Network.

(3) Designing a Stochastic Feature Perturbation Pool (SFPP), which applies perturbations of
random intensity to the features to increase feature diversity and thereby improve the capability
of segmenting low-contrast areas.

(4) Designing DSSCL to encourage the learning of high-quality features in both deep and rep-
resentational layers, thereby improving the model’s low-contrast area and local segmentation
performance.

(5) Proving the efficacy of the offered SADT and validating it on two public datasets.

2 Related Work
2.1 Medical Image Segmentation

In medical image segmentation tasks, research based on the Unet model targeting various
refinement directions has achieved significant improvements. Self-attention components were included
by Azad et al. [16] in order to lower computing costs and improve the segmentation performance of
the model. Skip connections are optimized using MultiResUnet [17] in order to include multi-scale
characteristics. Rahman et al. [18,19] stated cascaded multi-scale features and attention mechanisms
to address inconsistencies between local features. A universal medical image segmentation method
that handled data heterogeneity and annotation variability was published by Gao et al. [20]. However,
our method differs from these by leveraging an enormous volume of unlabeled data alongside scarce
labeled data to train models for segmenting medical images, tackling challenges such as the difficulty
of pixel-level annotations.

2.2 Semi-Supervised Learning (SSL)

SSL combines both marked and unmarked data to train a model. Unsupervised methods have
higher uncertainty, while supervised training faces difficulties in data annotation. Therefore, research
on SSL for semantic segmentation has rapidly developed [21–24]. Recent SSL strategies using strong
and weak augmentations to enforce consistency between the results of teacher and student networks
have shown good performance [25–27], where a unique method of dual-stream perturbation was
presented by Yang et al. [28]. A pseudo-label correction technique was presented by Zhao et al. [29]
in order to lessen the effect of noisy pseudo-labels. However, these approaches do not effectively
leverage the connection between labeled and unlabeled data. Given the scarcity and diversity of medical
image data, pixel-level annotation is particularly challenging. As a result, semi-supervised learning
techniques for medical image segmentation have to be able to narrow the distribution gap between
labeled and unlabeled images while fully using the important labeled data.
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2.3 Contrastive Learning (CL)

CL is fundamentally a form of metric learning that utilizes the information in a dataset to learn a
powerful feature representation space. Regarding the semi-supervised segmentation of medical images,
CL techniques are employed to effectively learn features [9]. Wang et al. [22] discussed use CL to
move sparse area anchor features toward highly regularized key centers. ELN [23] demonstrates how
the quality of features the model extracts is enhanced by patch-based per-pixel contrastive loss. The
proposed DSSCL method designs a contrastive loss that considers both detailed deep features and
geometric edge features across the entire batch. This approach aims to cluster similar features in the
feature space, improving the quality of learned features and enhancing discrimination in low-contrast
and local pixel regions.

2.4 Copy-Paste Data Enhancement Technology

Copy-paste is an effective data augmentation technique. In SSL, it helps to increase data diversity
and establish connections between labeled and unlabeled data. Augmentation matters [26] adaptively
copy-pastes low-confidence unlabeled samples onto labeled ones. Cut-paste consistency [6] matches
unlabeled with labeled images based on color similarity and pastes more matching labeled lesion
information onto unlabeled images using Gaussian blurring. Chi et al. [30] proposed an adaptive
bidirectional displacement to generate new unlabeled samples, addressing the impact of perturbation
methods. BCP [13] copy-pastes labeled onto unlabeled images using zero-centered masks, processing
both types of images in the same way to reduce their distribution gap.

Inspired by [13,23,26,28], the proposed SADT model addresses significant loss of label informa-
tion and low-quality pseudo-labels leading to confirmation bias and poor segmentation performance
in low-contrast and local regions in challenges involving semi-supervised medical image segmentation
using a dual-teacher assisted training strategy.

