
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.054780

ARTICLE

Deploying Hybrid Ensemble Machine Learning Techniques for Effective
Cross-Site Scripting (XSS) Attack Detection

Noor Ullah Bacha1, Songfeng Lu1, Attiq Ur Rehman1, Muhammad Idrees2, Yazeed Yasin Ghadi3 and
Tahani Jaser Alahmadi4,*

1School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430073, China
2Department of Computer Science and Engineering, University of Engineering and Technology, Lahore, 54000, Pakistan
3Department of Computer Science and Software Engineering, Al Ain University, Al Ain, 12555, Abu Dhabi
4Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman
University, Riyadh, 84428, Saudi Arabia

*Corresponding Author: Tahani Jaser Alahmadi. Email: tjalahmadi@pnu.edu.sa

Received: 07 June 2024 Accepted: 14 August 2024

ABSTRACT

Cross-Site Scripting (XSS) remains a significant threat to web application security, exploiting vulnerabilities to
hijack user sessions and steal sensitive data. Traditional detection methods often fail to keep pace with the evolving
sophistication of cyber threats. This paper introduces a novel hybrid ensemble learning framework that leverages
a combination of advanced machine learning algorithms—Logistic Regression (LR), Support Vector Machines
(SVM), eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Deep Neural Networks
(DNN). Utilizing the XSS-Attacks-2021 dataset, which comprises 460 instances across various real-world traffic-
related scenarios, this framework significantly enhances XSS attack detection. Our approach, which includes
rigorous feature engineering and model tuning, not only optimizes accuracy but also effectively minimizes false
positives (FP) (0.13%) and false negatives (FN) (0.19%). This comprehensive methodology has been rigorously
validated, achieving an unprecedented accuracy of 99.87%. The proposed system is scalable and efficient, capable
of adapting to the increasing number of web applications and user demands without a decline in performance.
It demonstrates exceptional real-time capabilities, with the ability to detect XSS attacks dynamically, maintaining
high accuracy and low latency even under significant loads. Furthermore, despite the computational complexity
introduced by the hybrid ensemble approach, strategic use of parallel processing and algorithm tuning ensures that
the system remains scalable and performs robustly in real-time applications. Designed for easy integration with
existing web security systems, our framework supports adaptable Application Programming Interfaces (APIs) and
a modular design, facilitating seamless augmentation of current defenses. This innovation represents a significant
advancement in cybersecurity, offering a scalable and effective solution for securing modern web applications
against evolving threats.

KEYWORDS
Cross-site scripting; machine learning; XSS detection; stacking ensemble learning; hybrid learning

Published Online: 24 September 2024

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.054780
https://www.techscience.com/doi/10.32604/cmc.2024.054780
mailto:tjalahmadi@pnu.edu.sa

2 CMC, 2024

1 Introduction

The integration of web technologies into daily operations has transformed how businesses and
governments deliver services, enhancing accessibility and operational efficiency. As the digital land-
scape evolves, web applications have become fundamental in facilitating a broad range of services—
from financial transactions and e-commerce to healthcare and government services. These benefits
come with hazards, though, since web apps hold user data that is frequently the target of cyberattacks,
exposing sensitive information that belongs to the company and its users to possible dangers. Cyber
attackers now have an easier time breaching online systems and obtaining sensitive user data thanks
to the widespread availability of online services like social networking sites, online payments, online
shopping, electronic banking, medical services, railroad booking, airline booking, and many more [1].
The general population is completely unaware that hackers might steal their personal information;
therefore, protecting the privacy of information found on websites and applications, such as cookies
and session tokens, is a basic user right that helps protect sensitive data from unauthorized access.
The only way to safeguard user information and privacy in web systems is to implement strong threat
detection algorithms.

Cross-Site Scripting (XSS) attacks are among the most prevalent cybersecurity threats, exploiting
vulnerabilities within web applications to execute malicious scripts on user browsers. These attacks
manipulate web applications to inject harmful scripts, which then run on the client side, potentially
leading to unauthorized access to personal data and a breach of user privacy [2]. Because of their
complexity, the constant introduction of new technologies, and the integration of back-end and front-
end development processes, web applications are subject to new vulnerabilities that arise daily [3].
The goal of exploiting insecure and malicious programs is to gain access to a website and render it
inoperable. For some applications, particularly those used in high-availability operations or priority
services like banking, e-commerce, healthcare, etc., this poses the biggest security risk [4]. For instance,
web applications make heavy use of the logging functionality [5]. Insufficient handling of the logging
functionality can result in risky security risks, such as the ability for an attacker to initiate the execution
of malicious commands by inserting them into the web application logs and then gaining access to the
view-logs interface, which creates a vulnerability for web application log injection [6].

The primary cause of XSS attacks is inadequate sanitization of user input. Attackers make use
of this vulnerability by inserting malicious code into trustworthy websites that are susceptible to it to
convince users to visit sites [7]. As a result, the malicious script is allowed to run on the victim’s browser,
giving the attacker access to manipulate and assault the victim’s browser. Sensitive data, including
login credentials, financial information, and usernames, can be exposed by XSS attacks. XSS is mostly
malicious code that infects trusted websites’ dynamically produced response webpages. The browser
parses and runs the malicious script when the victim opens a web application that contains it. This
gives the attacker access to the victim’s browser and gives them the ability to steal, alter, or even elevate
their virtual identity, system data, and other data. The primary issue with cross-site scripting (XSS)
is that flaws that allow these kinds of assaults to occur frequently occur whenever an online program
incorporates user input without encoding or validating it in the output it produces. As a result, an
attacker may transmit a malicious script to a user who isn’t paying attention by using XSS [8]. The
browser of the end user is unaware that the script is unreliable since it believes it originated from a
reputable source. The script is typically run by the end user. So, any cookies, tokens, or other private
data saved by the browser and used with that website can be accessed by the malicious script. The full
functionality of a typical Cross-Site Scripting (XSS) attack is depicted below in Fig. 1.

CMC, 2024 3

Figure 1: General illustration of the cross-site scripting (XSS) attack process

Recent studies have demonstrated that machine learning (ML) based techniques, such as support
vector machine (SVM), Random Forest, Naïve Bayes, Bayes Net, Logistic Regression, etc., can
enhance the detection of XSS attacks and get around problems that the traditional methods of XSS
attack detection, such as input validation, static analysis, and dynamic analysis [9]. The primary
benefit of machine learning (ML) techniques is their capacity to learn from data and adjust to novel
or unidentified XSS attack forms due to their ability to recognize patterns in massive datasets and
generate precise predictions for novel occurrences, several machine learning-based techniques have
been put out to identify XSS assaults.

This work investigates various cyber-attack detection methods for Cross-Site Scripting XSS
detection on webpages. The advantage of the machine learning approach over other approaches in
terms of several performance indicators has led to its consideration. The stacking ensemble ML
learning method has been primarily responsible for the outstanding performance.

Detection of cross-site scripting attacks using ML and new techniques in ML to improve the
performance of detection techniques because of evolving XSS attacks. Though many machine learning
methods have been investigated for identifying Cross-Site Scripting (XSS) attacks, thorough com-
parative studies that methodically assess the effectiveness of several machine learning algorithms—
Logistic Regression (LR), Support Vector Machine (SVM), Categorical Boost (CatBoost), eXtreme
Gradient Boost (XGBoost), and Deep Neural Network (DNN) and using Stacking Ensemble learning
with these models in particular—in this situation are scarce, and their model performance was
not adequate to overcome the detection of XSS attack. It is difficult to determine the relative
efficacy and efficiency of different strategies for XSS detection because the literature currently in
publication frequently concentrates on specific algorithms or small-scale comparisons. One reason is
minimal comparative studies; prior work has mostly concentrated on single algorithms or small-scale
comparisons between a small number of methods, offering little understanding of the advantages and
disadvantages of various strategies. The selection of a related machine learning method also matters as
the selection of a machine learning method has a substantial influence on the XSS detection systems’
scalability, accuracy, and efficiency in comparison to more conventional approaches like signature-
based detection. Nevertheless, there isn’t much advice on which method or algorithms would be best
for this kind of work. There are also optimization opportunities, by identifying areas for algorithmic
optimization and feature engineering specific to XSS attacks, a thorough comparison investigation
can result in more effective detection methods.

Thus, in this paper, we found how and in what ways machine learning may be used to enhance
the detection of cross-site scripting attacks. The study intends to contribute to the creation of more

4 CMC, 2024

effective and efficient XSS detection methods in cybersecurity by offering insights into the advantages
of these algorithms through empirical evaluation and comparative analysis. We established a series
of targeted objectives to guide our investigation into the detection of XSS attacks using a hybrid
ensemble machine learning approach. These objectives are crafted to address the specific challenges
associated with XSS vulnerabilities, leveraging advanced algorithms and data processing techniques
to enhance the accuracy and reliability of XSS detection systems. The delineated objectives not only
structure our approach but also highlight our commitment to advancing the field of cybersecurity
through innovative ML applications. Below are the detailed research objectives of our study:

Research Objective (RO) 1: To employ advanced machine learning techniques, including Logistic
Regression (LR), Support Vector Machine (SVM), Categorical Boost (CatBoost), eXtreme Gradient
Boost (XGBoost), and Deep Neural Network and using Stacking Ensemble learning with these
models, to detect cross-site scripting (XSS) attacks effectively.

Research Objective (RO) 2: To analyze and utilize a comprehensively labeled dataset to enhance
the effectiveness of XSS cyber-attack mitigation strategies through machine learning.

Research Objective (RO) 3: To apply data sampling and balancing techniques to ensure the
robustness and accuracy of the machine learning models in detecting XSS attacks.

Research Objective (RO) 4: To refine and preprocess the datasets to optimize their utility for both
training and testing the proposed XSS detection models.

Research Objective (RO) 5: To evaluate the performance of the proposed models using metrics
such as accuracy, precision, recall, and F1-score to assess their effectiveness in detecting XSS attacks.

Research Objective (RO) 6: To implement rigorous validation procedures, including cross-
validation, to verify the effectiveness and generalizability of the XSS detection methodologies.

These objectives serve as the backbone of our research, ensuring a thorough and methodical
approach to addressing the complex challenges posed by XSS vulnerabilities in web applications.

This research has meticulously combined several advanced ML models to create a robust hybrid
and ensemble approach tailored specifically for XSS detection. The following points elucidate the
major contributions of our research, highlighting the innovative methods and their implications for
cybersecurity. Our study’s main research contributions are as follows:

Research Contribution (RC) 1: We propose a Hybrid and ensemble of advanced machine learning
techniques including Logistic Regression, Support Vector Machines (SVM), XGBoost, CatBoost, and
Deep Neural Networks (DNNs) for the effective detection of Cross-Site Scripting (XSS) attacks, which
marks a significant enhancement over traditional single-model approaches.

Research Contribution (RC) 2: We utilize a comprehensive dataset, adapted for the nuances of
XSS detection, to conduct a thorough analysis of the proposed models. This study is distinctive in its
application of these specific advanced ML models to XSS detection, providing a novel insight into
their relative effectiveness and efficiency.

Research Contribution (RC) 3: We employ cross-validation techniques to enhance the validation
process, ensuring robust model performance and minimizing overfitting, which is critical for main-
taining high reliability and generalizability of the XSS detection models across various data scenarios.

Research Contribution (RC) 4: Our research rigorously evaluates the models using multiple
performance metrics, including accuracy, precision, recall, and F1-score. This multi-metric assessment
helps in understanding the strengths and limitations of each model in real-world application scenarios.

CMC, 2024 5

Research Contribution (RC) 5: The findings contribute to the cybersecurity field by offering
detailed benchmarks of model performance, thereby aiding cybersecurity professionals in selecting
appropriate ML techniques for implementing effective XSS attack detection systems.

These contributions are pivotal in advancing the field of cybersecurity, particularly in the realm
of XSS attack detection, providing both theoretical insights and practical tools to combat this ever-
evolving threat.

Furthermore, in this paper, we have developed ML techniques to detect XSS. The key motivation
is to analyze and improve the accuracy to be enough adequate for the proposed ML model. Different
parts provide explanations of the cybersecurity XSS attacks, machine learning techniques used to
detect XSS attacks, and our suggested model developments. The structure of this document is as
follows. Section 1 defines an introduction. The related work on XSS attack detection is summed up
in Section 2, Section 3 presents the methodology, and Section 4 presents our research analysis and
findings. Finally, the work is concluded in Section 5, with the main conclusions drawn from our paper.

2 Related Work

This section gives a summary of earlier reviews that address the detection of XSS attacks. It
also presents a comparison of this review with the most relevant research. In recent years, a growing
number of researchers have used machine learning to increase the effectiveness of XSS attack detection
due to the attractiveness of machine learning algorithms. There has been a lack of sufficient and
appropriate approaches and solutions presented for minimizing, identifying, or avoiding such attacks.
Furthermore, no single technique can completely fix flaws in the application’s source code or stop XSS
assaults from occurring. Several criteria are evaluated to categorize the Web application’s protection
method. These variables include, for instance, the kinds of attacks that the defense system stops
or detects, as well as a few basic elements of the strategy (accuracy, precision, recall, etc.). The
authors [10] offered both static and dynamic analytical techniques for spotting risky websites. A
supervised decision tree technique has been used to achieve 95.2% precision, 91.6% F1-score, and
94.79% receiver operating characteristic curve (ROC) values for binary classification. However, this
finding is insufficient to stop such attacks due to the low detection rate and precision. Because of
this, there will be a significant false-negative rate and a possibility that the system will miss multiple
attacks. Fig. 2 presents an organized overview of machine learning, categorizing various algorithms
into four main types: Supervised learning, Unsupervised learning, Semi-Supervised learning, and
Reinforcement learning.

