
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.053830

ARTICLE

Towards Improving the Quality of Requirement and Testing Process in Agile
Software Development: An Empirical Study

Irum Ilays1, Yaser Hafeez1,*, Nabil Almashfi2, Sadia Ali1, Mamoona Humayun3,*,
Muhammad Aqib1 and Ghadah Alwakid4

1University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46000, Pakistan
2Department of Software Engineering, College of Computer and Information Sciences, Jouf University,
Al Jouf, 72388, Saudi Arabia
3School of Arts Humanities and Social Sciences, University of Roehampton, London, SW15 5PJ, UK
4Department of Computer Science, College of Computer and Information Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
*Corresponding Authors: Yaser Hafeez. Email: yasir@uaar.edu.pk; Mamoona Humayun.
Email: Mamoona.Humayun@roehampton.ac.uk

Received: 10 May 2024 Accepted: 26 July 2024

ABSTRACT

Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specifi-
cation, which affect the testing process. Therefore, it is difficult to identify all faults in software. As requirement
changes continuously, it increases the irrelevancy and redundancy during testing. Due to these challenges; fault
detection capability decreases and there arises a need to improve the testing process, which is based on changes
in requirements specification. In this research, we have developed a model to resolve testing challenges through
requirement prioritization and prediction in an agile-based environment. The research objective is to identify the
most relevant and meaningful requirements through semantic analysis for correct change analysis. Then compute
the similarity of requirements through case-based reasoning, which predicted the requirements for reuse and
restricted to error-based requirements. Afterward, the apriori algorithm mapped out requirement frequency to
select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.
Furthermore, the proposed model was evaluated by conducting experiments. The results showed that requirement
redundancy and irrelevancy improved due to semantic analysis, which correctly predicted the requirements,
increasing the fault detection rate and resulting in high user satisfaction. The predicted requirements are mapped
into test cases, increasing the fault detection rate after changes to achieve higher user satisfaction. Therefore, the
model improves the redundancy and irrelevancy of requirements by more than 90% compared to other clustering
methods and the analytical hierarchical process, achieving an 80% fault detection rate at an earlier stage. Hence, it
provides guidelines for practitioners and researchers in the modern era. In the future, we will provide the working
prototype of this model for proof of concept.

KEYWORDS
Requirement prediction; software testing; agile software development; semantic analysis; case-based reasoning

Published Online: August 2024

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.053830
https://www.techscience.com/doi/10.32604/cmc.2024.053830
mailto:yasir@uaar.edu.pk
mailto:Mamoona.Humayun@roehampton.ac.uk

2 CMC, 2024

1 Introduction

In software engineering (SE), agile is an iterative paradigm for developing software and project
management which is helpful for teams to accomplish customer satisfaction in this continuously
evolving period [1,2]. Agile-based environment (ABE) is a project management methodology empha-
sizing flexibility, collaboration, and continuous improvement [3,4]. In the modern era, an ABE allows
information technology organizations to stay competitive by continuously improving their products
and services to meet changing customer needs and market trends [1,3]. The two major phases that
are crucial for software development and the success of any project are requirements specification
and testing [2,5]. Gathering and defining the functionality of developed software during requirement
engineering is a problematic stage of the developed software; because it involves ambiguous require-
ments, multiple perspectives from stakeholders, irrelevant requirements, validations of changes, and
coordination between the team and stakeholders in ABE [1,4,5]. As a result, it makes the software
more complex and reduces its productivity and quality [2]. The goal of requirement prioritization
(RP) is to ensure that the software project’s needs which are of the utmost importance are recorded
and carried out first [5]. Requirement dependencies and inconsistencies may be mitigated by careful
prioritization [5]. Different approaches such as clustering, and analytical hierarchical processes (AHP)
have been used to specify and prioritize requirements based on stakeholders, budget, timeline, and
the kind of project [6–8]. The clustering approach separates a given collection of data into numerous
clusters to establish the proximity between those items, whereas, AHP prioritizes the requirements
based on significance cost, time, penalty and risk. The AHP is used by the stakeholders to rate the
needs. AHP is a technique for structuring and deriving conclusions from challenging mathematical
decision-based situations. AHP pairs requirements according to importance (based on stakeholder
perspectives), consequences (according to the severity of the effect, if executed incorrectly), cost
(tested requirements in accordance with business, implementation, and maintenance cost), time
(implementation, deployment, maintenance and response time), and risk (relevant requirements in
accordance to the quality, correctness, completeness, and other factors) [9,10].

In case-based reasoning (CBR), a system learns from previous experiences or cases and applies
that knowledge to solve new problems [8]. The cases are stored in a knowledge repository and are
evaluated to identify the most similar situation to the current one. Once a match is made, the system will
use previous experience to solve the existing problem [11]. RP has major issues which are redundancy
and irrelevancy of requirements due to multiple viewpoints of stakeholders. This increases the cost
of the system, and decreases the quality and low satisfaction level, so there is a need to improve
these parameters. Semantic analysis (SA) analyzes text documents to extract meaningful and relevant
information. It involves using natural language processing techniques to identify and understand the
underlying meaning of words and sentences [6,12]. Text mining is extracting valuable insights and
knowledge from unstructured text data. Text mining techniques can be used to uncover hidden trends,
patterns, and relationships in large volumes of textual information [7,8].