3 Methodology

This section describes the construction of a semi-supervised learning technique for medical
picture segmentation, including important terminology and symbols. Firstly, a summary of the SADT
framework is given in Section 3.1. Secondly, Section 3.2 describes how pseudo-labels are copied and
pasted onto true labels using a progressive high-entropy filtering mask to achieve partial supervision
is described. Thirdly, in Section 3.3, the proposed SFPP strategy to enhance feature diversity in a
simplified manner is detailed. Finally, in Section 3.4, the proposed DSSCL method to learn high-
quality features and improve segmentation capabilities in local and low-contrast regions is described.

3.1 Overview

During the training process, the medical image dataset includes N labeled and M unlabeled
data (where N � M). Therefore, the training dataset D = Dl ∪ Du includes labeled data Dl ={(

Xl
i, Yl

i

)}N

i=1
and unlabeled data Du = {

Xu
i

}M+N

i=N+1
. As shown in Fig. 1, a student network and two teacher

networks make up the recommended structure, forming a dual-teacher-assisted training framework,
parameterized by the parameters θs, θt1, and θt2, respectively. The improved BCP method utilizes the
copy-paste technique to process images. Specifically, there are two processing methods, as illustrated in
Fig. 2: copy-pasting between labeled data generates X mix; bidirectional copy-paste transferring between
labeled and unlabeled data generates X in and X out.
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Figure 1: Overall framework

The training phase of the proposed SADT consists of two steps. The first step involves pre-
training the Unet network using labeled data X l and mixed data X mix. Joint training employing con-
trastive learning, supervised learning, and pseudo-supervised learning is the second phase. Ultimately,
Stochastic gradient descent is used to optimize the Student Network, and an exponential moving
average of the Student Network weights is used to update the Teacher Networks: θt1 = αθt1+(1 − α) θs;
θt2 = αθt2 + (1 − α) θs, where α = 0.999 is a commonly used momentum parameter.

A batch of tagged and unlabeled samples is obtained in each round. By reducing the supervised
loss, the partial pseudo-supervised loss, and the contrastive loss, the Student Network is to be
optimized. Thus, the total loss of training the Student Network is: L = Lsup + Lpart + Lconstrat.
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Figure 2: The detailed process for generating three types of mixed images through copy-paste

3.2 Effective Copy-Paste

Pre-training In order to properly acquire previous knowledge of picture augmentation noise
and labeling information, the pre-training procedure for the BCP method is enhanced.

(
X l, X mix

)
is

pretrained on the main segmentation network with a Unet structure, obtaining prediction probabilities(
Pl, Pmix

)
. Thus, the pre-training loss function is Lpre = Lseg

(
Pl, Y l

) + Lseg (Pmix, Y mix), where Lseg is a
linear combination of the cross-entropy loss and the dice loss.

Bidirectional copy-paste mask with progressive high-entropy filtering During the early stages of
training with pseudo-supervision, some pixels are difficult to confidently classify, leading to severe
confirmation bias. Therefore, we design a progressive high-entropy filtering mask for their pseudo-
labeling to reduce the unreliability of pseudo-supervision. That is, in the initial stage, only pixels
with low entropy in the Teacher Network’s predictions are selected. As learning progresses, the range
of predicted pixels involved in loss calculation gradually expands. Specifically, firstly, obtain the
prediction probabilities according to pu

p = f
(
X u

p ; θt1

)
; pu

q = f
(
X u

q ; θt1

)
, where X u

p , X u
q ∈ Du, p �= q.

Secondly, the entropy of the prediction probabilities is calculated using H
(
p̂ij

) = − ∑C

c=1 p̂c
ij log p̂c

ij,
where, p̂ij represents the prediction probability of the j-th pixel in the i-th image by the Teacher
Network. Finally, filter out pixel predictions with entropy values higher than the βt percentile, where
βt decreases from β0 to 0 over t iterations, with a decrement method of βt = β0 (1 − t/T), and T is the
total number of iterations. The threshold ηβt is extracted from the current batch’s entropies

{
H

(
p̂ij

)}
as the ηβt-th percentile value. This defines a progressive high-entropy filtering mask Mfilter ∈ {0 , 1}W×H ,
which indicates whether a pixel meets the H

(
pu

ij

)
< ηβt condition (1) or not (0).