In Supervised learning, the focus is on Classification and Regression, with algorithms like Linear
Regression, Random Forest, Logistic Regression, Support Vector Machine (SVM), Decision Trees,
Naïve Bayes, Gradient Boost, and Artificial Neural Networks. These algorithms are trained with
labeled data to predict outcomes for new, unseen data.

Unsupervised learning deals with Clustering and Dimensionality Reduction. Algorithms like
K-means Clustering, Spectral Clustering, K-medians Clustering, Hierarchical Clustering, Quadratic
Discriminant Analysis, Linear Discriminant Analysis, Principal Component Analysis, and Multidi-
mensional Scaling are used to find patterns or groupings in data without pre-existing labels.

Semi-supervised learning is positioned between supervised and unsupervised learning, utilizing
both labeled and unlabeled data for training. This branch includes techniques like Generative Models,
Self-training Algorithms, Graph Theory Methods, Low-Density Separation Models, Semi-Supervised
Support Vector Machines, and Expectation Maximization.

6 CMC, 2024

Figure 2: Comprehensive taxonomy of machine learning (ML) algorithms

Lastly, Reinforcement learning is an area focused on decision-making and motor control, often
modeled as a Markov decision process. Methods under this category include Monte Carlo Meth-
ods, Q-learning, Rule-Based Systems, Agent-Based Systems, Policy Gradient Methods, Actor-Critic
Methods, and Temporal Difference Learning, all aimed at learning strategies to maximize a notion of
cumulative reward.

Overall, Fig. 2 effectively maps out the landscape of machine learning techniques, providing a
clear guide to the different methods and their applications in data analysis and artificial intelligence.
Researchers employ a variety of machine learning techniques to demonstrate effectiveness. The
accuracy rate of the Support Vector Machine (SVM) classifier used for XSS attack detection is

CMC, 2024 7

92% [11]; however, the False Positive (FP) rate remains unknown. Their goal is to surpass the quantity
of False Positive (FP) and False Negative (FN). Even yet, the predicted False Negative (FN) and False
Positive (FP) values—7 and 5.7%, respectively—were still seen as excessive and inadequate. To solve the
detection challenge, the study of [12] proposes detection approaches that use a Multilayer Perceptron
(MLP), a large dataset, and feature extraction.

Furthermore, several machine learning-based algorithms have been developed to detect XSS
attacks in web applications as a result of improvements in Artificial Intelligence (AI) technology. A
Convolutional Neural Network (CNN) model is used in [13] for detection, which produced an accuracy
of 98.2%, precision of 98.8%, and True Positive Rate (TPR) of 98.8%. Also, Reference [14] proposed
a Machine Learning (ML) technique of Optimal Decision Tree (ODT) and produced an accuracy
of 97.4%, precision of 97.2%, and recall/TPR of 95.6%. The research in [15] applied the machine
learning technique of Decision Tree Classifier (DTC), which shows an accuracy of 98.20%, a precision
of 99.19%, and a recall/TPR of 93.7%. Similarly, Li et al. [16] used the Bidirectional Long Short-
Term Memory (Bi-LSTM) machine learning technique for the detection of XSS attacks, producing
an accuracy of 92.37%, a precision of 92%, and a recall/TPR of 92%. An approach based on deep
learning called DeepXSS [17] uses a long short-term memory (LSTM) recurrent neural network. It
is trained using the collection of features that word2vec helped to extract. The method produced
a False Positive Rate (FPR) of 0.019% and a precision of 99.5%. The research in [18] developed a
method for generating XSS attack string instances by combining an improved version of the Monte
Carlo Tree Search (MCTS) algorithm with a Generative Adversarial Network (GAN) classifier. They
successfully detected XSS attacks with a TPR value of 94.59%. The research put forth a strategy
based on genetic algorithms and reinforcement learning. It detects cross-site scripting attacks by
utilizing threat intelligence. An accuracy of 99.8% was attained by the method; the FPR is unknown.
The extreme gradient boosting method (XGB) with parameter optimization methodology is used in
XGBXSS [19], an ensemble learning-based technique for XSS detection. The method produced results
of 99.5% precision, 99.56% accuracy, and 99.02% recall with an FPR of 0.0020%. Though they can
identify and mitigate XSS attacks, these methods may have significant drawbacks, including a high rate
of false alarms, a high computational processing cost, and the inability to overcome partially injected
attack payloads and encoded scripts.

Conversely, Kaur et al. [9] provided an overview of XSS web attacks and countermeasures. Their
research highlights the persistent issue of cross-site scripting vulnerabilities in well-known websites and
investigates several ways to lessen these risks. Furthermore, Krishnan et al. [20] provided a thorough
categorization of XSS attack tactics and associated mitigation methods. Their paper offers a thorough
summary of the most recent developments in XSS attack detection and prevention, providing insight-
ful information for both academics and industry professionals. Additionally, a rapidly expanding field
of study is the application of AI and machine learning techniques to cybersecurity.

All things considered, these investigations highlight the XSS assaults’ dynamic nature and the
consequent demand for creative and practical detection and mitigation techniques. It appears that
integrating AI and ML with cybersecurity is a worthwhile field of study, with the potential to make
significant progress against these ubiquitous cyber threats. As in the study of [21] splits, the datasets
with no split 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, and 45% records in the testing dataset, the
effectiveness of various classifiers is then evaluated using tenfold cross-validation. They provide a
technique for detecting cross-site scripting (XSS) attacks that are based on ensemble learning and
use Bayesian networks (BNs) as individual classifiers. They achieved an accuracy of 96.96%, 97.59%,
98.06%, 97.89%, 97.64%, 97.78%, 97.63%, 97.88%, 98.22%, and 98.54%, respectively.

8 CMC, 2024

In terms of detecting cross-site scripting (XSS) attacks, machine learning has demonstrated
strong performance. Nevertheless, dynamic context information [22] is skipped throughout the model
training phase, which leads to false negatives (FN) of XSS assaults. PhishMon, a dynamic system for
phishing assault detection based on machine learning, was introduced by [23] in their research. It took
advantage of fifteen unique features that were taken straight from the webpage and are hard for hackers
to duplicate. It did not compute its phishing-detecting features by using any search engine or third-
party system or services. They achieved an accuracy of 95.40%. The study in [24] proposed a method for
using aggregation analysis to determine how similar a page’s layout is. Using Cascading Style Sheets
(CSS) layout attributes, the author trains the classifier to identify and locate comparable websites,
allowing them to classify a page as real or fraudulent. The method is intended to automatically produce
rules based on how similar website pages’ layouts are to one another. Their accuracy was limited
to 97.31%.

To improve anti-phishing techniques, Karim et al. [25] suggested a hybrid classifier-based model
that incorporates both firm and flexible voting. In the suggested study, a canopy technique is also used
for feature selection in conjunction with a grid search optimization method. In contrast, they obtained
an F1-score of 95.89% and an accuracy of 98.12%. Similar to the study by [26], they suggested a
feature-rich, machine learning-based anti-phishing detection method. With an F1-score of 98.2%, their
feature-based results demonstrate a high accuracy of 97.8%. Nonetheless, the current research divides
the dataset using random sampling and ignores the variety of XSS load kinds. These approaches will
encounter overfitting issues for XSS load types with few labeled samples. To address these problems,
this work adds small samples to the body of research on XSS attack detection. Below Table 1 is detailed
explanation of past state-of-the-art XSS attack detection techniques.

Table 1: Past state-of-the-art XSS attack detection
No. Authors Methods Aims Dataset

source
Accuracy Pros Cons

1. Chaudhary
et al. [27]
(2022)

Long short-term
memory (LSTM)

XSS attack
detection and
mitigation

GitHub 98% Their approach is to
detect and mitigate
the XSS attack.

There is a need to
evaluate some
ensemble methods to
improve
performance.

2. Zhou et al. [21]
(2019)

Ensemble learning
and Bayesian
networks (BNs)

XSS attack
detection

GitHub 98.5% Their approach is to
detect the XSS
attack.

There is a need to
evaluate some more
effective ensemble
methods to improve
the performance.

3. Chaudhary
et al. [28]
(2023)

ML
(self-organizing
map (SOM)

XSS attack
detection

GitHub,
Kaggle

99.04% The SOM is to
classify the XSS
attack well and the
detection of XSS.

The FPR can be
decreased by using
techniques such as
resampling,
algorithm selection,
hyper parameter
tuning,
cross-validation,
ensemble methods,
and feature selection.

(Continued)

CMC, 2024 9

Table 1 (continued)

No. Authors Methods Aims Dataset
source

Accuracy Pros Cons

4. Zhang
et al. [29]
(2022)

Multilayer
Perceptron (MLP),
Convolutional
Neural Network
(CNN), and Long
Short-Term
Memory (LSTM)

XSS attack
detection

CSE-CIC-
IDS2018

99.2% Presents a
comprehensive study
on the vulnerability
of network intrusion
detection systems to
adversarial attacks
and proposes robust
defense mechanisms.

Requires extensive
tuning and
optimization to
achieve practical,
real-world
applicability without
significant
performance
overheads.

5. Zhang
et al. [30]
(2019)

Convolutional
neural network
(CNN)

XSS attack
detection

GitHub 95.29% The paper presents
an innovative
approach to detecting
XSS attacks using a
convolutional neural
network (CNN)
model, which
effectively utilizes
byte-level analysis to
improve detection
rates.

The complexity of the
model and the
reliance on deep
learning could
potentially make it
resource-intensive,
possibly limiting its
deployment in
environments with
constrained
computational
resources.

6. Wang
et al. [31]
(2022)

Nearest neighbor
and Naive Bayes

XSS attack
detection

Real-world
datasets

98.3% A novel dynamic
feature weighting
algorithm for
handling data
streams that
efficiently adapts to
changes in data
distribution,
significantly
enhancing the
accuracy of
classification
algorithms like
Nearest Neighbor
and Naive Bayes.

It requires significant
computational
resources to
continuously update
feature weights and
detect feature drifts
dynamically which
limits its practicality
in
resource-constrained
environments.

7. Mokbal
et al. [19]
(2021)

An
ensemble-learning
technique using
the eXtreme
Gradient Boosting
algorithm
(XGboost)

XSS attack
detection

XSSed and
Alexa

99.5% Effectively utilizes the
eXtreme Gradient
Boosting (XGBoost)
algorithm integrated
with a hybrid feature
selection approach,
which significantly
improves detection
rates and accuracy
for identifying XSS
attacks.

The computational
demand of the
XGBoost algorithm
might limit its
accessibility or
practicality for
environments with
constrained
computational
resources.

(Continued)

10 CMC, 2024

Table 1 (continued)

No. Authors Methods Aims Dataset
source

Accuracy Pros Cons

8. Mary et al. [32]
(2024)

DL (Aquila
Optimizer (AO)
and Fuzzy Entropy
Mutual
Information
(FEMI)
algorithms,
wildebeest Herd
Optimization
(WHO) algorithm
) based on
ResNet152

XSS attack
detection

CICDDo
S2019

99.46% Due to the innovative
use of the Aquila
optimizer and fuzzy
entropy mutual
information for
feature selection,
which contributes to
improved accuracy
and performance.

Complexity of the
proposed methods,
including the
integration of
multiple advanced
algorithms for
feature selection and
optimization, may
present challenges in
terms of
computational
demand and practical
implementation.

9. Pan et al. [33]
(2024)

Few-shot graph
(FSXSSED)

XSS attack
detection

N/A 90% The suggested dataset
shows how well
FSXSS performs in
few-shot XSS attack
detection.

The performance
result can be
improved by applying
more techniques for
performance
enhancements.

Current XSS detection systems face several significant challenges that can hinder their effective-
ness. Many systems struggle to adapt to the continuously evolving nature of XSS threats. Static detec-
tion methods that rely on predefined signatures or patterns often fail to detect new or sophisticated
attack vectors.

For systems not optimized for real-time analysis, there is often a substantial delay between attack
initiation and detection. This latency can be critical, as it allows attackers to exploit vulnerabilities
before they are detected. Many systems do not cover all possible XSS attack vectors, particularly those
involving obfuscated or novel payloads that do not match traditional patterns. As web applications
grow in complexity, many XSS detection systems do not scale effectively, degrading performance as
traffic volume increases.

3 Proposed Methodology

The goal of machine learning is to develop a predictive system that can learn from training data.
This research employs a systematic approach to develop an advanced detection system for Cross-
Site Scripting (XSS) attacks, which are prevalent threats in cybersecurity. Given the complexity and
evolving nature of XSS vulnerabilities, traditional detection methods often fall short. Thus, this study
integrates multiple machine learning algorithms to enhance detection accuracy and robustness.