In this research, we are using SA using text mining to improve the requirements specification.
The requirement classification and clustering are used to improve the irrelevancy and redundancy
of requirements. Therefore, we are using CBR to map on whether requirements are reused, new or
updated.

Software testing is a substantial phase in software development that ensures software quality
by testing a program against its target and identifying software faults [13]. Therefore, trust testing
during application development to validate software reliability and quality after implementation of
changes [14]. Testing has major threats regarding fault detection and needs to reduce the redundant

CMC, 2024 3

and irrelevant test cases during ABE. Test case prioritization (TCP) uses pre-established goals to
prioritize the test cases. In contrast, test case selection (TCS) focuses on the crucial test cases impacted
by the changed area [3,15,16]. TCP got more attention since test cases are included in the test suite [17].
Furthermore, if the process is interrupted, TCP helps reduce the time required for retesting [18,19]. It
encourages us to add the TCS process, with time and budget limitations, eliminates the redundancy
of test cases from the prioritized test suite [19]. Moreover, TCP schedules the test cases using various
test adequacy criteria, such as optimizing requirements coverage [20]. The testing criteria significantly
influence the approach’s efficiency [20]. Different standards, like cost or coverage optimization, are
used to evaluate the TCP. It is not easy to assess the relevance, interrelation, and relative value of these
aspects [20]. In TCP, a large number of test cases are involved for execution to validate the changes
and most of the test cases are reused for execution to identify the faults [21]. Therefore, there is a
need to mine test cases based on different associations and relationships to improve the decision-
making process. Thus, apriori algorithm is the data mining technique to deal with large datasets based
on association rules. It helps in TCP by analyzing different patterns and relationships among test
cases that help in validating the changes [22]. In this research, we improved the TCS and TCP by
correct specification, reuse and restructuring after modification in requirements. We identified the
error-based requirement through apriori algorithm during the requirement prediction phase, which
also improves the test cases irrelevancy, redundancy and fault detection. The apriori method is used
by the model to examine the impact of modifications. It uses a map of requirement frequency to select
suitable test cases. Test cases are then prioritized depending on their frequency of repeat. This method
focuses on frequently reused test cases to improve problem identification, once modifications are
implemented. These examples are likely to expose potential faults produced by the changes, enhancing
overall software quality and testing efficiency.

1.1 Research Problem

The purpose of this study is to investigate the impact of various variables on the TCP in ABE.
The following research questions (RQs) (RQs are based on the research process) are being addressed:

RQ1: Do requirements affect TCP?

The question in this study looks into the relationship between TCP and requirement specification
by examining how more explicit and extensive requirements result in better TCP.

RQ2: How does the proper reuse and selection of requirements affect the TCP procedure?

The purpose of the question is to investigate the effect of reusing and selecting relevant require-
ments on the efficiency and effectiveness of the TCP process. It may be able to reduce redundancy and
improve overall testing quality by doing so.

RQ3: Does the change impact analysis of the proposed model result in an improvement to the
TCP?

The RPTSP (Requirement Prediction, Test-case Selection, and Prioritization) potentially
increases the adaptability of the TCP process to change by including a change impact analysis using
the apriori algorithm to identify frequently changing requirements and prioritize associated test cases.

RQ4: Can proposed RPTSP improve fault detection rate (FDR)?

The current study evaluates the efficiency of RPTSP, in improving the rate of fault detection
through improved requirement prediction, TCS, and prioritization. The average percentage fault
detection (APFD) metric is used in the study to assess the model’s usefulness in detecting software
faults.

4 CMC, 2024

The goal of TCP procedures and addressed research concerns in ABE is to develop higher quality
software in the field of software development by optimizing increased FDR. An intense amount of
research has been accomplished to find ways to efficiently predict the requirements and increase
FDR. On the other hand, existing methods such as clustering and AHP in ABE cannot efficiently
and effectively predict requirements and identify faults after changes. The redundant and irrelevant
requirements result in redundant faults identification and selection of test cases. The APFD metric
percentage is used to find FDR over the prioritized test suite. It detects the maximum faults, which
results in a higher FDR.

1.2 Research Contributions

The main research contributions to address the difficulties described above in the following
ways:

• In this research, we present a requirement prediction, TCS, and prioritization method for agile-
based software development based on irrelevant and redundant TCS to enhance the ability
of FDR.