A zero-centered mask Mcut ∈ {0, 1}W×H is designed. The zero-value region’s dimensions is βW ×
βH, where β = 2/3. After that, processing images with and without labels produces Xin and Xout
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according to

X in = X l
j � Mcut + X u

p � (1 − Mcut) ; X out = X u
q � Mcut + X l

i � (1 − Mcut) , (1)

where X l
i , X l

j ∈ Dl, i �= j, 1 ∈ {1}W×H , and � denote element-by-element multiplication.

According to Ŷ u = argmaxPu, calculate the pseudo-labels Ŷ u for the unlabeled predictions. Train
the student network using (X in, X out) and its corresponding partial pseudo-labels (Y in, Y out), together
with

(
X l, X mix

)
and its corresponding labels

(
Y l, Y mix

)
. The calculation methods for Y in and Y out are as

follows:

Y in = Y l
j � Mcut + Ŷ u

p � [
(1 − Mcut) � Mfilter

]
; Y out = Ŷ u

q � (
Mcut � Mfilter

) + Y l
i � (1 − Mcut) . (2)

The loss computation supervised by Y in and Y out is as follows:

Lin = Lseg

(
Qin, Y in

) � Mcut + αLseg

(
Qin, Y in

) � [
(1 − Mcut) � Mfilter

]
, (3)

Lout = Lseg

(
Qout, Y out

) � (1 − Mcut) + αLseg

(
Qout, Y out

) � (
Mcut � Mfilter

)
, (4)

where α = 0.5 is used to manage the loss function’s unlabeled pixel contribution. Qin and Qout represent
the predicted output of the Student Network, which are computed according to

Qin = f
(
X in; θs

)
; Qout = f

(
X out; θs

)
. (5)

Therefore, the partial supervised loss is computed as Lpart = Lin + Lout. Additionally, the
Student Network is trained using labeled images, with the supervised loss represented as Lsup =
Lseg

(
Ql + Qmix; Y l + Y mix

)
, where

(
Ql + Qmix

) = f
(
X l + X mix; θs

)
.

3.3 Deep-Shallow Spatial Contrastive Learning (DSSCL)

Pseudo-supervision is weak in learning feature patterns of the entire dataset and in segmenting
local low-contrast regions. Therefore, we introduce a new contrastive learning paradigm for mixed
images—DSSCL—forming a dual-teacher-assisted training structure. As shown in Fig. 1, the Student
Network and Teacher Network 2 each contain two feature projectors (Hd ∗ (·) , Hs ∗ (·)). Positive and
negative sample pairs are selected in the deep and representation layer feature spaces, and a patch-
based local contrastive learning loss is adopted (i.e., dividing the feature maps of the current batch
into small patches of size h × h), enabling effective attention to the feature representation of local
regions.

In each feature embedding space, define Ωi
p as the collection of pixels in the same class as the

original pixel i, and Ωi
n as those not belonging to the same class. Also define d as the distance function

(i.e., d (f1, f2) = exp (cos (f1, f2) /τ)), where cos reflects the similarity of the cosine, and τ is the hyper-
parameter for temperature. Therefore, extracting deep and shallow features from the decoder allows
for the calculation of the contrastive loss in the deep feature space Lcontra_d and the contrastive loss in
the shallow feature space Lcontra_s by

Lcontra_x = − 1
|V |

∑
i∈V

∑
j∈Ωi

p

log
d

(
fi, f̃j

)

d
(

fi, f̃j

)
+ ∑

k∈Ωi
n

d
(

fi, f̃k

) (6)

where V represents the set of pixels of mixed images (X in, X out) in the current batch, and fi as well as
f̃i reflect the characteristic embedding of pixel i from the Student Network and Teacher Network 2,
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correspondingly. The whole loss of contrast is Lcontra = λdLcontra_d + λsLcontra_s, where λd and λs are the
hyperparameters controlling the contributions of deep and shallow contrastive learning, respectively.