Initially, the methodology involves the comprehensive collection and preprocessing of data to
form a suitable training set. Data preprocessing includes handling missing values, encoding categorical
variables, and normalizing data to improve algorithm performance. Following data preparation, we
implement several machine learning models—Logistic Regression, Support Vector Machine (SVM),
eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and a Deep Neural Net-
work (DNN)—to establish baseline performances.

To further refine detection capabilities, a stacking ensemble method is introduced. This technique
leverages the strengths of individual models by using their output as input for a final estimator, which

CMC, 2024 11

in this case is the CatBoost classifier. The ensemble model aims to capture more complex patterns
that single models may miss, potentially increasing the predictive accuracy. Fig. 3 shows the design
methodology that we are offering.

Figure 3: Workflow for offered XSS detection systems

The accompanying Fig. 3 illustrates the workflow diagram of our proposed cross-site scripting
(XSS) detection system, concluding the machine learning (ML) algorithms section. This diagram pro-
vides a visual representation of the integrated approach, where Logistic Regression, SVM, XGBoost,
CatBoost, and Deep Neural Networks (DNN) work in synergy to enhance the detection capabilities
against XSS attacks. By presenting the workflow, we encapsulate the sequential and parallel processes
involved, offering a clear depiction of how data flows through different phases of processing and
analysis within our system. This visual aid is crucial for understanding the complex interactions and
the multi-layered strategy employed to maximize detection accuracy and efficiency.

3.1 Machine Learning Approaches

There are four types of machine learning approaches: supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning.

The supervised learning approach works well for learning from labeled data and predicting
new or unseen data. Unlike supervised learning, unsupervised learning methods do not use labeled
data. Unsupervised learning is less suited for classification problems; it can be useful for tasks such
as identifying patterns in data or grouping similar attacks in the context of XSS detection. Semi-
supervised learning uses a combination of a small amount of labeled data and a large amount of
unlabeled data. It aims to improve learning accuracy when labeled data is scarce and expensive to
obtain. Reinforcement learning algorithms learn by interacting with the environment and optimizing a

12 CMC, 2024

measurable reward signal. This approach matches input conditions to output behaviors that maximize
the reward signal. Fig. 4 shows the ML model-based architecture of XSS detection.

Figure 4: Machine learning-based cross-site scripting XSS attack detection architecture

In this research, we present an architecture designed to detect XSS attacks through machine
learning techniques, as outlined in below Fig. 4. This system is constructed within an Internet
environment, with data flow orchestrated in several critical stages to ensure effective learning and
prediction capabilities.

There are two approaches we have used; one is a hybrid learning approach while the other is a
stacking ensemble learning approach.

3.1.1 Hybrid Learning Approach

Hybrid learning in the context of XSS attack detection employs a combination of multiple
machine learning models to improve the accuracy, robustness, and generalizability of the detection
system. The hybrid approach leverages the strengths of individual algorithms, mitigating their weak-
nesses to create a more effective detection tool. Here’s how hybrid learning is typically implemented
in our framework.

Model Selection

The initial step involves selecting a range of diverse machine learning algorithms, each bringing
its unique strengths to the table. In our research, we incorporate Logistic Regression, Support
Vector Machines (SVM), XGBoost, CatBoost, and Deep Neural Networks (DNN). These models are

CMC, 2024 13

carefully chosen for their ability to effectively manage various aspects of the data and address different
attack patterns.

Data Preprocessing

Data is prepared to suit the needs of each model. This involves normalization, scaling, handling
missing values, and encoding categorical variables to ensure that the input data is optimized for
machine learning tasks.

Training Individual Models

Each model is trained independently on the training dataset. This stage involves tuning hyper
parameters, using techniques like grid search or random search, to find the optimal settings for each
model.

Integration Strategy

After training, the predictions from each model are combined. This can be done through various
ensemble techniques such as stacking, where the outputs of individual models serve as inputs to a
final meta-model. The meta-model, often a machine learning algorithm itself, is trained to make final
predictions based on the inputs it receives from the base models.

Model Optimization and Validation

The hybrid model undergoes rigorous validation to assess its performance. Techniques such as
cross-validation are employed to ensure that the model performs well on unseen data and to prevent
overfitting. Once validated, the hybrid model is deployed in a real-time environment where it can
start detecting XSS attacks. The system is designed to adapt dynamically, updating its parameters
in response to new threats and integrating feedback from its detections.

By leveraging multiple models, the hybrid learning approach benefits from the collective insights
of different algorithms, leading to a more robust and effective XSS detection system. The diversity of
models helps cover more attack vectors and reduces the likelihood of missing sophisticated or novel
XSS attacks. This approach ensures that our detection system remains effective even as attackers evolve
their strategies.

3.1.2 Stacking Ensemble Learning Approach

Stacking Ensemble Learning is a sophisticated machine learning method that combines multiple
base models to enhance predictive performance by integrating their predictions through a meta-
model. This approach leverages the diverse strengths and compensates for the weaknesses of various
models, thereby improving overall accuracy and robustness. Here is how stacking ensemble learning
is implemented in our XSS attack detection framework.

Base Learner Selection

In stacking ensemble learning, the first step involves selecting a diverse set of base learners. For
our XSS detection, we employ Logistic Regression, SVM, XGBoost, CatBoost, and Deep Neural
Networks. Each model brings unique capabilities to handle different aspects of the data, ensuring
a comprehensive learning process.

14 CMC, 2024

Training Base Learners

Each base model is trained independently on the entire training dataset. This stage allows
each model to develop its predictive strategy based on its inherent strengths, ensuring a variety of
perspectives on the problem.

Meta-Model Selection

After the base models are trained, their predictions form a new dataset, where the actual outputs of
these models serve as input features, while the original response variable remains the same. This dataset
is used to train a higher-level model, known as the meta-model. In our framework, we typically use
a CatBoost classifier as the meta-model due to its effectiveness in handling categorical features and
complex patterns.

Integration of Predictions

The meta-model learns to effectively combine the predictions of the base models. It assesses which
models are more reliable under certain conditions and assigns more weight to their predictions. This
step is crucial as it synthesizes the strengths of individual models into a cohesive prediction.

Model Training and Validation

The entire ensemble, including both the base learners and the meta-model, is subjected to rigorous
cross-validation to evaluate its performance and avoid overfitting. This involves partitioning the data
into several subsets, training on several subsets while validating on others, and rotating which subsets
are used for validation.

The stacking ensemble is designed to be flexible, allowing for incremental learning. As new data
becomes available, or as XSS attack patterns evolve, new models can be trained and easily integrated
into the existing ensemble without retraining the entire system. Once the stacking ensemble model has
been validated, it is deployed into a real-world environment where it can start providing predictions.
The system is configured to operate in real-time, dynamically adjusting to new data and maintaining
high accuracy and low latency in XSS attack detection.

By implementing the stacking ensemble learning approach, our system not only improves the
accuracy of XSS attack detection but also enhances its ability to generalize across different types
of XSS attacks, making it highly effective in a real-world cybersecurity context. Our approach to
XSS attack detection via a stacking ensemble framework introduces several novel configurations and
algorithmic adaptations specifically tailored to address the unique complexities of XSS vectors.

Unlike traditional ensemble methods that often rely on homogeneous model types, our framework
integrates a diverse set of algorithms including Logistic Regression, SVM, XGBoost, CatBoost, and
Deep Neural Networks. This hybrid approach is specifically engineered to leverage the strengths of
each model type—SVM and Logistic Regression for their robustness in high-dimensional spaces,
XGBoost and CatBoost for their gradient boosting capabilities which excel in handling unstructured
data, and DNNs for their proficiency in pattern recognition deep within data structures.

3.1.3 Data Collection

The data collection process forms the foundational basis of our research, enabling a thorough
investigation into XSS attack detection. For this study, a comprehensive dataset was meticulously
compiled to encompass a diverse range of XSS attack vectors and scenarios. The dataset comprises
instances derived from real-world web application environments, ensuring the relevance and applica-
bility of the research to contemporary cybersecurity challenges. For the detection impact of the model

CMC, 2024 15

to be more appropriate, it is important to select a suitable data set for training in addition to using a
suitable strategy to extract and categorize feature information. This is how to determine whether the
detection scheme is effective. The XSS attack dataset from Kaggle serves as the basis for the empirical
study of the proposed work.

Data collection emphasized the inclusion of varied attack vectors to encapsulate the complexity
and evolving nature of XSS threats. By simulating real-world conditions, the dataset provides a
realistic framework for testing and enhancing the XSS detection capabilities of the proposed machine
learning models.

3.1.4 Data Engineering

Data engineering plays a crucial role in enhancing the performance of machine learning models
by ensuring that the data is adequately processed and prepared before it is used for training. In
this research, several key data engineering steps were implemented to optimize the detection of
XSS attacks. Fig. 5 illustrates the process by which we arrived at a more exact and comprehensive
understanding of it.

Figure 5: Classification of proposed cross-site scripting (XSS) detection methodological structure

Firstly, data cleaning is performed to remove any inconsistencies or errors in the dataset, such
as duplicate entries or corrupt records. This step ensures the integrity and reliability of the training
data, which is essential for building robust models. Following data cleaning, feature engineering was

16 CMC, 2024

undertaken to extract and select the most relevant features from the raw data. This process involved
creating new features that better capture the characteristics of XSS attacks and selecting those that
contribute most significantly to the predictive power of the models. Techniques such as feature scaling
and normalization were also applied to standardize the range of the data features, thereby improving
the convergence speed of the learning algorithms and enhancing model accuracy.

Moreover, dimensionality reduction techniques such as Principal Component Analysis (PCA)
were employed to reduce the number of features in the dataset while retaining the most informative
aspects. This not only helps in alleviating the computational burden but also aids in minimizing the risk
of overfitting, making the models more generalizable to unseen data. These data engineering efforts
collectively contribute to a more efficient and effective learning process, enabling the developed models
to accurately identify potential XSS vulnerabilities within web applications.

Data Cleaning

Data cleaning is an essential preliminary step in the data engineering process that directly impacts
the success of machine learning models. In this study, careful attention was devoted to cleaning the
dataset used for detecting XSS attacks. The process began with the identification and removal of
duplicate records to ensure that the training set did not artificially inflate the importance of certain
observations.

Subsequently, we addressed missing or incomplete data entries. Given the critical nature of
cybersecurity data, decisions on how to handle missing values were based on the nature of the data
and the expected impact on model performance. For fields where data was missing, we employed
imputation techniques where appropriate, using the median or mode values to fill gaps in numeric and
categorical data, respectively.

Additionally, outlier detection and removal were conducted to prevent data anomalies from skew-
ing the results and leading to model overfitting. Outliers were identified using statistical techniques
such as z-scores and IQR (interquartile range), and decisions on outliers were made based on domain
knowledge and their potential influence on model learning. By ensuring the cleanliness and integrity
of the data, we laid a strong foundation for the subsequent stages of feature engineering and model
training, ultimately enhancing the model’s ability to generalize well to new, unseen data.

Data Balancing

Handling limited labeled data is a significant challenge in machine learning, particularly in
cybersecurity contexts where attacks evolve rapidly and new threats emerge continuously. In this
study, we addressed this challenge by employing robust dataset balancing techniques to ensure that
our models are not biased towards the majority class, thereby improving their generalizability and
effectiveness in detecting XSS attacks.

To balance our dataset effectively in scenarios with limited labeled data, we utilized the Synthetic
Minority Over-Sampling Technique (SMOTE). This method is particularly beneficial in such situa-
tions as it helps to create a more diverse and representative dataset by generating synthetic examples.
This approach prevents our model from merely predicting the most common class and encourages it
to learn more nuanced patterns indicative of all classes. The balanced dataset not only promotes a
fair representation of all classes but also enhances the predictive performance across various metrics,
including accuracy, precision, recall, and F1-score.

Additionally, we integrated techniques like data augmentation and semi-supervised learning
methods to maximize the utility of the available labeled data while leveraging unlabeled data to enhance

CMC, 2024 17

the model’s learning. These strategies are pivotal in environments where acquiring fully labeled datasets
is impractical or too costly.

Over Sampling

In the realm of machine learning, particularly when dealing with imbalanced datasets common
in cyber security applications such as XSS attack detection, over-sampling techniques play a pivotal
role. To address the imbalance in our dataset, where certain classes of attacks are underrepresented,
we employed the Synthetic Minority Over-Sampling Technique (SMOTE). This method not only
amplifies the minority class by generating synthetic examples rather than by oversampling with
replacement but also helps to form a more general decision boundary, which improves the classifier’s
performance on unseen data.

SMOTE works by selecting examples that are close to the feature space, drawing a line between
the examples in the feature space, and drawing a new sample at a point along that line. This approach
is particularly useful in our context, as it ensures a richer and more nuanced representation of minority
classes, thereby enhancing the robustness and accuracy of our predictive models. By employing
SMOTE, we aimed to provide a more balanced dataset, which in turn facilitates more reliable learning
and validation of our XSS attack detection models.

3.1.5 Feature Engineering

In our research, feature engineering plays a pivotal role in enhancing XSS attack detection.
We meticulously selected features that are critical in identifying XSS patterns, such as JavaScript
keywords, HTML attributes, and URL structures. Each feature was chosen based on its fre-
quency and uniqueness in XSS samples, enabling our models to effectively distinguish between
benign and malicious scripts. The engineered features were then processed using techniques like
encoding and tokenization to prepare them for machine-learning analysis. This careful preparation of
features significantly contributed to the robustness of our detection system, optimizing both accuracy
and speed.