• The proposed model deals with requirement prediction of similar and frequent changes in
requirements, selection of test cases, and prioritization of frequently changed test cases in
every release for agile-based development strategies. Therefore, our proposed model named as
RPTSP. In the first phase, we classify requirements to reduce ambiguity among stakeholders; we
categorize the requirement through SA. In clustering, the CBR technique identifies the similar-
ity between requirements to remove the relevancy and redundancy between the requirements.
Afterwards, parameters are generated to select and prioritize test cases to identify maximum
faults. TCS and prioritization improve the FDR through APFD.

• The RPTSP model was evaluated using case studies and experiments in three different projects.
After observing different results from these projects, it was discovered that the RPTSP model
identifies the most accurate requirements, detects more faults, and is effective for all the projects
compared to AHP, clustering, and other FDR methods.

1.3 Research Significance and Applicability

This research provides guidelines and a baseline for researchers, requirement engineers, and testers
to enhance the quality and productivity of the software. This research significantly improves the
activities of software engineers and testers, such as correct reuse, requirement selection, and validation
during requirement specification, as well as testing after implementing changes in ABE.

The remaining paper is categorized into different sections as follows: Section 2 provides an
overview of the related work. Section 3 provides the details of the RPTSP model, followed by Section 4,
which provides the results and discussion, Section 5 is about practical implications, Section 6 concludes
the paper and finally Section 7 is about potential limitation and future work.

2 Related Work

Software keeps changing constantly through development and maintenance for various reasons,
like addition of new features, modifying existing components, and refactoring [6]. Software testing
plays a crucial role in ensuring the accuracy, completeness, and utility of user specifications and
requirements. On the other hand, testing is a process that ensures the software is defect-free or failure-
free. Prioritization of test cases is a difficult task in software testing. In contrast, TCP tries to determine
the best order for test case executions to maximize the testers’ work, even if testing is stopped early

CMC, 2024 5

for any reason; like when the testing resources are depleted [23]. Software requirements and software
testing procedures need to be aligned, to prevent possible issues with software product delivery. For
instance, inadequate communication with testers regarding requirements modifications may lead to an
incorrect verification of outdated requirements or a failure to verify new requirements, which could
compromise the quality of the software. Thus, one of the key elements that determines the project’s
success and, ultimately, the level of customer satisfaction is the quality of the software. But making
sure software is of a high caliber is no easy feat. Teams working on software development have been
concentrating on creating products that satisfy customers in the face of constant change and shortened
deadlines [24].

Different issues of the RP and testing are highlighted in different studies. Software testing and RP
subjects in SE are significant areas of research. There may be various explanations, but one possibility
is that the variables aren’t considered crucial in isolated studies. Therefore, alternative prioritization
strategies must be compared and examined across numerous platforms (e.g., time and cost) to obtain
credible evidence. In paper [25], a search-based SE method was used for the ranking and selection
of requirements. The goal is to rank and pick the prioritized requirements in software. This method
gives an evaluation and relationship detected, examined, categorized, and grouped search-based SE
approaches that were put forward for problems with need selection and ranking. According to [26],
they offered the idea of a multi-criteria decision-making model for RP. Their technique is a case study
that uses a neural network-based model and fuzzy AHP to identify the best stakeholders while ensuring
the stakeholder’s satisfaction [10,27]. Few of the prioritization techniques in the literature satisfy
particular quality standards, including effectiveness, ease of use, and scalability [9,10]. The paper [25]
suggested a technique that involved end-user participation in a situation-transition framework for
RP. In the paper [28], the authors considered the multi-users viewpoints and proposed a commercial
off-the-shelf (COTS) prioritization technique. In [17], the authors provided a systematic mapping of
literature to categorize current approaches to solve the problems like selection and prioritization of
requirements.

Similarly, the paper [29] suggested a framework for prioritization: a fuzzy-based engine (FBE). In
the FBE approach, Fuzzy rules are used to assign a user prioritization value as input to the requirement
analysis process. Paper [30] proposed a technique to deal with new and current requirement priority
orders through machine learning. The RP is based on users’ feedback with less human effort to reduce
cost and time [31]. Paper [32] suggested a combination of evolutionary-based and clustering procedures
to handle huge data effectively using ranks. Therefore, literature identifies different problems for RP:
scalability, time consumption, accuracy, etc. The method has been used to evaluate trace link assurance
by looking at similar and different requirements to reduce complexity. SA using text mining combines
both these techniques to analyze large volumes of text data and extract valuable insights.

As we know, the latest trends are moving toward AI, so there is a need to integrate AI in RE
and testing [21]. The apriori algorithm is a data mining technique to discover association rules in
large datasets. It is primarily used to analyze transactional data such as that found in retail sales or
customer transaction history. Primarily, the apriori algorithm works on a database encompassing a
considerable number of transactions [22]. Essentially, the apriori algorithm identifies frequent item
sets in the data, i.e., groups of items frequently occurring together in the dataset [22]. In [33], the
authors has used a prioritization model developed on a different dimensional equation of TCP for
early execution to increase flexibility in the TCP process. They also discovered that considering
weighted probability distributions might enhance the effectiveness of dynamic TCP techniques. The
technique’s limitation is that it fails to keep track of test case repositories after modifications and
overlooks test changes and historical fault information. Regarding FDR, historical data with code

6 CMC, 2024

coverage is a more effective method for tracking test cases concealing modified lines [15]. The disparity
metric is a highly straightforward, effective, and efficient method of TCP. Adaptive random testing is
directly applied in this method of dispersity metric, which is not a revolutionary concept in and of
itself. Hence, there is a need to identify the redundant fault detection and change in requirements at
any level to accommodate [34].