3.4 Stochastic Feature Perturbation Pool (SFPP)

In medical image segmentation tasks, the insufficient segmentation capability in low-contrast
regions is particularly prominent. Medical images have a complicated backdrop with very little
contrast between the target and background. To enhance feature diversity and improve the model’s
segmentation performance in low-contrast regions, a random feature perturbation pool is designed.
This method applies perturbations of random intensity to the features extracted by the Student
Network. Existing feature processing uses a fixed dropout method, which limits the effectiveness of
semi-supervised learning. Random feature perturbation is a simpler way to generate feature diversity,
whereas fixing multiple perturbation types may overly distort the features, harming their distribution.

Specifically, it randomly selects no more than K perturbation methods from the feature perturba-
tion pool to generate a feature perturbation strategy, rather than using a fixed number. The candidate
methods are shown in Table 1, including various feature perturbation methods at different scales,
with their methodologies detailed in the corresponding clarification columns. Therefore, the designed
randomness-based feature perturbation method can more simply generate diverse features. At the same
time, our proposed fully random selection strategy does not severely impact the feature distribution,
which makes it more appropriate for semi-supervised learning.

Table 1: The feature perturbation methods and their perturbation scales within the SFPP

Methods Scale Clarification

Feature_None None Not apply any perturbation.
Dropout (0.4/0.2) Use dropout technology to set (40/20)% of the features to 0.
Random (0.7/0.4) Generate random numbers within the range [-scale, scale] that follow a

uniform distribution and add them as noise to the feature map.
Gaussian (0.6/0.3) Create a normal distribution with a mean of 0 and a scale standard

deviation of random numbers, then add them as noise to the feature map.

4 Experimentation
4.1 Datasets

ACDC Dataset Three kinds of annotated short-axis cardiac MR-cine (Magnetic Resonance Cine)
images are included in the ACDC [14] dataset. The detailed characteristics of the dataset are shown in
the first row of Table 2. ACDC is aimed at segmenting LV, RV, and Myo in cardiac dynamic magnetic
resonance imaging diastolic (ED) and systolic (ES) frames. There are five cases, with 30 cases per
category. The data split is conducted following the BCP method, having 100 examples established as
patient scans for testing, validation, and training, respectively, of 70, 10, and 20.

ISIC Dataset The ISIC dataset [15] is dermoscopic image dataset aimed at identifying melanoma
regions through image recognition. The detailed characteristics of the dataset are shown in Table 2’s
second row. The experimental design from earlier work, with 1815 images serving as the training set
and 779 images serving as the validation set, to assure experiment fairness. Of the images in the training
set, 5% (91) and 10% (181) include labels and are applied to various semi-supervised trial scenarios.
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Table 2: The characteristics of the two datasets

Datasets Dimension Modal Structure Classifications Number of cases

ACDC 3D (sliced 2D) MR Hearts RV: right ventricle; (1) Normalcy;
Myo: myocardium;
LV: left ventricle.

(2) Myocardial
infarction with systolic
heart failure;
(3) Dilated
cardiomyopathy;
(4) Hypertrophic
cardiomyopathy;
(5) Right ventricular
anomalies;

ISIC 2D Dermatoscope Skin Melanomas Melanoma

4.2 Evaluation Indicators

Four widely-used assessment measures were chosen in order to assess the effectiveness of SADT:
Average Surface Distance (ASD), 95% Hausdorff Distance (95HD), Dice Score (%), and Jaccard Score
(%). ASD determines the average distance between the borders, 95HD estimates the distance of the
nearest point between the two regions, and Dice Score and Jaccard Score compute the proportion of
overlapping areas between two target areas.