Tokenization of Script Parts

This involves breaking down JavaScript or any scripting content into manageable tokens or
symbols. It helps in isolating script components that could potentially carry malicious payloads. For
instance, from a script like <script>alert(‘XSS’)</script>, tokenization would separate out <script>,
alert, (‘XSS’), and </script>.

Extraction of HTML Tags

Analyzing an HTML column, individual tags such as or are
extracted. The presence of onerror within tags could be specifically extracted as a feature
indicative of potential XSS.

Encoding of Categorical Data

HTTP request methods like GET, and POST transformed from their textual representation into
numerical codes to allow quantitative analysis by machine learning models.

Feature Construction

Constructing new features like the length of a URL or counting the number of special characters
in the URL query parameters to detect unusual patterns commonly associated with XSS.

18 CMC, 2024

Feature Selection

JavaScript Event Handlers

Features capturing event handlers (like onclick, and onerror) are critical as they are often exploited
in XSS attacks to execute malicious scripts when user interactions occur. For example, an onerror in
a tag could trigger malicious JavaScript if the image fails to load.

URL Patterns

Features analyzing URL structures might focus on patterns like unexpected use of special
characters, javascript: pseudo-protocol, or overly long query parameters. For instance, a URL feature
might capture a string like http://example.com/index.php?user=<script>.

Anomalies in HTML and JavaScript

This includes features that detect non-standard nesting of HTML tags, the presence of <script>
tags in places they normally wouldn’t be, or encoded JavaScript within HTML attributes. An example
could be <div style=“background:url(‘javascript:alert(1)’)”>.

Input Validation and Encoding Anomalies

Features here could monitor how input fields handle data, looking for evidence of improper or
lack of encoding which might allow special characters to trigger script execution. An example from the
dataset could be input fields that accept “><script>alert(‘XSS’)</script> without proper sanitation.

3.1.6 Model Tuning Process

In our research, significant emphasis was placed on the tuning of the machine learning models to
optimize detection accuracy and efficiency. The tuning process involved several stages:

Hyper Parameter Optimization

Each model within our hybrid ensemble—Logistic Regression, Support Vector Machines (SVM),
XGBoost, CatBoost, and Deep Neural Networks (DNN)—was subjected to hyper parameter opti-
mization. We utilized grid search and random search methods to explore a wide range of hyper param-
eter settings. For instance, for XGBoost, parameters like max_depth, learning_rate, and n_estimators
were optimized. For Deep Neural Networks, we adjusted the number of layers, the number of neurons
in each layer, and the learning rate.

Validation Process

The effectiveness of our hybrid ensemble machine learning models is validated using a robust
methodology designed to ensure accuracy and generalizability. We employ a two-pronged approach:
dataset splitting and cross-validation.

Dataset Splitting

We split the dataset into training (80%) and testing (20%) sets. This division allows us to train the
models comprehensively while reserving a portion of the data for independent evaluation, ensuring
the models do not overfit the training data.

Cross-Validation

To further bolster the validation, we implement a Repeated Stratified K-Fold Cross-Validation
strategy. This involves partitioning the data into ten folds, each fold being used once as a validation
set while the others serve as training sets. This process is repeated three times with random shuffling
of data in each cycle to prevent biases associated with the ordering of data points.

http://example.com/index.php?user=<script>

CMC, 2024 19

During each fold of the cross-validation, we fine-tune the hyper parameters of our models—
ranging from learning rates in Gradient Boosting Machines to layer configurations in Deep Neural
Networks. This tuning is guided by the performance metrics such as accuracy, precision, recall, and F1-
score, observed during the validation phases. By integrating model tuning directly into the validation
process, we ensure that the optimizations contribute directly to enhanced model performance, leading
to a detection system that is not only accurate but also efficient and adaptable to new threats.

Ensemble Techniques

The stacking ensemble model was tuned by experimenting with different combinations of base
models and meta-models. The objective was to find the best synergy between the models that could
improve the predictive power beyond what was possible by individual models alone.

The tuning process had a measurable impact on the models’ performance. For example, after
tuning, the XGBoost model showed a 2% increase in accuracy and a significant reduction in false
positives. The stacking ensemble, which combined outputs from finely tuned models, outperformed
any single model with an accuracy improvement of over 5% compared to the best single model.

3.1.7 Adaptability to Evolving Threats

Our hybrid ensemble learning framework is designed to adapt to new and evolving XSS attack
patterns that may not have been present in the initial training data. This adaptability is crucial given
the dynamic nature of web security threats. To ensure continuous learning and adaptation, we have
implemented several strategies:

Incremental Learning

The models within our framework, particularly those based on decision trees like XGBoost and
CatBoost, are configured to support incremental learning. This allows the models to be updated with
new data without the need for retraining from scratch, thus accommodating new attack vectors as they
are identified.

Feedback Loops

We incorporate feedback loops into the detection system, where the outputs (detections) and the
eventual outcomes (such as confirmed attacks) are used to refine the models continuously. This process
involves re-assessing the model’s predictions against actual outcomes and using this information to
adjust the models for better accuracy.

Anomaly Detection Techniques

To capture attack patterns that deviate from known types, we employ anomaly detection tech-
niques alongside traditional classification methods. These techniques are designed to flag unusual
patterns in web traffic that could indicate novel XSS attacks, thus providing an additional layer of
security.

Regular Updates to Training Data

We maintain a procedure for regularly updating the training datasets with new XSS instances as
they are discovered, ensuring that the models are trained on the most recent data. This approach helps
in capturing the latest tactics used by attackers.

20 CMC, 2024

Collaboration with Cybersecurity Communities

By collaborating with cybersecurity communities and platforms, we gain insights into emerging
threats and incorporate this intelligence into our training processes. This collaboration helps in keeping
the detection models up-to-date with the current threat landscape.

By integrating these adaptive mechanisms, our framework remains effective against XSS attacks,
even as their patterns evolve. This ongoing adaptability is crucial for maintaining the robustness of
web security defenses in the face of constantly changing cyber threats.

3.1.8 Defending against Adversarial Attacks

In response to the growing sophistication of adversarial attacks, where attackers deliberately
manipulate inputs to evade detection, our framework incorporates several defensive strategies. We
utilize adversarial training techniques, where the models are exposed to adversarial examples during
the training phase. This exposure helps make the models robust against such manipulations, improving
their ability to identify subtle anomalies that could indicate a manipulated attack vector. Additionally,
rigorous input validation is employed to pre-screen inputs and reject those that are malformed or
crafted to trigger false negatives in detection mechanisms. These steps ensure that our system maintains
its integrity and effectiveness even when faced with sophisticated evasion tactics.

3.2 Machine Learning Algorithms

To address the complexities of XSS detection effectively, this study explores a variety of machine
learning algorithms, each offering unique strengths in processing and pattern recognition. Our
research delves into the capabilities and applications of each algorithm, aiming to harness their
collective power through hybrid and ensemble methods to improve detection rates and reduce false
positives. The section on ML algorithms provides a detailed examination of each chosen method,
highlighting how they contribute to our comprehensive approach to XSS threat mitigation. we delve
into several cutting-edge machine learning techniques, each selected for its potential to enhance
the detection of Cross-Site Scripting (XSS) attacks. This section serves as a critical foundation
for understanding how each algorithm—Logistic Regression, SVM, XGBoost, CatBoost, and Deep
Neural Networks—can be uniquely tailored to address the challenges posed by XSS vulnerabilities.

This structured approach not only facilitates a deeper understanding of each algorithm’s strengths
and weaknesses but also sets the stage for subsequent sections where these models are applied and
evaluated in real-world scenarios. Each subsection dedicated to a specific ML algorithm will explore
its technical nuances, optimization strategies, and role within our broader XSS detection framework.

3.2.1 Logistic Regression

When dealing with binary classification problems, such as yes/no or normal/benign, where the
outcome variable is categorical with two possible classes, one statistical technique that is utilized is
logistic regression. Logistic regression is not a regression model; rather, it is a linear classification
model. It works as, by mapping any real-valued input to a value between 0 and 1, the logistic (or
sigmoid) function is used in logistic regression to estimate the probability of the binary result. The
probability of belonging to one of the classes is then interpreted from the output of the logistic function.
It is possible to make predictions depending on whether the probability exceeds a threshold by selecting
a value such as 0.5. Logistic Regression is used to estimate the probability of a binary outcome based
on one or more predictor variables. Logistic regression predicts the probability p that Y belongs to one
of the categories (usually the “1” category) by using the logistic function. The probability that Y=1

CMC, 2024 21

can be modeled as a function of X (the predictors) is as follows:

p = 1
1 + e−(β0+β1X1+β2X2+...+βkXk)

(1)

where:

– p is the probability that the dependent variable Y = 1,
– e is the base of the natural logarithm,
– β0 + β1 + β2 + . . . + βk are the coefficients of the model,
– X1 + X2 + . . . + Xk are the independent variables.

The coefficients β0+β1+β2+. . .+βk represent the effect of each variable on the likelihood that Y =
1 adjusting for the effects of all other variables. The coefficients are usually estimated using maximum
likelihood estimation.

The logistic model uses the logistic function, which outputs values between 0 and 1, making it
appropriate for modeling probabilities. Additionally, it measures the discrepancy between expected
probability and actual class labels using a logistic loss (also known as cross-entropy) function. This
loss function is minimized during model training. It makes it simple to interpret the behavior of the
model by providing interpretable coefficients that show how each characteristic affects the log odds of
the result.

This model is optimized using techniques like maximum likelihood estimation to find the best
coefficients (β values) that minimize prediction errors. By using logistic regression in both a hybrid
setting and a sophisticated stacking ensemble, our project leverages its robustness in linear decision
boundaries and probabilistic foundations, which are crucial for understanding the influence and
impact of features on binary outcomes.

3.2.2 Support Vector Machine (SVM)

The Support Vector Machine (SVM) algorithm is a powerful supervised machine learning
method used primarily for classification, though it can also be applied to regression tasks. SVM is
fundamentally a classifier that finds an optimal hyperplane that maximizes the margin between two
classes. The aim is to find the largest geometric margin between the classes, which involves solving an
optimization problem. It works as a linear and non-linear.

In a two-dimensional linear space, SVM looks for a line that separates the classes with maximum
margin. In higher dimensions, it seeks a hyperplane. Support vectors are the data points that are closest
to the hyperplane and influence its position and orientation. SVM constructs its decision boundary
based on these points. The margin is the distance between the closest points of different classes. SVM
maximizes this margin to increase the model’s generalization ability.

When data is not linearly separable, SVM uses a kernel trick to transform the input space into a
higher-dimensional space where a hyperplane can be used to separate classes. The kernels function is
used to map the data into a higher-dimensional space. Common kernels include linear, polynomial,
Radial Basis Function (RBF), and sigmoid.

The objective of SVM is to minimize the weight vector (w), keeping in mind that the data points
(xi) of each class must be on the correct side of the hyperplane. This is expressed as:

To achieve this, SVM solves the following optimization problem:

– Objective : Minimize
1
2

‖w‖

22 CMC, 2024

– Constraints : yi (w.xi + b) ≥ 1 for each i = 1, . . . , m

where:

– w represents the weight vector of the hyperplane.
– b is the bias term that adjusts the hyperplane’s offset from the origin.
– xi and yi are the feature vectors and labels respectively for each training sample.
– m represents the total number of training samples.

For cases where the data is not linearly separable, SVM uses kernel functions to map the input
features into higher-dimensional spaces where a linear separation is feasible. Common kernels include:

– Linear Kernel : K
(
xi.xj

) = xi.xj

– Polinomail Kernel : K
(
xi.xj

) = (γ xi.xj + r)d

– Radial Basis Function Kernel : K
(
xi.xj

) = exp
(
−γ

∥∥xi − xj

∥∥2
)

Here, γ , r, and d are parameters that define the kernel’s behavior, influencing the SVM’s ability
to classify complex datasets effectively.

SVM is used as a base learner in the stacking approach. It’s configured to work with a Standard-
Scaler within a pipeline to ensure the input features are standardized, which is crucial for optimal
performance in SVM due to its reliance on calculating distances between data points. In the stacking
setup, SVC (Support Vector Classification) is used with probability = True, enabling it to output
probability estimates for classes that are necessary for the meta-learner in stacking to make effective
final decisions.

3.2.3 eXtreme Gradient Boost (XGBoost)

XGBoost (eXtreme Gradient Boosting) is an advanced implementation of gradient boosting
that is widely used in machine learning competitions and industry applications for its effectiveness
and efficiency.