A method is proposed for TCP following the pattern extraction of neurons and their values
from the training set above the deep neural network in the paper [13]. The TCP across a deep neural
network model is determined based on how well activated and inhibited neurons adhere to recognized
patterns [13]. The initial test case priority was to determine the prioritization technique using historical
data and prioritized requirements [23]. Despite this approach’s adequate performance, redundant
faults were found, when faults were divided according to requirement property. Additionally, multiple
prioritization criteria were used, but the frequency of test case changes was overlooked.

According to the existing studies, we determined that integration of requirements in testing is
challenging and prone to error tasks. This is because of the lack of term mismatch and semantics
resulting from different stakeholder views during the formulation of requirement specifications. After
the changes, inconsistency, human collaboration, ambiguity, and uncertainty in real-time systems
increased. In this research, we identified different parameters from the existing literature, that are
the main gaps of testing based on requirements in an ABE; we identified incorrect or irrelevant
requirement prediction, test cases irrelevancy, and redundant fault detection after changes in imple-
mentation as depicted in Table 1. The identified challenges (such as accurate selection of requirements,
stakeholder satisfaction and term mismatch) in ABE are due to continuous evolution or changes
in the software development process. The main reason for these challenges in ABE is due to lack
of procedure, lack of structured planning and organizing meetings, complexity in adopting new
methodology by the team and effort management. These challenges increase the errors and reduce
FDR during the validation of changes in ABE. Therefore, our proposed model RPTSP improves the
FDR by addressing existing challenges using semantic analysis and CBR technique for the accurate
TCP. These challenges are mentioned in different existing studies and highlighted that it increases the
error and reduces FDR during validation and changes in ABE.

3 Proposed RPTSP Model

The proposed RPTSP model was developed through a structured and systematic approach that
involved the collection of data and knowledge from various sources, as well as the collaboration of
multiple stakeholders and experts. To ensure efficiency, accuracy, and overall quality of the software
product, an integrated approach for software requirements and testing these two main stages of
software development are aligned specifically. The main scope of our proposed model is to improve
the software testing process in agile environment by aligning requirements with the test cases instead
of improving agile methodology. The RPTSP efficiently and effectively predict requirements and
identify faults after changes. The redundant and irrelevant requirements result in redundant faults
identification and selection of test cases. The APFD metric percentage is used to find FDR over the
prioritized test suite. It detects the maximum faults, which results in a higher FDR. The primary goals
of this RPTSP model are shown in Fig. 1, which are to enhance the identification of duplicate defects
after modifications and inaccurate requirement prediction. SA is used to categorize user-based needs
and system-based requirements. Utilize CBR to cluster the needs after categorization. Predicting the
needs based on high priority eliminates the ambiguity in situations when priorities are comparable,

CMC, 2024 7

and picking the highest priority requirements from each cluster allows for the fastest possible mistake
detection. The three stages of the RPTSP model are defined below:

Table 1: Comparison of existing studies

Parameters\References [6] [19] [13] [21] [23] [34] [30]

Accurate selection of requirements �� �� �� �� �� �� ��
Change in requirements �� �� �� �� �� �� ��
Redundancy �� �� �� �� �� �� ��
Irrelevant requirements �� �� �� �� �� �� ��
Stakeholder satisfaction �� �� �� �� �� �� ��
Semantic analyses �� �� �� �� �� �� ��
Lack of AI method �� �� �� �� �� �� ��
Term mismatch �� �� �� �� �� �� ��
Fault detection �� �� �� �� �� �� ��
Irrelevant test cases �� �� �� �� �� �� ��
Change in test cases �� �� �� �� �� �� ��
Note: Not mentioned = ��, Partially mentioned = ��, Mentioned = ��.

Figure 1: RPTSP model

8 CMC, 2024

The first phase of the model is the requirement specification and classification. This phase
comprises of the following main stages:

a) Scenario-based requirement: Scenario-based modeling identifies the primary use cases for the
proposed software. Scenarios are instances of experience with a system captured by users. A
scenario-based requirement explains the user expectation from the system and represents the
business value that the cross-functional team should make the product in a sprint. For the
selected sprint, each user scenario is kept in a file. Every user story has multiple requirements.
For example, the car alarm system is a scenario and most common user requirements or expec-
tations are door lock, unlock, alarm activation and deactivation. It helps in the specification
of requirements.