4.3 Implementation Details

ACDC Dataset To ensure fairness, the experimental parameters were set following the BCP
method, with Unet selected as the backbone network. The input picture size was set to 256 × 256
(2D slices) during training, and 170 × 170 was chosen as the size of the mask Mcut was zero-valued
area. Furthermore, the batch size, pre-training iteration count, and self-training iteration count were
set to 24, 10 and 30k, respectively.

ISIC Dataset The experimental parameters were set following the Uncertainty-Guided Pixel
Contrastive Learning (UGCL [31]) method, with Unet serving as the backbone structure. 8 labeled
images were included in the batch size of 16. Pre-training and self-training iteration counts were set to
2 and 6 k, respectively, during the training phase of all trials.

We decided on the stochastic gradient descent (SGD) optimizer, which has a momentum of 0.9
and a weight decay of 0.0005. A polynomial scheduling method was used to lower the initial learning
rate from 0.01 to 0.001. We trained using an NVIDIA RTX 3090 GPU and used the PyTorch package
to implement the proposed approach.

4.4 Comparison with State-of-the-Art Results

ACDC Dataset The offered SADT was trained using only 5% and 10% of the labeled data, and the
test was conducted on the average segmentation results performed for the four categories (background,
left ventricle, right ventricle, and myocardium) using the ACDC dataset. The comparative experi-
mental results are shown in Table 3. From the results, our method outperforms all the most recent
state-of-the-art (SOTA) methods in terms of performance. The Dice score is enhanced by 1.26% as
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compared to the BCP approach at a labeling rate of 10%. Visualization results comparing the method
to advanced methods are shown in Fig. 3. Consequently, our approach fully utilizes the labeled data
while also reducing the distribution gap between labeled and unlabeled data. Furthermore, it enhances
the segmentation capabilities in low-contrast and local regions, achieving more accurate segmentation
of edge region pixels.

Table 3: Comparing the ACDC dataset with cutting-edge semi-supervised segmentation techniques

Method Scans used Metrics

Labeled Unlabeled Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓
U-Net [1] 3 (5%) 0 47.83 37.01 31.16 12.62
U-Net 7 (10%) 0 79.41 68.11 9.35 2.70
U-Net 70 (All) 0 91.44 84.59 4.30 0.99
UA-MT [32] 3

(5%)
67
(95%)

46.04 35.97 20.08 7.75
SASSNet [33] 57.77 46.14 20.05 6.06
DTC [10] 56.90 45.67 23.36 7.39
URPC [34] 55.87 44.64 13.60 3.74
MC-Net [35] 62.85 52.29 7.62 2.33
SS-Net [5] 65.83 55.38 6.67 2.28
BCP [13] 87.59 78.67 1.90 0.67
Ours 88.68 80.26 1.69 0.51
UA-MT [32] 7

(10%)
63
(10%)

81.65 70.64 6.88 2.02
SASSNet [33] 84.50 74.34 5.42 1.86
DTC [10] 84.29 73.92 12.81 4.01
URPC [34] 83.10 72.41 4.84 1.53
MC-Net [35] 86.44 77.04 5.50 1.84
SS-Net [5] 86.78 77.67 6.07 1.40
BCP [13] 88.84 80.62 3.98 1.17
Ours 90.10 82.47 2.12 0.71

ISIC Dataset The proposed model was also trained on the ISIC dataset in order to confirm
the model’s capacity for generalization. The average segmentation results performance for the two
categories (melanoma and background) under conditions where the labeled data make up just
5% and 10% of the training data is shown in Table 4. The outcomes demonstrate that, for this
dataset, our approach performs better than cutting-edge techniques. Dice and Jaccard scores were
employed as assessment measures in accordance with the UGCL methodology. As demonstrated by
the performance metrics when the model was trained with solely labeled data, as indicated in the first
row of data in Table 4. Our proposed technique performs much better than previous methods under
different semi-supervised scenarios. With a labeling ratio of 5%, the Dice score improves by 8.49%
compared to the advanced UGCL method.
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Figure 3: Comparison of several semi-supervised segmentation methods, prediction results of models
trained with 10% labeled data on the ACDC dataset, and visualization of images and their labels