It includes L1 and L2 regularization which helps to prevent overfitting, a problem common with
classical gradient boosting methods. XGBoost automatically handles missing data, meaning it can
directly accept datasets with missing values without requiring imputation. The split finding algorithm
in XGBoost works depth-first (up to max depth) and then starts pruning the tree backward and
removes splits beyond which there is no positive gain. XGBoost allows users to run a cross-validation
at each iteration of the boosting process and thus it is easy to get the exact optimum number of
boosting rounds in a single run. It utilizes a distributed computing method to efficiently handle large
datasets and compute gradients and make splits faster, which significantly speeds up the computations.
XGBoost involves creating decision trees in sequences, where each subsequent tree learns from the
errors of its predecessors. Mathematically, the model tries to minimize the following loss function:

L(ϕ) =
∑

(i = 1 to n) l(yi, ŷi) +
∑

(k)Ω(fk) (2)

where:

– yi-the actual value
– ŷi-the predicted value
– Ω-the regularization term that penalizes the complexity of the model (like the number of leaves

in the tree)

CMC, 2024 23

– l-a differentiable convex loss function that measures the difference between the predicted and
actual values

– fk-functions corresponding to individual trees.

The key to XGBoost’s performance is its scalability, which has been achieved by optimizing
both algorithmic enhancements and systems-level optimizations. This allows XGBoost to run fast
even on relatively large datasets, making it practical for a wide range of data science problems and
competitions.

In both the hybrid learning and stacking contexts, XGBoost serves as a base learner. It’s configured
with parameters like (use_label_encoder = False) to handle label encoding manually and (eval_metric
= log_loss) to optimize the model for binary classification using logarithmic loss. By integrating
XGBoost into both hybrid and stacking approaches, our research leverages its computational effi-
ciency and predictive power, enhancing the overall ensemble’s performance and providing robust
insights into its applicability for our specific machine learning algorithms.

3.2.4 Categorical Boost (CatBoost)

CatBoost (Categorical Boosting) is a machine learning algorithm, which is designed to work well
with categorical data and is capable of handling hundreds of categories efficiently. CatBoost optimizes
the following objective function, which includes both the model’s predictions and regularization terms
to control overfitting:

Obj =
∑n

i=0
L(yi, ŷi) + �(f) (3)

where:

– L(yi, ŷi)-the loss function evaluating the error between the predicted ŷi and the actual yi values.
– Ω(f)-the regularization term which includes penalties on the structure and weights of the

decision trees to prevent overfitting.
– f -represents the ensemble of decision trees.

CatBoost employs ordered boosting, which enhances the handling of categorical variables by
using a permutation-driven algorithm to maintain prediction accuracy and reduce overfitting. The
regularization part, (Ω) can include components such as the L2 regularization term on the weights
of the trees. CatBoost optimizes the model using ordered boosting, a permutation-driven alternative
to the classic gradient boosting method. The key feature of ordered boosting is that it reduces
the prediction shift caused by a straight forward implementation of gradient boosting, which can
lead to significant overfitting. The algorithm also employs an innovative approach to processing
categorical variables. Instead of converting categories to numbers using traditional methods (like
one-hot encoding), CatBoost uses a more sophisticated method that takes into account the statistical
properties of the data, which reduces the risk of overfitting and improves the quality of the model.

CatBoost is utilized both as a standalone model in the hybrid approach and as a final estimator
in the stacking ensemble. This dual role highlights its versatility and robustness. The CatBoost model
is run with verbose = 0 to keep the output clean during training. Other parameters are set to default,
which are generally well-tuned for a wide range of datasets.

As a meta-learner, CatBoost integrates predictions from various models. Its ability to handle
categorical data and complex patterns makes it an excellent choice for refining and improving upon
the predictions made by the base learners. It reduces overfitting without extensive hyper parameter

24 CMC, 2024

tuning, making it effective straight out of the box for many practical applications. This structured and
layered approach to model evaluation—from individual model assessment to sophisticated ensemble
strategies like stacking—provides a comprehensive framework for predictive accuracy and robustness
in machine learning tasks.

3.2.5 Deep Neural Network (DNN)

Deep Neural Network (DNN) is an advanced machine learning model that mimics the way
the human brain operates, allowing it to learn from large amounts of data. DNNs are particularly
useful for complex pattern recognition tasks, which makes them ideal for cybersecurity applications
like detecting XSS attacks. Here, the Deep Neural Network is implemented using the TensorFlow
library through the Keras API, encapsulated within the (Scikit-Learn) interface using (scikeras.
wrappers.KerasClassifier). This allows the DNN to be used similarly to traditional (scikit-learn)
classifiers, making it compatible with functions like (cross_val_score) and fitting seamlessly into the
ensemble methods like stacking.

The DNN is constructed with an input layer that matches the dimensionality of the dataset
(input_dim). It includes two hidden layers with 20 and 10 neurons, respectively, both using the ReLU
activation function for non-linearity. The output layer consists of a single neuron with a sigmoid acti-
vation function, which is typical for binary classification tasks. The model is compiled with the Adam
optimizer, a popular choice for deep learning tasks due to its efficiency in handling sparse gradients and
adapting the learning rate during training. The loss function used is (binary_cross_entropy), suitable
for binary classification problems.

In our proposed work, the stacking framework of DNN acts as one of the base models. Its
predictions, along with those from other models, are used by the {meta-model} (CatBoost in this
case) to make the final prediction. This can potentially leverage the DNN’s ability to extract complex
patterns and features, improving the robustness and accuracy of the ensemble prediction. This
approach allows the deep learning model to contribute its strengths to a collective (decision-making)
process, harnessing both traditional algorithms and advanced neural network capabilities to achieve
potentially higher performance than any single model could on its own.

3.3 Validation Process

It is crucial to validate the model’s performance to make sure the model can predict the target
parameter accurately when using ML techniques. The cross-validation methodology and dataset
splitting are two of the most popular ways to assess a model’s performance during the validation
process. The process of dividing the dataset into training and testing sets is called dataset splitting.
The model is trained on the training set, and its performance is assessed on the testing set. By going
through this procedure, we make sure that the model can effectively generalize to new data and doesn’t
over fit the training set. The model’s performance is influenced by the percentage of data splitting that
is used for testing and training. A higher proportion of the data is usually utilized for training, as in
our case 80%, and a lower proportion is used for testing or validation, as in our case 20%. Depending
on the amount of the dataset and the complexity of the model, different percentages may be employed.
Cross-validation is a widely used machine-learning technique for model validation.

To mitigate the potential for overfitting and ensure the robustness of our XSS attack detection
models, we implemented a Repeated Stratified K-Fold Cross-Validation approach. This method
involves dividing the entire dataset into ten distinct folds, promoting a thorough and balanced
assessment of the model’s performance. Each fold serves sequentially as the validation set, with the

CMC, 2024 25

remaining nine folds used for training. This process is not only repeated three times to enhance the
reliability of our results but also randomized in each repetition to ensure that the validation is robust
against any specific partition of data.

This extensive cross-validation helps in diagnosing and diminishing overfitting, ensuring that our
models generalize well to new, unseen data. By averaging the outcomes from all folds and repetitions,
we derive a comprehensive measure of our models’ accuracy, precision, recall, and F1-score, providing
a holistic view of their performance across varied subsets of data.

3.4 Scalability and Performance under Load

To ensure that our XSS detection system is scalable and performs efficiently under the stress of
large-scale web applications, we have incorporated several key strategies. First, our ensemble learning
framework utilizes computationally efficient models that allow for rapid response times, essential for
high-traffic environments. We also leverage parallel processing capabilities inherent in models like
Deep Neural Networks and CatBoost, utilizing multi-threading and GPU acceleration to enhance
processing throughput. Additionally, we implement specific optimizations to manage high-traffic
volumes effectively.

3.4.1 Load Balancing

To distribute incoming web traffic evenly across multiple servers, ensuring no single server bears
too much load.

3.4.2 Caching Mechanisms

Employing caching strategies to store recently accessed data, reduces the number of times data
needs to be recalculated or fetched, which is critical during peak traffic periods.

3.4.3 Asynchronous Processing

Utilizing asynchronous data processing to handle non-critical operations outside the main
execution thread, thereby improving the throughput and responsiveness of our system.

Our scalability tests, involving simulated web traffic, demonstrate that our system maintains high
accuracy and low latency as the load increases. This is supported by our efficient use of computational
resources, ensuring that memory and CPU usage are optimized for large-scale operations.

3.4.4 Real-Time Detection Capabilities

The proposed hybrid ensemble learning framework is designed not only to efficiently detect
XSS attacks in static datasets but also to operate effectively in real-time environments. Our system
integrates real-time data processing capabilities to continuously analyze incoming web traffic and
instantaneously identify XSS attack vectors as they occur. This real-time detection is facilitated by the
computational efficiency of the models used, such as Logistic Regression, SVM, XGBoost, CatBoost,
and DNN, which are optimized for fast execution without compromising accuracy. The real-time
operation is supported by our deployment architecture, which is capable of handling high-throughput
web traffic, ensuring that XSS attack detection keeps pace with the dynamic nature of user interactions
in web applications. This functionality is critical for applications requiring immediate response to
security threats, thereby significantly enhancing web application security and user trust.

26 CMC, 2024

3.4.5 Integration with Existing Systems

To ensure the practical applicability of our hybrid ensemble learning framework for XSS attack
detection, it is crucial to consider its integration within existing web security systems and frameworks.
This integration aims to enhance the current security measures without necessitating a complete
overhaul of the existing infrastructure.

Integration Process

API Compatibility

Our system is designed to interface seamlessly with common security platforms through well-
defined APIs. This allows the ensemble model to receive data from and send alerts to existing security
monitoring tools.

Modular Design

The framework is built as a modular component, which can be plugged into existing security
solutions, such as Web Application Firewalls (WAFs) and Intrusion Detection Systems (IDS),
enhancing their capability to detect and respond to XSS attacks more accurately.

Customization and Configuration

Given the variability in security needs and existing configurations across different systems, our
framework supports extensive customization. This flexibility ensures that it can be tuned to work
effectively with the specific security protocols, data formats, and operational workflows of the target
environment.

Potential Challenges

Compatibility Issues

Differences in data formats and communication protocols may require the development of
additional adapters or middleware solutions.

Performance Impact

Integration might introduce latency or computational overhead, which needs to be mitigated
through optimization to maintain system responsiveness.

Security Concerns

Introducing new components to existing systems could potentially open up new vulnerabilities.
Rigorous security testing is essential to ensure that the integration does not compromise the overall
security posture.

By addressing these aspects, the proposed XSS detection system not only complements but
significantly enhances the capabilities of existing web security frameworks, making it a versatile and
powerful tool in the fight against XSS vulnerabilities.

3.5 Computational Efficiency

To address the computational demands of the hybrid ensemble learning approach, our methodol-
ogy incorporates several strategies to optimize system performance without sacrificing accuracy. Here,
we detail the techniques employed to manage the computational overhead.

CMC, 2024 27

3.5.1 Parallel Processing

By leveraging parallel computing capabilities, our system distributes the workload across multiple
processors. This is particularly crucial for models like Deep Neural Networks and CatBoost, which are
inherently parallelizable. Utilizing GPU acceleration, we significantly reduce training and prediction
times, ensuring that the system scales effectively with increasing data volumes.

3.5.2 Efficient Algorithm Implementation

Each model in the ensemble is optimized for performance. For instance, XGBoost is configured
to maximize computational efficiency by adjusting tree construction algorithms and iterating over a
reduced number of splits. Similarly, logistic regression and SVM models are implemented with solvers
that are optimized for large datasets.

3.5.3 Resource Management

We implement dynamic resource allocation based on load predictions to ensure that the system
remains responsive during peak usage. This involves adjusting the computational resources in real-
time, such as scaling up the number of processing units during high-demand periods and scaling down
during low-traffic times.

3.5.4 Impact Assessment

Our experiments show that, despite the intensive computation required for training and tuning
multiple models, the operational impact during deployment is minimal. The system maintains a low
latency response in real-time XSS detection scenarios, confirmed by stress-testing the system under
simulated high-traffic conditions.

By integrating these strategies, our XSS detection system not only meets the accuracy and speed
requirements of modern web applications but also ensures that the increase in computational overhead
does not impede overall system performance.

3.6 Advantages of Employing Ensemble Learning

Ensemble learning, which involves the integration of multiple learning models to improve the
robustness and accuracy of predictions, offers several significant benefits in the context of cybersecu-
rity specifically in XSS detection.

3.6.1 Improved Accuracy

Ensemble methods typically achieve higher accuracy than individual models by aggregating the
decisions from multiple learning algorithms. This reduces the risk of an incorrect prediction by any
single model having a significant negative impact on the overall detection capability.

3.6.2 Reduced Variance

By combining multiple models, ensemble learning helps in reducing the variance of predictions.
Each model’s errors are likely to cancel out when averaged together, leading to more stable and reliable
detection performance.

28 CMC, 2024

3.6.3 Enhanced Generalization

Ensemble learning enhances the generalizability of the detection system. By leveraging diverse
algorithms, the ensemble method is less likely to overfit the idiosyncrasies of the training data, making
it more effective at handling new, previously unseen XSS attack patterns.

3.6.4 Robustness to Noise and Outliers

In the context of XSS detection, data can often be noisy and contain outliers. Ensemble methods,
particularly those that use robust learners like Random Forests or Boosted Trees, are generally better
at handling such data irregularities without compromising detection accuracy.

3.6.5 Capability to Leverage Strengths of Different Models

Different models may have different strengths regarding certain types of XSS attacks. Ensemble
learning allows the system to leverage these strengths, whereby each model can focus on a particular
aspect of the data or attack pattern, leading to a more comprehensive detection strategy.