b) Classification of requirements: In RPTSP model, the requirements are classified into user-
based and system-based requirements through SA. SA mine requirements are based on
stakeholders’ priority and remove conflicts using the RStudio tool for text mining (this tool
extracts text semantically from all the documents). The requirements are extracted through
the experience of stakeholders; if the stakeholder has more than one year of experience,
they are labeled as experienced users and they worked as a technical user like requirement
engineer, developer and tester. These users emphasize the technical feasibility, integration,
and detailed functionality of the requirements. They prioritize aspects that ensure robust
system performance, security, and technical integration. Otherwise, they are labeled as non-
experienced users and they worked as a non-technical user like end-user, product owner and
customer. These users prioritize ease of use, intuitive interfaces, and overall user experience.
They focus on functionalities that directly impact their interaction with the vehicle. The
impact assessment was done on the basis of high impact, medium impact and low-impact
requirements. The high impact requirements that significantly affect the system’s usability,
security, and user satisfaction. The medium impact requirements that improve user experience
but are not critical for system operation. Then low impact requirements that provide additional
convenience but have minimal impact on core functionalities.

The second phase is about requirement clustering and prediction process:

Cluster: In RPTSP model, the cluster module represents the clustering of requirements to identify
the similarity through the CBR method. CBR is used for the feature’s reusability and stakeholder’s
involvement. This method provides priority for those requirements that are similar and relevant
to improve the prediction process. CBR utilizes a prior, comparable solution’s insight to rank the
requirement for scoring new functionalities and save position into the repository [7]. The CBR steps
are:

• Retrieval of requirements: By using expert knowledge, we compare prior similar requirements
with the same functionalities, and the ranking of current functionality is stored in the repository.

• Reuse ranking: To ensure similar requirements through requirement interaction in the predic-
tion phase, we reuse the previous ranking of stakeholders.

The RPTSP model also works with a semi-supervised clustering method called semi-supervised
K-means. The overall number of clusters in the K-mean clustering method is determined by the value
K, which is the number of items to arrange requirements in clusters. Fig. 2 shows the procedure, which
begins with take-out data information using value K and ends with clustering data based on similarity.
Finally, we obtain several clusters of massive unformed data to decrease the ambiguity and complexity.

CMC, 2024 9

Figure 2: Clustering of requirements

Clustering similar requirements and reusing previously ranked functionalities minimize the redun-
dancy in requirement documentation. Categorizing and clustering requirements early in the process
allows for a more streamlined requirement gathering, reducing the time and effort needed to identify
and document all requirements. Clustering requirements in agile methodologies, as demonstrated
by the RPTSP model, significantly enhances the efficiency and effectiveness of both requirement
gathering and testing processes. This integrated approach aligns requirements with test cases, reduces
redundancy, improves fault detection, and optimizes resource allocation, leading to higher overall
product quality and stakeholder satisfaction.

Prediction: After clustering of requirements, we used CBR to map the requirement for reuse, new
and update based on similar requirements to satisfy stakeholders’ needs. After that, we apply the
apriori algorithm to identify frequent patterns in these similar requirements to decrease irrelevancy
and ambiguities during the collection of relevant test cases based on change requirement. Like if we
extract requirements R2 and R3 as a reuse requirement, R4 as a new requirement and R5, R6 for
modification. Then we identified R2, R3 are frequently used and R5, R6 are updated frequently using
apriori algorithm for TCS.

For prediction of requirements, we consider both requirements that is new and change to improve
the testing quality process. The prediction process used to increase relevancy for the selection of test
cases to correct prioritization of test cases to validate the new requirements and change requirements.

10 CMC, 2024

The last phase about TCS and prioritization of each requirement is done once the requirements
have been clustered and predicted. After that, the requirement selection process is formalized to
contain all the test cases chosen from all the extracted requirements. Before this step, redundancy
and irrelevancy were tried to be removed, and test cases were generated on requirement prediction
criteria to improve the FDR after changes. After that, test cases are ranked and prioritized to guarantee
that the most crucial are chosen first. The APFD is used to calculate the maximum faults to improve
the FDR.

Each stage of the RPTSP model uses data-driven techniques (SA, CBR, semi-supervised K-means,
and apriori algorithm) to justify the ranking of requirements. These methods ensure that rankings
are based on actual usage patterns, historical data, and stakeholder priorities, rather than subjective
judgment. The RPTSP model emphasizes removing redundant and irrelevant requirements, which
reduces the likelihood of redundant faults and ensures that test cases are aligned with the most critical
requirements.

4 Results and Discussions

In this section, we investigate the effectiveness and performance of the RPTSP model by applying
three projects or cases for the evaluation of the proposed model (PM) using experiments. The reason
for selecting these cases is based on their backgrounds, scope, and domain. The first case is A, about
the car security system, the second case is B, a patient-centric health system named iTrust, an open-
source system, and the third case is C, about a web-based IT application selected from a real-world
industrial system. All cases belong to the same organization and the same number of participants
during the implementation of these three cases during conducting the experiment. Due to confidential
reasons, the company’s links are not mentioned here, and names are substituted by some other general
name in Table 2. These software companies used distinct methodologies aimed at classification and
prediction for higher user satisfactions levels and to increase human interaction productivity. Table 2
describes the specification of all three cases. The software’s which were used for experimental setups
are; RStudio used for semantic analysis, clustering and apriori algorithm, JUnit used for test case
execution, SPSS 23 for statistical analysis, drawio used for drawing models, Origin used for graphs,
and window 10 used as operating environment.