Table 4: Comparison of different methods on the ISIC dataset under different semi-supervised settings

Method Metrics (5%) Metrics (10%)

Dice ↑ Jaccard ↑ Dice ↑ Jaccard ↑
U-Net 67.02 53.49 68.91 56.69
MT [7] 69.87 57.19 70.64 58.63
UA-MT [32] 69.33 56.20 75.67 63.42
EM [36] 66.11 51.89 71.10 58.54
DCT [37] 70.09 57.13 75.98 63.68
CCT [38] 69.53 56.94 73.42 62.13
CPS [21] 71.87 57.35 78.09 65.74
UGCL [31] 72.67 57.85 79.48 67.25
Ours 81.16 68.99 82.03 70.57

4.5 Ablation Experiments

Through ablation experiments, the importance of each component was validated, including the
improved pre-training strategy, progressively filtered bidirectional copy-paste mask, the dual-teacher
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structure combining supervised, pseudo-supervised, and DSSCL, and the SFPP strategy. The out-
comes of these ablation tests are shown in Table 5, which also details the improvement process and
considerable impact of our technique on the ACDC dataset at a 10% labeling rate.

Table 5: Ablation experiments were conducted on each component of the method on the ACDC
dataset, with 10% labeled data

Pre_training Lsup Mcut � Mfilter Lcontra SFPP Dice

88.84√ 89.53√ √ 89.67√ √ √ 89.74√ √ √ √ 89.98√ √ √ √ √ 90.10

4.5.1 The Effectiveness of the Pre-Training Strategy

In the lead-up to training, the Unet was trained using the original labeled data and mixed images
obtained through copy-paste operations between labeled data. Three pre-training input data schemes
are designed to investigate the impact of different strategies on model training. As shown in Table 6,
in each mini-batch, ‘a’ represented the first half of the labeled data, and ‘b’ represented the second
half. a → b indicated copy-pasting the part ‘a’ of the images onto the edge region of ‘b’, while
b → a indicated pasting onto the center region of ‘b’, and a + b represented all the original
images. The purpose of the pre-training was to help the model learn about the noise introduced by
data augmentation early on, while avoiding the loss of valuable labeled information as seen in the
first strategy. Our pre-training technique outperforms employing simply mixed images, according to
experimental results; the second strategy introduces an excessive amount of redundant data.

Table 6: The ablation experiment for the pre-training input data strategy

Pre-training strategies Dice Jaccard 95HD ASD

a → b 89.76 81.97 5.43 1.23
a → b, b → a, a + b 88.77 80.47 8.40 2.17
a → b, a + b (ours) 90.10 82.47 2.12 0.71

4.5.2 Validity of Filtered Pseudo-Label

The bidirectional copy-paste mask between pseudo-labels and true labels is generated through
a dot product of the progressive high-entropy filter mask and the zero-centered mask. This process
simultaneously reduces the gap in data distribution and the confirmation bias in pseudo-supervision.
As shown in Table 7, Mcut represents the direct bidirectional copy-paste of pseudo-labels with true
labels, whereas Mfilter � Mcut indicates the bidirectional copy-paste of pseudo-labels after undergoing
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progressive filtering. Experimental results show that using a copy-paste mask with progressive high-
entropy filtering reduces confirmation bias caused by low-quality pseudo-labels in the early stages of
training, effectively improving the training efficiency of pseudo-supervision.