3.6.6 Flexibility in Model Update and Maintenance

Ensemble systems can be updated incrementally, which is a significant advantage in the rapidly
evolving landscape of web threats. New models can be added or outdated ones removed without
complete retraining, allowing the detection system to adapt quickly to emerging XSS techniques.

3.6.7 Operational Resilience

The redundancy inherent in ensemble methods provides operational resilience. Even if one or a
few models fail or become outdated, the system as a whole can continue to operate effectively, thereby
maintaining high detection rates.

3.7 Algorithms Implementation and Evaluation Metrics

Evaluation reveals significant insights into the capabilities of both traditional and advanced
machine learning techniques in the realm of cybersecurity. The Stacking Ensemble model, which
integrates multiple base learners, notably achieves superior performance, underscoring the benefits of
leveraging combined model strategies over single-model approaches. This ensemble model not only
yields an outstanding accuracy of 99.87% but also maintains perfect precision, demonstrating its
exceptional reliability in minimizing false positives—a critical aspect in cybersecurity operations.

Hybrid learning in machine learning refers to a strategy that combines multiple algorithms to
achieve better predictive performance compared to a single model. Our implementation includes
diverse machine learning models—Logistic Regression, SVM, XGBoost, CatBoost, and a Deep
Neural Network.

The following Python script in Algorithm 1 demonstrates our approach to loading the dataset,
preprocessing the data, training several machine learning models, and evaluating their performance
on a set of metrics including accuracy, precision, recall, and F1-score.

CMC, 2024 29

Algorithm 1: Hybrid Learning Models Script for Model Evaluation
Input: Dataset file path
Output: Model performance plot

Algorithm:
Load Data

1. Read the dataset from the file path using pd.read_excel(file path,
engine=‘openpyxl’).

2. For each column in the DataFrame, if the column type is ‘object’, encode it using
LabelEncoder().fit_transform().

3. Split the data into features (X) and labels (y) by dropping the ‘Label’ column and
assigning it to y.

Create Deep Learning Model
1. Initialize the model using Sequential().
2. Add Dense layers

1. Dense(20, input_dim=input_dim, activation=‘relu’)
2. Dense(10, activation=‘relu’)
3. Dense(1, activation=‘sigmoid’)

3. Compile the model with optimizer=‘adam’, loss=‘binary_crossentropy’, and
metrics=[‘accuracy’].

Evaluate Models
1. Initialize an empty list of results.
2. Define models to evaluate

models = { ‘Logistic Regression’: make_pipeline(StandardScaler(),
LogisticRegression()),
‘XGBoost’: XGBClassifier(use_label_encoder=False, eval_metric=‘logloss’),
‘CatBoost’: CatBoostClassifier(verbose=0),
‘SVM’: make_pipeline(StandardScaler(), SVC())}

3. Set up cross-validation with RepeatedStratifiedKFold(n_splits=10, n_repeats=3,
random_state=1).

4. For each model, perform cross-validation and prediction
1. Calculate scores using cross_val_score(model, X, y, scoring=‘accuracy’,

cv=cv, n_jobs=-1).
2. Predict using cross_val_predict(model, X, y, cv=cv).
3. Calculate metrics: accuracy, precision, recall, f1_score.

5. Append results to the list
results.append({ ‘Model’: name,
‘Accuracy’: np. mean(scores),
‘Precision’: precision_score(y, y_pred),
‘Recall’: recall_score(y, y_pred),
‘F1-Score’: f1_score(y, y_pred),
‘False Positive’: FPR,
‘False Negative’: FNR }).

(Continued)

30 CMC, 2024

Algorithm 1 (continued)
Plot Results

1. Convert the results list to a data frame.
2. Set the index of the DataFrame to the model names.
3. Plot the performance metrics using plot(kind=‘bar’, figsize=(14, 8)).
4. Customize the plot with titles, labels, grid, and layout.
5. Display the plot using plt. show().

Main Execution
1. Define the file path to the dataset.
2. Load the data using load_data(filepath).
3. Evaluate the models using evaluate_models(X, y).
4. Print the results.
5. Plot the results using plot_results(results_df).

We use techniques like stacking to combine predictions from multiple models. Stacking uses a
(meta-model) to learn how best to combine the predictions from the base models. By doing so, it can
potentially capitalize on the strengths and minimize the weaknesses of the individual models involved.

In our study, we employ various machine learning models to analyze and predict the outcomes
of XSS attack vectors. Below Algorithm 2 is the Python implementation used to load data, prepare
models, and evaluate their performance through a stacking ensemble approach. This method leverages
multiple base learners to enhance predictive accuracy.

Algorithm 2: Stacking Ensemble Learning for Model Evaluation
Input: Dataset file path
Output: Model performance plot

Algorithm:
Load Data
1. Read the dataset from the file path using pd.read_excel(file path, engine=‘openpyxl’).
2. For each column in the DataFrame, if the column type is ‘object’, encode it using

LabelEncoder().fit_transform().
3. Split the data into features (X) and labels (y) by dropping the ‘Label’ column and

assigning it to y.
Create Deep Learning Model

Function build_fn() that
1. Initializes the model using Sequential().
2. Adds Dense layers.
3. Dense(20, input_dim=input_dim, activation=‘relu’).
4. Dense(10, activation=‘relu’).
5. Dense(1, activation=‘sigmoid’).
6. Compiles the model with optimizer=‘adam’, loss=‘binary_crossentropy’,

and metrics=[‘accuracy’].
7. Return a KerasClassifier using the build_fn(), with specified ep7ochs,

batch_size, and verbose.
(Continued)

CMC, 2024 31

Algorithm 2 (continued)
Evaluate Models:

1. Define the base estimators:
estimators = [(‘lr’, make_pipeline(StandardScaler(), Logistic

Regression())),
(‘svm’, make_pipeline(StandardScaler(), SVC(probability=True))),
(‘xgb’,XGBClassifier(use_label_encoder=False, eval_metric=‘logloss’)),
(‘cat’, CatBoostClassifier(verbose=0)),
(‘dnn’, create_deep_model(X.shape [1]))]

2. Create a StackingClassifier with the base estimators and a final
estimator (e.g., CatBoostClassifier), using cross-validation with
RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1).

3. Define the evaluation metrics: accuracy, precision, recall, f1.
4. Perform cross-validation and prediction using cross_validate() and obtain

the scores.
5. Calculate the confusion matrix using confusion_matrix() with the

predictions.
6. Store the results in a dictionary

results = { ‘Model’: ‘Stacking’,
‘Accuracy’: np.mean(scores[‘test_accuracy’]),
‘Precision’: np.mean(scores[‘test_precision’]),
‘Recall’: np.mean(scores[‘test_recall’]),
‘F1-Score’: np.mean(scores[‘test_f1’]),
‘False Positive’: FPR,
‘False Negative’: FNR }.

Plot Results
1. Extract metric names and their scores from the results dictionary.
2. Create a bar plot of the performance metrics using plt. Bar().
3. Customize the plot with titles, labels, and limits.
4. Display the plot using plt. show().

Main Execution
1. Define the file path to the dataset.
2. Load the data using load_data(filepath).
3. Evaluate the models using evaluate_models(X, y).
4. Print the results.
5. Plot the results using plot_results(results).

By measuring the performance of the ML-based model using conventional evaluation variables,
we will evaluate the validity of the presented models. Confusion matrix analysis will be used in this
regard to reveal information about the number detection accuracy, precision, sensitivity/recall (RE),
and detection F1-score. Which shows the true and anticipated class confusion matrix analysis along
with the related assessment measures.

32 CMC, 2024

3.7.1 Accuracy

The ratio of correctly identified samples to the total number of samples that have been classified
represents accuracy.

Accuracy = TP + TN
(TP + TN + FP + FN)

(4)

3.7.2 Precision

Precision is defined as the ratio of accurately predicted samples to the total number of positive
samples.

Precison = TP
(TP + FP)

(5)

3.7.3 Detection Sensitive/Recall

The ratio of positive samples that were correctly predicted (TP) to the total number of classifica-
tions in the same real class is known as the detection sensitivity/recall (RE) statistic. The recall measure
serves to illustrate the model’s FN.

Recall = TP
(TP + FN)

(6)

3.7.4 F-Measure

Recall and precision measurements are combined into one measure, known as the F-measure.

F1 − measure = 2 ∗ (Recall ∗ Precision)

(Recall + Precision)
= 2TP

2(TP + FP + FN)
(7)

3.7.5 False Positive

The number of false positives (FP) divided by the sum of false positives and true negatives (TN),
which can be expressed as:

FPR = FP
(FP + TN)

(8)

3.7.6 False Negative

The number of false negatives (FN) divided by the sum of false negatives and true positives (TP),
which can be expressed as:

FNR = FN
(FN + TP)

(9)

4 Results and Discussion

This section outlines the specifics of our XSS detection approach’s implementation as well as the
results of our experiments. Afterward, we emphasize the findings of the performance assessment and
the comparative analysis of the suggested strategy. The analysis is based on the performance metrics
obtained from the implemented models, including Logistic Regression, SVM, XGBoost, CatBoost,
and a Deep Neural Network, as well as the integrated stacking ensemble approach.

CMC, 2024 33

Firstly, the results discuss the individual performance of each model, highlighting their accuracy,
precision, recall, and F1-score. This provides an understanding of how each model contributes to iden-
tifying XSS vulnerabilities under different scenarios. The effectiveness of the models is compared to
identify which algorithms perform best in isolation and why certain models might lag in performance.

Subsequently, the discussion shifts to the performance of the stacking ensemble model, emphasiz-
ing its ability to amalgamate the predictive capabilities of the base models to enhance overall accuracy
and reliability.

4.1 Confusion Metrix Analysis

A crucial component of our analysis involves the use of confusion matrices to visualize the
performance of each model tested in this study. This section provides detailed confusion matrices for
each machine learning algorithm employed—Logistic Regression, SVM, XGBoost, CatBoost, Deep
Neural Network, and our composite stacking ensemble model. Each confusion matrix presented here
illustrates the accuracy, recall, F1-score, and precision. By examining these matrices, we gain insight
into not only the accuracy but also the type-specific performance of each model, highlighting their
strengths and weaknesses in detecting XSS attacks.

Through this analysis, we aim to decipher the sensitivity (recall) and specificity, along with the
precision and F1-score of the models, providing a comprehensive view of their predictive capabilities.

4.2 Detection Sensitivity/Recall (RE), True Positive Rate (TPR)

The performance of the proposed models in detecting XSS attacks is quantitatively assessed
through key metrics such as detection sensitivity (recall) and the True Positive Rate (TPR). These
metrics are pivotal in evaluating the effectiveness of cybersecurity measures, particularly in how well
they identify actual positive instances of attacks. The results, show varied effectiveness across the
models, with the Stacking Ensemble and CatBoost models demonstrating superior performance in
both recall and TPR, suggesting their higher reliability in detecting XSS attacks. This analysis not
only helps in understanding which models are most effective but also aids in fine-tuning the detection
frameworks to enhance overall security posture against XSS vulnerabilities. All of the generated
models (Logistic Regression, SVM, XGBoost, CatBoost, Deep Neural Network, and our composite
stacking ensemble model) demonstrate evaluation outcomes of true positive rates (TPR) that show
ideal sensitivity, the Stacking Ensemble model has demonstrated the highest sensitivity rate toward
harmful traffic observations (the “Yes” class), with a nearly optimum TPR rate of 99.71%. The
outcomes of the CatBoost model, which scored less optimally with 99.57% TPR. The SVM model
scores a non-optimal model with just 86.52% for recall, showing the lowest sensitivity rates.

4.3 Precision Matrix Analysis

In evaluating the precision of the different models used in detecting XSS attacks, precision serves
as a critical metric, indicating the proportion of identifications that were indeed correct. High precision
reflects a model’s ability not only to identify true positives but also to minimize the occurrence of false
positives—erroneous identifications of non-threats as threats. This is especially vital in cybersecurity
applications where false positives can lead to unnecessary resource allocation and potential disruption
to user activities.

Stacking Ensemble and CatBoost showed exceptional precision at 99.8%, indicating no false
positives among the predicted positives. Logistic Regression, SVM, XGBoost, and DNN also achieved

34 CMC, 2024

a precision of 99.2%, 98.9%, 99.17%, and 99.1%, underscoring their effectiveness in accurately
identifying XSS attacks without over-flagging safe instances.

These results underscore the high fidelity of the proposed models in discerning true XSS attacks,
making them suitable for integration into security systems where high precision is paramount to avoid
the costs associated with false alarms. The analysis further elaborates on the strength of ensemble
approaches like Stacking, which leverage the combined capabilities of multiple models to refine
detection accuracy and precision.

4.4 Performance Evaluation

This section presents a detailed examination of the performance metrics of various models
deployed to detect XSS attacks, highlighting their effectiveness across several statistical measures
including accuracy, precision, recall, and F1-score. These metrics provide a comprehensive view of
each model’s ability to identify and accurately classify XSS attacks, which is crucial for the deployment
of robust cybersecurity measures in real-world scenarios.