Table 2: Specification of projects

Projects No. of use cases No. of software versions Size (line of code) No. of faults No. of test cases

Case A 653 5 3532 33 960
Case B 24,018 6 276,456 45 1334
Case C 15,541 7 155,987 40 1420

The evaluation process is based on experience, applicants’ knowledge, and related to these projects.
Applicants of the organization decided to implement the RPTSP model for user satisfaction and
product quality. We selected 12 participants and evenly split them into the Experiment Group (EG)
and Control Group (CG). In each case, we selected different participants with the same number of
participants. We implemented 20 use cases in each case for all the selected cases during the experiment
due to restrictions applied by the selected organization. The EG group developed using RPTSP,
and the CG group used the traditional method which is AHP and clustering for all projects and
both groups work in ABE. The project participants are Project manager owner (PMO), Developers

CMC, 2024 11

(Ds), Requirement analyst (RA), Quality analyst (QA), Stakeholder (Sr), and Team leaders (TL).
After implementation of projects, examine the progress and evaluate through some parameters (as
depicted in Table 3), identified from the existing literature to improve requirement prediction, TCS
and prioritization.

Table 3: Parameters for evaluation

Parameters Abbreviation Parameters Abbreviation

Requirement identification
and retrieval

RIR Enhance requirement
integration

ERI

Proactive to changes PTC Completeness of requirements
increased

CRI

Easy to adopt EA Process accuracy increase PAI
Requirement prediction
process

RPP Requirements redundancy
remove

RRR

User satisfaction increased USI Semantic analysis SA
Increase productivity IP Human interaction reduced HIR
Term mismatch resolves TMR Formal specification FS
Requirements conflict remove RCR Fault detection rate FDR
Predicted desirable
requirements

PDR Frequently change test cases FCTC

The efficiency of the RPTSP model is evaluated in terms of practical calculation which is mainly
focused on the following experiment questions (EQs) (EQs for the approval of PM effectiveness and
performance during experiment):

• EQ-1: What impact does a semantic-based requirements classification and prediction have on
the outcome of the requirement specification process?

• EQ-2: Are RPTSP implementation outcomes better than other relevant methodologies?
• EQ-3: Can RPTSP effectiveness improve the relevance of the requirements integration process?
• EQ-4: Does RPTSP improve the FDR through the requirement prediction method?

To answer EQs based on some parameters that are shown in Table 3 to evaluate the satisfaction
level of the participants, the results are depicted in Fig. 3–5, and the results showed more increases in
satisfaction level parameters. Table 3 mentions the identifies parameters from the literature and reason
to select these parameters and their impact on the process of change validation during TCP [3,6,11,19–
23,30,34]. All these parameters are based on the increase in FDR after the TCP using frequently used
test cases or not frequently reused to validate the changes. Therefore, improvement in the TCP process
increases the FDR which impacts on the satisfaction level of the participants.

Hence, the first step of the experiment starts by extracting requirements through SA using
text mining from experiment participants and then mapping with mentioned requirements. These
requirements were classified as system-based and user-based requirements and then documented.
The experiment started from the first step, in which we extracted requirements with their complete
constraints and stakeholder viewpoints. RStudio was used to extract terms from all projects. For
example, in the car security project, some of the terms extracted after the text mining process are
listed in Table 4.

12 CMC, 2024

Figure 3: Factor analysis/satisfaction level (highly satisfied and dissatisfied)

Figure 4: Factor analysis/satisfaction level (satisfied and neutral)

Figure 5: Factor analysis/satisfaction level (highly dissatisfied)

CMC, 2024 13

Table 4: Requirement extraction through text mining for case A (car security system)

Sr. # ID Functionalities of
requirements

Detailed examples and justifications

1 R-1 Unlock door Example: A user can unlock car door by using a remote key
from distance for quickly and conveniently.
Justification: There are three methods used to unlock car door
remote key, manual key and smart system. This is important
access and security.

2 R-2 Light blink Example: A user can lock or unlock the car by using remote key
and flash lights blink shortly.
Justification: This ensures the user that car status is change.

3 R-3 Alarm activate Example: The alarm of the car starts with loud voice and lights
blinks. When unauthorized user is trying to access the car like
broken window.
Justification: This ensures the car safety from any theft attempt
and informed user for any unusual activity.

4 R-4 Alarm deactivate Example: The car user deactivates the alarm and lights by
accessing remote key.
Justification: For maintenance of security and any disturbance
by ensuring the user control over the alarm system.