Table 7: The ablation experiment for pseudo-label copy-paste

Masking strategy Dice Jaccard 95HD ASD

Mcut 89.88 82.07 3.14 0.79
Mfilter ⊗ Mcut (ours) 90.10 82.47 2.12 0.71

4.5.3 The Effectiveness of the Dual-Teacher-Assisted Training

To effectively guide the training of the Student Network, Teacher Network 1 provides pseudo-
supervised learning, while Teacher Network 2 offers contrastive learning for the feature space
of (X in, X out). Meanwhile, labeled data provide supervised learning. By leveraging partial pseudo-
supervision to reduce the distribution gap between labeled and unlabeled data, we design a joint
training paradigm of pseudo-supervision and contrastive learning for the Student Network, effectively
addressing the challenge of poor segmentation in low-contrast regions. Experimental results, as shown
in Table 8, Lpart denotes using only partial pseudo-supervision; Lpart + Lsup denotes partial pseudo-
supervision combined with supervised learning; Lpart + Lsup + Lcl denotes the proposed dual-teacher-
assisted training structure. The last row validates the introduction of a consistency loss function, which
enforces consistent output results, affecting the quality of contrastive learning clustering features in
the feature space. According to experimental findings, the recommended dual-teacher networks can
help the Student Network be trained using various learning paradigms to provide superior results.

Table 8: The ablation experiment for the dual-teacher assisted training strategy

Model Dice Jaccard 95HD ASD

Lpart 89.70 81.88 2.16 0.73
Lpart + Lsup 89.74 81.92 3.04 1.96
Lpart + Lsup + Lcontra (ours) 90.10 82.47 2.12 0.71
Lpart + Lcon + Lsup + Lcontra 89.79 82.00 3.64 1.10

4.5.4 The Effectiveness of the SFPP

By perturbing features randomly, we aim to simplify the increase of feature diversity in contrastive
learning. The effectiveness of randomly selecting up to K perturbation methods from a SFPP
(with experimental validation of the value of K) vs. choosing two fixed perturbation methods was
validated. When K is too large, it damages the feature distribution; when too small, the number of
random selections may be zero, leading to no perturbation effect. Table 9 illustrates the experimental
findings that randomly selecting up to two feature perturbation methods more effectively improves
the performance of semi-supervised learning for medical image segmentation tasks.
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Table 9: The ablation experiment for the random feature perturbation pool

Strategy Dice Jaccard 95HD ASD

K = 1 89.53 81.64 3.68 1.06
K = 2 (ours) 90.10 82.47 2.12 0.71
K = 3 90.02 82.37 4.28 0.99
Two fixed perturbations 88.78 80.45 7.34 2.24

4.5.5 The Effectiveness of DSSCL

By designing contrastive learning losses at both the deep and representation layers of the decoder,
the aim is to push features away from other classes and shorten the distance between comparable
features. As shown in Table 10, the designed DSSCL was compared with contrastive learning at the
Representation Layer alone (RLCL). The values of λd and λs in the contrastive learning loss were
also validated. The outcomes of our experiments demonstrate the great effectiveness of our planned
contrastive learning technique, where λd = 0.5, λs = 0.5. Values of λ that are too high can cause
the overall training to focus excessively on the contrastive learning method, potentially neglecting
other training strategies. An imbalance in λ values at the deep and shallow layers can lead to a greater
focus on the feature space with the higher λ value during contrastive learning, easily neglecting the
other feature space. Therefore, balancing the contribution weights is crucial for enhancing the model’s
overall performance.