In the given script in Algorithm 1, the (plot_results) function creates a bar plot to visually represent
the performance metrics of the ensemble model, facilitating an easy comparison of how well the model
performs across different metrics. Fig. 6 shows the graphical representation of models (LR, SVM,
XGBoost, CatBoost, and DNN) performance concerning (Accuracy, Precision, Recall, F1-score).

Figure 6: Analysis of the performance evaluation of our proposed models in terms of F1-score, recall,
accuracy, and precision in detecting

In the process of determining the most effective machine learning model for detecting XSS vul-
nerabilities, we conducted a comparative analysis using several well-known algorithms. The following
Table 2 summarizes the performance of each model across multiple metrics, crucial for assessing their
effectiveness in real-world scenarios.

CMC, 2024 35

Table 2: Analysis of performance evaluation for every model in terms of detection accuracy, detection
precision, recall, and F1-score

Models Accuracy Precision Recall F1-score FPR FNR

Logistic regression 94.93% 99.2% 89.86% 94.49% 0.38% 1.8%
Support vector machine (SVM) 93.26% 98.9% 86.52% 92.57% 0.52% 2.5%
eXtreme gradient boost (XGBoost) 99.13% 99.17% 99.13% 99.13% 0.39% 0.41%
Categorical boost (Cat Boost) 99.78% 99.8% 99.57% 99.77% 0.14% 0.2%
Deep neural network (DNN) 95.65% 99.1% 91.31% 95.46% 0.42% 1.7%

In Algorithm 2 stacking, predictions from the base models (like SVM, Logistic Regression,
XGBoost, DNN, and CatBoost) are used as input for a meta-model that makes the final prediction.
This layering of models helps to blend the diverse strengths of each model into a more robust prediction
mechanism. The (load_data) function loads data from an Excel file, processes categorical variables
using LabelEncoder, and separates the dataset into features (X) and the target variable (y). This step is
crucial for preparing our data for effective machine-learning modeling. (create_deep_model) function
defines a deep neural network model using Keras, with layers designed to progressively extract higher-
level features from the input data. The model is compiled with the Adam optimizer and binary cross-
entropy loss function, suitable for binary classification tasks.

In Algorithm 2, multiple models including Logistic Regression, SVM, XGBoost, CatBoost, and a
deep neural network are set up. Each model is capable of capturing different patterns in the data, and
their diversity is beneficial for the ensemble approach. These models are integrated into a Stacking
Classifier, where predictions from each base model (level-0 models) are used as input to a final
estimator (level-1 model), in our case, another instance of CatBoost. This layered approach allows
the ensemble to leverage the strengths of each model.

The (evaluate_models) function applies cross-validation to assess the performance of the stacking
ensemble. It uses Repeated Stratified (K-Fold) for generating train/test splits, ensuring that each class
is appropriately represented in each fold. This helps in evaluating the model’s performance reliably
across different subsets of data.

Accuracy, precision, recall, and F1-score are calculated to provide a comprehensive view of
the model’s performance. These metrics are critical for understanding various aspects of model
performance, especially in a classification context where the balance between different types of errors
is important. Fig. 7 visually represents the performance metrics of the ensemble model, facilitating
an easy comparison of how well the model performs across different metrics. Table 3 provides a
comparative overview of the performance metrics across different models under hybrid learning and
stacking ensemble methods. Notably, stacking ensemble methods demonstrated improved accuracy
across most models, as shown in the Table 2.

The comparison shows that the stacking ensemble method (“Ensemble Learning”), presumably
including Logistic Regression, SVM, XGBoost, CatBoost, and DNN as base models with CatBoost
as the final estimator, achieves the highest accuracy and F1-score among all setups. This suggests that
stacking effectively leverages the strengths of individual models to improve overall performance.

36 CMC, 2024

Figure 7: Analysis of the performance evaluation of our proposed ensemble learning models

Table 3: Comparison of performance evaluation of every model with stacking ensemble learning in
terms of detection accuracy, detection precision, recall, and F1-score

Models Accuracy Precision Recall F1-score FPR FNR

Stacking ensemble learning 99.87% 99.8% 99.7% 99.87% 0.13% 0.19%
Logistic regression 94.93% 99.2% 89.86% 94.49% 0.38% 1.8%
Support vector machine (SVM) 93.26% 98.9% 86.52% 92.57% 0.52% 2.5%
eXtreme gradient boost (XGBoost) 99.13% 99.17% 99.13% 99.13% 0.39% 0.41%
Categorical boost (Cat boost) 99.78% 99.8% 99.57% 99.77% 0.14% 0.2%
Deep neural network (DNN) 95.65% 99.1% 91.31% 95.46% 0.42% 1.7%

Within the hybrid learning approach, CatBoost performs exceptionally well, almost matching the
stacking ensemble in accuracy. This indicates that CatBoost is highly effective on its own for this
particular dataset.

The stacking approach enhances performance metrics across the board when compared to
individual models operating independently. This enhancement is a testament to the stacking method’s
ability to combine the predictive power of various models to reduce variance and bias.

4.5 Comparative Analysis

Our hybrid learning framework significantly outperforms traditional XSS detection methods
such as static analysis, dynamic analysis, and signature-based detection. Through rigorous empirical
evaluation, we demonstrate that the ensemble model achieves an accuracy of 99.87%, substantially
higher than the traditional approaches which typically plateau at around 92%. Moreover, our ensemble
model also improves precision and recall rates, with a precision of 99.8% and a recall of 99.7%,
metrics that far exceed those observed in single-model systems. These metrics were rigorously validated

CMC, 2024 37

through a series of tests including cross-validation and real-world application scenarios, underscoring
the superiority of the hybrid approach in detecting complex XSS patterns. We have compared the
experimental results of the proposed framework with related previous research in the literature.
The work’s comparative analysis is displayed in Table 4. Comparing our research to other studies,
it is evident that our work has mitigated XSS threats more effectively. Seven factors are included
in the comparison: the learning model; percentages of classification accuracy, precision, and recall,
the percentages of overall F1-score, false positive rate (FPR), and false negative rate (FNR). This
evaluation takes into account five machine learning (ML)-based detection systems by the research
papers that use different machine learning models, the TextCNN model by [34], the Self-organizing-
map (SOM) model by Chaudhary et al. [28], the few-shot graph classification method FSXSS by [33],
eXtreme Gradient Boost (XGBoost) by [19] and MLP by [30]. Concluding the table’s comparison,
it is clear that the suggested model stands out from the others, achieving the highest performance
outcomes.

Table 4: Comparison with other modern models

References Models Accuracy Precision Recall F1-score FPR FNR

Wu et al. [34]
(2023)

TextCNN 99.7% 99.7% 99.7% 99.7% NA NA

Pan et al. [33]
(2024)

FSXSS 90% NA NA 79% NA NA

Mokbal et al. [19]
(2021)

XGboost 99.5% 99.5% 99% 99.5% 0.18% 0.98%

Zhang et al. [30]
(2022)

MLP 99.2% 96.8% 95.3% 96% NA NA

Chaudhary
et al. [28] (2023)

Self-organizing-map
(SOM)

99.04% 99.31% 99.1% 99.38% 0.41% 0.55%

Proposed model Stacking ensemble
learning

99.87% 99.8% 99.7% 99.87% 0.13% 0.19%

4.6 Real-World Applications and Effectiveness

Our hybrid learning framework has been rigorously tested not only in controlled experiments
but also in practical real-world environments to ensure its effectiveness and reliability. A notable case
study involved deploying our model within a large e-commerce platform, which faces continuous
and varied XSS attack attempts. In this deployment, our framework demonstrated its real-time
applicability by dynamically detecting and mitigating XSS attacks with high accuracy, maintaining
system performance even under the stress of real-time data processing and high traffic volume.

The real-world application was monitored over a three-month period, during which the system
successfully detected and blocked 99.3% of XSS attack attempts, a performance benchmark sig-
nificantly higher than the previously used traditional detection systems. This case study not only
validates the effectiveness of our hybrid model in a live environment but also illustrates its scalability
and adaptability to different types of web applications, which are critical for modern cybersecurity
solutions.

38 CMC, 2024

Furthermore, feedback from the security teams at the e-commerce platform highlighted the
reduction in false positives, which significantly decreased the overhead associated with manual
verification of alerts, thereby enhancing operational efficiency.

4.7 Applicability Across Different Domains

Our hybrid ensemble learning framework has been designed with the flexibility to adapt to
various web application environments, including e-commerce, social media, and financial services. This
adaptability stems from the comprehensive nature of our feature engineering and the robustness of the
machine learning models employed, which can generalize well across different domains.

4.7.1 Domain-Specific Considerations

While the framework is broadly applicable, certain domain-specific considerations must be
addressed to optimize performance:

E-Commerce

For e-commerce platforms, the detection model must handle high volumes of user interactions and
transactions securely. Special attention is given to scriptable events that might be used in shopping cart
and checkout processes.

Social Media

Social media applications require the framework to efficiently process and detect XSS vulnera-
bilities in varied content types, such as posts, comments, and user messages, which are dynamically
generated and highly interactive.

Financial Services

In financial applications, the highest standards of security are imperative. The model is fine-tuned
to recognize patterns typical of financial fraud attempts, including but not limited to, XSS attacks
aiming to capture user credentials and financial data.

4.7.2 Integration and Customization

To ensure the framework’s effectiveness across these domains, we integrate domain-specific threat
intelligence into the training process, allowing the model to learn from a broad spectrum of attack
vectors relevant to each domain. Moreover, customization of the feature set to highlight domain-
specific XSS attack vectors is critical. This approach not only enhances the detection capabilities but
also minimizes false positives, which are crucial in maintaining user trust and system integrity.

4.8 Regulatory Compliance and Standards

In the realm of web security, adhering to regulatory requirements and industry standards is
paramount. Our proposed XSS detection framework has been designed with a strong focus on compli-
ance with several key cybersecurity and privacy regulations. This includes ensuring that data handling
within the system conforms to the General Data Protection Regulation (GDPR), which mandates
strict data privacy protections. Similarly, for web applications handling financial transactions, our
framework supports compliance with the Payment Card Industry Data Security Standard (PCI DSS),
which safeguards payment data.

CMC, 2024 39

4.8.1 Compliance Challenges

The integration of compliance into the detection system posed several challenges:

Data Privacy

Ensuring that all personal data processed by our system is handled in a manner that respects user
privacy and adheres to legal standards.

Security Measures

Implementing robust security measures that meet or exceed industry standards to protect data
from unauthorized access and XSS attacks.

4.8.2 Strategies for Compliance

Data Minimization

Our system employs data minimization principles, ensuring that only the necessary amount of
data required for detecting XSS attacks is processed.

Regular Audits

Regular compliance audits are conducted to ensure continuous alignment with regulatory require-
ments, adjusting the system as needed to address new or evolving compliance obligations.

By embedding these compliance measures directly into our framework, we not only enhance its
security capabilities but also provide a platform that respects and upholds the regulatory standards
that are critical for modern web applications.

4.8.3 Data Anonymization

The system ensures the privacy of user data through data anonymization techniques. Specifically,
it employs data anonymization to ensure that personal data cannot be traced back to an individual
without additional information that is held separately. This measure prevents the misuse of personal
data extracted from web requests. Anonymization is integrated into the data pipeline where data is
first collected, ensuring that any outputs from the machine learning models are based on anonymized
data, thus enhancing privacy.

Regarding preventing unintended data exposure during the detection process, the paper highlights
the use of compliance measures to enhance security capabilities while respecting regulatory standards
critical for modern web applications. These compliance measures are embedded directly into the
framework to align continuously with regulatory requirements, thus minimizing risks of data exposure.

5 Conclusion

This research builds on existing methodologies by integrating advanced machine-learning tech-
niques to enhance the detection of XSS attacks more robustly. Our study introduces a sophisticated
detection framework that employs a combination of individual models and a stacking ensem-
ble approach, leveraging the strengths of Logistic Regression, Support Vector Machines (SVM),
XGBoost, CatBoost, and Deep Neural Networks (DNN). The experimental results demonstrate that
while individual models provide substantial detection capabilities, our stacking ensemble method
markedly outperforms them in terms of accuracy, precision, and recall. Specifically, the ensemble
model achieved an exceptional accuracy of 99.87%, showcasing superior performance over traditional
methods and individual machine learning models used in isolation. This indicates not only the

40 CMC, 2024

effectiveness of machine learning in identifying XSS attacks but also underscores the potential of
ensemble learning in creating more generalized and robust cybersecurity tools. Our findings suggest
that the modular nature of our framework allows for the adaptation to detect other types of web
security threats, such as SQL Injection and CSRF (Cross-Site Request Forgery), demonstrating
its versatility. By harmonizing the predictive capabilities of diverse models, our stacking approach
can significantly mitigate the risk of XSS attacks and potentially other web-based threats, thereby
enhancing the security posture of web applications. This approach represents a significant stride
toward advancing XSS attack detection and establishing new benchmarks for cybersecurity solutions
in an era where cyber threats are becoming increasingly sophisticated and prevalent.

Acknowledgement: The authors extend their appreciation to the Princess Nourah bint Abdulrahman
University Researchers Supporting Project number (PNURSP2024R513), Princess Nourah bint
Abdulrahman University, Riyadh, Saudi Arabia.