5 R-5 Lock door Example: The user can lock the car doors with single press of
button from the remote key to ensure the security of vehicle.
Justification: Essential for guarding against unwanted entry and
securing passengers and possessions inside the car.

6 R-6 Sound activate Example: When the car is locked, audible confirmation tones
are released, giving the user peace of mind that the doors are
locked firmly.
Justification: Gives prompt feedback on system operations, like
locking or arming the alarm, which boosts user confidence.

7 R-7 Sound deactivate Example: Enables users to manually turn off audio alerts or
alarms to quiet the surroundings.
Justification: Gives the user the option to decide when to turn
on or off audible alerts, ensuring their comfort and convenience.

After extracting requirements through SA using text mining, we extracted the classification
of requirements through which we identify the user-based and system-based requirements; those
requirements that are system dependent and their behavior is dependent on the system are listed
as system-based requirements, whereas those requirements which are user dependent and they are
related to users are listed as user-based requirements as listed in Table 5. Their current ranking
extracted (after requirement elicitation stored in the repository), prior ranking (attained through
CBR) and new ranking (based on higher value of either from present ranking or prior ranking) are
mentioned in Table 5. The requirement prediction after CBR and text mining by using the RPTSP
model is shown in Table 5. The missing requirement ranking must be acquired to handle inconsistency

14 CMC, 2024

effectively, reducing complexity and ambiguities. The observation reveals that both approaches have
different outcomes; rankings of R-2 and R-7 might have been overlooked by stakeholders or missing.
Therefore, CBR is used to detect missing rankings with the prior ranking rather than assuming ranking
requirements in development is creating incompleteness and ambiguity.

Table 5: Extracted ranking

Sr. # Requirements
ID

Classification of
requirements

Identification of
stakeholders

Present
ranking

Prior
ranking

New
ranking

Prediction

1 R-1 User-based Experience 5 4 5 R-3
2 R-2 System based Non-Experience – 4 4 R-1
3 R-3 System based Experience 0 6 6 R-5
4 R-4 System based Experience 1 3.5 3.5 R-2
5 R-5 User-based Experience 4 4.5 4.5 R-4
6 R-6 System based Experience 2 1 2 R-7
7 R-7 System based Experience – 3 3 R-6

4.1 Compare and Contrast PM with Existing Methodologies

The above-mentioned requirements are executed without PM (WPM), AHP and clustering, to
relate the outcomes of sequence takeout from PM and WPM. Hence, Table 6 defines the implemented
order of requirements created on priority through PM and WPM. In WPM methods, created order
through an average calculation of these methods and acquired ordinary order for differentiation. As
a result, the requirements ranking is changed after applying on PM and WPM methods mentioned in
Table 6. Therefore, the sequence of requirements using PM is defined in column two, and the sequence
of requirements using WPM in column three. In the PM, the R-3 score was the highest and the R-6
score the lowest, whereas in WPM, R-1 got the highest ranking, and R-2 got the lowest ranking.
Afterwards, applying the requirements through both methods, results revealed that the PM members
have more accurate requirement priority and satisfaction level than members WPM.

Table 6: Comparison of ranking

Sr. # PM WPM

1 R-3 R-1
2 R-1 R-5
3 R-5 R-4
4 R-2 R-7
5 R-4 R-3
6 R-7 R-6
7 R-6 R-2

We selected the test cases (see Table A3) based on requirements in order to validate the require-
ments that are more likely to contain errors than not. Following TCS, we rank test cases in order
of importance to minimize execution time using two criteria: code coverage and test cases that are

CMC, 2024 15

frequently used. To determine the maximum error at an earlier stage, we sort them. Subsequently, all
of these procedures assessed each participant’s degree of satisfaction with their adoption of PM and
WPM. Figs. 3–5 describe the evaluation of parameters on different satisfaction levels (see Table A1)
of participants who contributed to the experiment and shows the results of EG and CG participants.
Most participants were satisfied with RPTSP compared to those who are not employing it. The
participant’s satisfaction level on the y-axis and x-axis represents factorial analysis, respectively. The
satisfaction level is achieved by more than 50 percent in both projects with maximum participants. For
evaluation, we have used different rating scales, which are Satisfied (S), Highly Satisfied (HS), Neutral
(N), Highly Dissatisfied (HD), and Dissatisfied (D). The participants of EG who used RPTSP were
HS as compared to CG participants who did not use RPTSP. Whereas, the results indicate that RPTSP
achieves better quality, understands customers’ needs and produces good results compared to RPTSP.

To answer EQ-2, we implemented three selected cases in which CG participants used both AHP
and clustering and their results shown in Table 7 in the same experiment while the EG used RPTSP and
the results analyzed or compared through statistical analysis. These approaches are selected because
they are the most frequently used existing approaches. Table 7 presents the level of satisfaction for all
the participants after implementing RPTSP, clustering, and AHP techniques.