Table 10: The ablation experiment for DSSCL

Strategy Dice Jaccard 95HD ASD

RLCL 88.89 80.56 8.74 2.35
DSSCL (ours) 90.10 82.47 2.12 0.71
λs = 1, λd = 1 89.51 81.47 6.35 1.99
λs = 1, λd = 0.5 89.79 81.99 3.19 0.84
λs = 0.5, λd = 1 89.64 81.72 5.52 1.30
λs = 0.5, λd = 0.5 (ours) 90.10 82.47 2.12 0.71

5 Discussion

We introduce SADT, a novel semi-supervised learning process, to improve medical picture
segmentation accuracy. SADT combines random information enhancement techniques with DSSCL.
Specifically, we adopt two teachers playing distinct roles help direct the student model’s learning
process. This dual-teacher mechanism helps improve the empirical distribution matching between
labeled and unlabeled data, reduces the confirmation bias of pseudo-labels, and facilitates the learning
of high-quality features. Additionally, introduce the stochastic intensity-based feature perturbation
pool strategy to increase feature diversity in a randomized manner. For DSSCL, we compute patch-
based contrast losses at both the deep and shallow (representation) layers of the decoder, which aids
in capturing local texture features and edge geometric features, thereby improving the quality of
segmentation in low-contrast and local regions.
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The experimental results show that with a labeling ratio of 10%, the model trained on the ACDC
dataset, the SADT method improves the Dice score by 1.26% compared to the BCP method; and on
the ISIC dataset, it improves by 2.55% compared to the UGCL method. These results demonstrate
the superior performance of SADT. Additionally, as shown in Fig. 4, we conducted a statistical
significance analysis. From the figure, it can be observed that the test result distribution of SADT
is better compared to the BCP method. The difference between the highest and lowest values of the
test results is smaller, the median values of the Dice and Jaccard metrics are higher than those of the
BCP method, and the median values of the 95 HD and ASD metrics are lower than those of the BCP
method.

Figure 4: Boxplot comparing the distribution of metric scores for the SADT and BCP methods on the
ACDC dataset test results. The labeled (a–d) represent the distribution of test scores after training the
model with 10% labeled data. The box plots labeled (e–h) represent the distribution of test scores after
training the model with 5% labeled data. The two approaches, BCP and SADT, are represented on the
x-axis of each plot, and the evaluation metric score, with units in percentage (%), is represented on the
y-axis

Although the proposed SADT method outperforms state-of-the-art semi-supervised learning
strategies, there are still some limitations. Due to the use of supervised learning with real labeled data
and comparative learning with mixed data in the feature space to guide the update of the student
network, additional training costs are required. As shown in Table 11, the statistical t-test significance
analysis results indicate that the Dice metric of the model trained with 10% labeled data shows
a very significant difference compared to BCP (p-value < 0.05). However, the significance of the
differences in Jaccard, 95HD, and ASD metrics weakens, with less significant advantages in outlier
edge segmentation compared to BCP. The significance of differences between models trained with
5% labeled data is weaker due to the scarcity of labeled data, resulting in insignificant differences in
prediction accuracy in complex and difficult-to-learn feature regions compared to the BCP method.
Therefore, we will further enhance the distinctiveness of SADT compared to other advanced methods
in semi-supervised medical image segmentation. In future work, we will continue to investigate
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the SADT framework, optimize its contrast learning strategy, and effectively apply it to different
segmentation network baselines, while controlling the additional training costs.

Table 11: The p-values for the statistical significance analysis of the SADT and BCP methods’ results
on the ACDC dataset tests

Labeling ratios Dice Jaccard 95HD ASD

5% 0.128 0.100 0.174 0.120
10% 0.049 0.053 0.056 0.094

6 Conclusion

The proposed SADT strategy enriches data augmentation with partial pseudo-supervision and
contrastive learning. The distribution gap between labeled and unlabeled data is reduced by this
method. It enhances segmentation capabilities in low-contrast and local regions. It also makes full use
of expensive labeled information. Experimental comparisons show that the provided semi-supervised
learning approach works better than the most advanced techniques, including BCP. With just 10% of
the ACDC dataset’s data labeled, the Dice score reached 90.10%. On the ISIC dataset, using only 5%
labeled data, the Dice score reached 81.16%, an improvement of 8.49% over UGCL.
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