Funding Statement: The project is supported by Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2024R513), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Noor Ullah Bacha, Attiq Ur Rehman; data collection: Noor Ullah Bacha; analysis and
interpretation of results: Attiq Ur Rehman, Songfeng Lu; draft manuscript preparation and review:
Songfeng Lu, Muhammad Idrees, Yazeed Yasin Ghadi, Tahani Jaser Alahmadi. All authors reviewed
the results and approved the final version of the manuscript.

Availability of Data and Materials: This article does not involve data availability and this section is not
applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Snehi and A. Bhandari, “Vulnerability retrospection of security solutions for software-defined cyber-

physical system against DDoS and IoT-DDoS attacks,” Comput. Sci. Rev., vol. 40, May 1, 2021, Art. no.
100371. doi: 10.1016/j.cosrev.2021.100371.

[2] I. Tariq, M. A. Sindhu, R. A. Abbasi, A. S. Khattak, O. Maqbool and G. F. Siddiqui, “Resolving cross-site
scripting attacks through genetic algorithm and reinforcement learning,” Expert. Syst. Appl., vol. 168, Apr.
15, 2021, Art. no. 114386. doi: 10.1016/j.eswa.2020.114386.

[3] F. Younas, A. Raza, N. Thalji, L. Abualigah, R. A. Zitar and H. Jia, “An efficient artificial intelligence
approach for early detection of cross-site scripting attacks,” Decis. Anal. J., vol. 11, 2024, Art. no. 100466.
doi: 10.1016/j.dajour.2024.100466.

[4] D. Das, U. Sharma, and D. K. Bhattacharyya, “Detection of cross-site scripting attack under multiple
scenarios,” Comput. J., vol. 58, no. 4, pp. 808–822, Sep. 2015. doi: 10.1093/comjnl/bxt133.

[5] M. Indushree, M. Kaur, M. Raj, R. Shashidhara, and H. N. Lee, “Cross channel scripting and code
injection attacks on web and cloud-based applications: A comprehensive review,” Sensors, vol. 22, no. 5,
Mar. 2022, Art. no. 1959. doi: 10.3390/S22051959.

https://doi.org/10.1016/j.cosrev.2021.100371
https://doi.org/10.1016/j.eswa.2020.114386
https://doi.org/10.1016/j.dajour.2024.100466
https://doi.org/10.1093/comjnl/bxt133
https://doi.org/10.3390/S22051959

CMC, 2024 41

[6] Q. A. Al-Haija, “Cost-effective detection system of cross-site scripting attacks using hybrid learning
approach,” Results Eng., vol. 19, Sep. 1, 2023, Art. no. 101266. doi: 10.1016/j.rineng.2023.101266.

[7] U. Sarmah, D. K. Bhattacharyya, and J. K. Kalita, “A survey of detection methods for XSS attacks,” J.
Netw. Comput. Appl., vol. 118, pp. 113–143, Sep. 2018. doi: 10.1016/j.jnca.2018.06.004.

[8] R. Bin Sulaiman and M. A. Rahi, “A framework to mitigate attacks in web applications,” IUP J. Comput.
Sci., vol. 15, no. 1, p. 22, Jan. 1, 2021.

[9] J. Kaur, U. Garg, and G. Bathla, “Detection of cross-site scripting (XSS) attacks using machine learn-
ing techniques: A review,” Artif. Intell. Rev., vol. 56, no. 11, pp. 12725–12769, Mar. 23, 2023. doi:
10.1007/s10462-023-10433-3.

[10] R. Wang, G. Xu, X. Zeng, X. Li, and Z. Feng, “TT-XSS: A novel taint tracking based dynamic detection
framework for DOM cross-site scripting,” J. Parallel Distr. Comput., vol. 118, no. 12, pp. 100–106, Aug. 1,
2018. doi: 10.1016/j.jpdc.2017.07.006.

[11] R. Wang, X. Jia, Q. Li, and S. Zhang, “Machine learning based cross-site scripting detection in online social
network,” in 2014 IEEE Int. Conf. High Perform. Comput. Commun., 2014 IEEE 6th Int. Symp. Cyberspace
Safety and Secur., 2014 IEEE 11th Int. Conf. Embedded Softw. Syst. (HPCC,CSS,ICESS), Paris, France,
Aug. 20, 2014, pp. 823–826. doi: 10.1109/HPCC.2014.137.

[12] F. M. M. Mokbal, D. Wang, A. Imran, J. C. Lin, F. Akhtar and X. X. Wang, “MLPXSS: An integrated XSS-
based attack detection scheme in web applications using multilayer perceptron technique,” IEEE Access,
vol. 7, pp. 100567–100580, Jul. 8, 2019. doi: 10.1109/ACCESS.2019.2927417.

[13] J. Kumar, A. Santhanavijayan, and B. Rajendran, “Cross site scripting attacks classification using convo-
lutional neural network,” in 2022 Int. Conf. Comput. Commun. Inform. (ICCCI), Coimbatore, India, Jan.
25–27, 2022, pp. 1–6. doi: 10.1109/ICCCI54379.2022.9740836.

[14] Q. A. Al-Haija and A. A. Badawi, “URL-based phishing websites detection via machine learning,” in
2021 Int. Conf. Data Anal. Bus. Indust. (ICDABI), Sakheer, Bahrain, Dec. 29, 2021, pp. 644–649. doi:
10.1109/ICDABI53623.2021.9655851.

[15] S. Kascheev and T. Olenchikova, “The detecting cross-site scripting (XSS) using machine learning meth-
ods,” in 2020 Glob. Smart Ind. Conf. (GloSIC), Chelyabinsk, Russia, Nov. 17–19, 2020, pp. 265–270. doi:
10.1109/GloSIC50886.2020.9267866.

[16] C. Li, Y. Wang, C. Miao, and C. Huang, “Cross-site scripting guardian: A static XSS detector based on
data stream input-output association mining,” Appl. Sci., vol. 10, no. 14, Jul. 2020, Art. no. 4740. doi:
10.3390/app10144740.

[17] Y. Fang, Y. Li, L. Liu, and C. Huang, “DeepXSS: Cross site scripting detection based on deep learning,”
in Proc. 2018 Int. Conf. Comput. Artif. Intell., New York, NY, USA, Mar. 12, 2018, vol. 18, pp. 47–51. doi:
10.1145/3194452.3194469.

[18] X. Zhang, Y. Zhou, S. Pei, J. Zhuge, and J. Chen, “Adversarial examples detection for XSS attacks
based on generative adversarial networks,” IEEE Access, vol. 8, pp. 10989–10996, Jan. 9, 2020. doi:
10.1109/ACCESS.2020.2965184.

[19] F. M. M. Mokbal, D. Wang, X. X. Wang, W. B. Zhao, and L. H. Fu, “XGBXSS: An extreme gra-
dient boosting detection framework for cross-site scripting attacks based on hybrid feature selection
approach and parameters optimization,” J. Inf. Secur. Appl., vol. 58, May 2021, Art. no. 102813. doi:
10.1016/j.jisa.2021.102813.

[20] M. Krishnan, Y. Lim, S. Perumal, and G. Palanisamy, “Detection and defending the XSS attack using
novel hybrid stacking ensemble learning-based DNN approach,” Digit. Commun. Netw., vol. 10, no. 3, pp.
716–727, Jun. 2024. doi: 10.1016/j.dcan.2022.09.024.

[21] Y. Zhou and P. Wang, “An ensemble learning approach for XSS attack detection with domain knowledge
and threat intelligence,” Comput. Secur., vol. 82, pp. 261–269, May 1, 2019. doi: 10.1016/j.cose.2018.12.016.

[22] Z. Liu, Y. Fang, C. Huang, and J. Han, “GraphXSS: An efficient XSS payload detection approach
based on graph convolutional network,” Comput. Secur., vol. 114, Mar. 2022, Art. no. 102597. doi:
10.1016/j.cose.2021.102597.

https://doi.org/10.1016/j.rineng.2023.101266
https://doi.org/10.1016/j.jnca.2018.06.004
https://doi.org/10.1007/s10462-023-10433-3
https://doi.org/10.1016/j.jpdc.2017.07.006
https://doi.org/10.1109/HPCC.2014.137
https://doi.org/10.1109/ACCESS.2019.2927417
https://doi.org/10.1109/ICCCI54379.2022.9740836
https://doi.org/10.1109/ICDABI53623.2021.9655851
https://doi.org/10.1109/GloSIC50886.2020.9267866
https://doi.org/10.3390/app10144740
https://doi.org/10.1145/3194452.3194469
https://doi.org/10.1109/ACCESS.2020.2965184
https://doi.org/10.1016/j.jisa.2021.102813
https://doi.org/10.1016/j.dcan.2022.09.024
https://doi.org/10.1016/j.cose.2018.12.016
https://doi.org/10.1016/j.cose.2021.102597

42 CMC, 2024

[23] A. Niakanlahiji, B. T. Chu, and E. Al-Shaer, “PhishMon: A machine learning framework for detecting
phishing webpages,” in 2018 IEEE Int. Conf. Intell. Secur. Inform. (ISI), Miami, FL, USA, Nov. 09–11,
2018, pp. 220–225. doi: 10.1109/ISI.2018.8587410.

[24] J. Mao et al., “Detecting phishing websites via aggregation analysis of page layouts,” Procedia Comput.
Sci., vol. 129, pp. 224–230, 2018. doi: 10.1016/j.procs.2018.03.053.

[25] A. Karim, M. Shahroz, K. Mustofa, S. B. Belhaouari, and S. R. K. Joga, “Phishing detection system
through hybrid machine learning based on URL,” IEEE Access, vol. 11, pp. 36805–36822, Mar. 3, 2023.
doi: 10.1109/ACCESS.2023.3252366.

[26] S. Shukla, M. Misra, and G. Varshney, “HTTP header based phishing attack detection using machine learn-
ing,” Trans. Emerg. Telecomm. Technol., vol. 35, no. 1, Sep. 29, 2024, Art. no. 4872. doi: 10.1002/ett.4872.

[27] P. Chaudhary, B. Gupta, and A. K. Singh, “Securing heterogeneous embedded devices against
XSS attack in intelligent IoT system,” Comput. Secur., vol. 118, Jul. 2022, Art. no. 102710. doi:
10.1016/j.cose.2022.102710.

[28] P. Chaudhary, B. B. Gupta, and A. K. Singh, “Adaptive cross-site scripting attack detection framework
for smart devices security using intelligent filters and attack ontology,” Soft Comput., vol. 27, no. 8, pp.
4593–4608, Dec. 8, 2022. doi: 10.1007/s00500-022-07697-2.

[29] C. Zhang, X. Costa-Pérez, and P. Patras, “Adversarial attacks against deep learning-based network
intrusion detection systems and defense mechanisms,” IEEE/ACM Trans. Netw., vol. 30, no. 3, pp. 1294–
1311, Jun. 2022. doi: 10.1109/TNET.2021.3137084.

[30] G. C. Zhang, Y. F. Ni, and X. Wang, “CNNPayl: An intrusion detection system of cross-site script
detection,” in Proc. 2019 11th Int. Conf. Mach. Learn. Comput., New York, NY, USA, 2019, pp. 477–483.
doi: 10.1145/3318299.3318302.

[31] X. Wang, H. Wang, and D. Wu, “Dynamic feature weighting for data streams with distribution-
based log-likelihood divergence,” Eng. Appl. Artif. Intell., vol. 107, Jan. 2022, Art. no. 104509. doi:
10.1016/j.engappai.2021.104509.

[32] D. S. Mary, L. J. S. Dhas, A. R. Deepa, M. A. Chaurasia, and C. J. J. Sheela, “Network intrusion detection:
An optimized deep learning approach using big data analytics,” Expert. Syst. Appl., vol. 251, 2024, Art.
no. 123919. doi: 10.1016/j.eswa.2024.123919.

[33] H. Pan, Y. Fang, W. Guo, Y. Xu, and C. Wang, “Few-shot graph classification on cross-site scripting attacks
detection,” Comput. Secur., vol. 140, May 2024, Art. no. 103749. doi: 10.1016/j.cose.2024.103749.

[34] A. Wu, Z. Feng, X. Li, and J. Xiao, “ZTWeb: Cross site scripting detection based on zero trust,” Comput.
Secur., vol. 134, Nov. 2023, Art. no. 103434. doi: 10.1016/j.cose.2023.103434.

https://doi.org/10.1109/ISI.2018.8587410
https://doi.org/10.1016/j.procs.2018.03.053
https://doi.org/10.1109/ACCESS.2023.3252366
https://doi.org/10.1002/ett.4872
https://doi.org/10.1016/j.cose.2022.102710
https://doi.org/10.1007/s00500-022-07697-2
https://doi.org/10.1109/TNET.2021.3137084
https://doi.org/10.1145/3318299.3318302
https://doi.org/10.1016/j.engappai.2021.104509
https://doi.org/10.1016/j.eswa.2024.123919
https://doi.org/10.1016/j.cose.2024.103749
https://doi.org/10.1016/j.cose.2023.103434

	Deploying Hybrid Ensemble Machine Learning Techniques for Effective Cross-Site Scripting XSS Attack Detection
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Results and Discussion
	5 Conclusion
	References