Table 7: Satisfaction level

Participants RPTSP AHP Clustering

PMO 85 52 51
Sr 66 50 52
RA 88 44 42
TL 67 55 52
QA 72 58 57
Ds 71 58 55

We conducted paired sample tests on various approaches, including RPTSP, AHP, and clustering,
to better understand the consequences and significance of each. For all groups, the results show
different means, i.e., 0.724 of RPTSP, whereas clustering and AHP methods show means of 0.362
and 0.475, respectively. This indicates that the values of RPTSP scatter less from their mean value and
are more reliable than other clustering and AHP methods.

The test values are different, proving that the experiment’s performance is reliable and unbiased,
lacking ambiguity. According to the obtained results, the mean value of the RPTSP is more in both
datasets (dataset consists of the result extracted or generated after the experiment based on the
participants feedback due to organization policy, we are not showing the complete information about
the dataset but some evaluation parameters on different scales shown in Table A1 and demographic
information shown in Table A2). The RPTSP dataset has a mean value of 0.718 and 0.734, while the
dataset without RPTSP has mean values of 0.346 and 0.380. Therefore, our RPTSP model improves
the prediction of requirements, selection, and prioritization of test cases. As FDR increases due to
correct prioritization based on frequently and not frequently reuse test cases criteria by prioritizing
test cases according to their reusability frequency. Thus, it proves that FDR positively depends on the
correct TCP criteria. If the TCP criteria are not correct then FDR decreases as depicted from CG
results while EG results depict the positive relation.

16 CMC, 2024

To answer EQ-3, we used accuracy (Accu) metrics and F measures [26]. SA were used for the
correct selection of requirements. F measure is calculated through the combination of both precision
(P) and recall (R), showing the overall efficiency of the optimum TCS process. F measure is calculated
using Eq. (1).

F measures = 2 ∗ P ∗ R
P + R

(1)

P is the relation of correctly specified and prioritized selected requirements to the total number
of requirements accessible. R is the percentage of requirements correctly specified and prioritized to
the total number of requirements accessible for reusable. Accu is the relation of correctly classified
requirements to the total number of requirements. Accu is calculated using Eq. (2).

Accu = TP + TN
FP + FN + TP + TN

(2)

TN presents a true negative (similar requirements acquired for reusability), and FP represents a
false positive (number of requirements but not selected). FN specifies false negatives (requirements
retrieved for reusability but selected), while TP specifies true positives (requirements acquired for
reusability and selected). The EQs results are shown in Fig. 6; the value in percentage is presented
on the x-axis, whereas the metric name is presented on the y-axis.

Figure 6: Value of metrics

To answer EQ-4, we used APFD for predicted requirements which are mapped into test cases and
calculated the frequency of most frequent failure test cases through code coverage criteria and generate
parameters to calculate the priority and order of the test case. The different test cases are selected
through the predicted requirement, and FDR was calculated using APFD in the RPTSP model. APFD
is used to calculate the FDR over the prioritized test cases. The greater the value of FDR, the greater
the number of defects that can be detected during TCS and TCP. APFD is calculated using Eq. (3).

APFD = 1 − (TF1 + TF2 + TF3 + . . . TFm)

(mn)
+ 1

2n
(3)

In the above equation, TFi represents the number of executed test cases, m identifies the number
of faults, and n represents the number of test cases. The faults identified in each of the three cases are

CMC, 2024 17

depicted in Fig. 7. The test cases are presented on the x-axis, and FDR is presented on the y-axis. The
results mentioned that FDR in all three cases is above 80% after the initial execution of test cases,
whereas WPM shows the performance of FDR is above 20% in all three cases. RPTSP has higher
APFD than WPM in all cases, which means that RPTSP criteria of prioritization is a key component
and can identify higher FDR than WPM. RPTSP technique identifies maximum FDR in all cases,
improving the performance, time, and cost.

Figure 7: All three selected cases results (A, B and C)

Fig. 8 shows all projects’ overall RPTSP model review and study findings. Participants’ satisfac-
tion levels are shown on the y-axis, and a parameter analysis (depicted in Table 3) is on the x-axis. The
majority of participants in all projects reported level of satisfaction above 50%, which shows that the
RPTSP model outperforms WPM.

Each project development strategy is labeled on the x-axis, and each participant’s level of
satisfaction is shown on the y-axis in Fig. 9. The results of all three cases using RPTSP and WPM; most
participants are highly satisfied with the PM are modeled in Fig. 9. Individuals in case A who used
our model reported higher levels of satisfaction and improved outcomes compared to participants who
executed case A using WPM. The participants in cases B and C are similarly affected though. Cases
B and C participants improved their quality and competency using the RPTSP model. According
to the comparative analysis, the RPTSP model consistently outperformed alternative methods in

18 CMC, 2024

terms of customer satisfaction. The overall findings demonstrate that the RPTSP model outperforms
conventional methods in terms of quality and customer needs satisfaction.

Figure 8: Review analysis

Figure 9: Overall models result

CMC, 2024 19

The answers of RQ1, RQ2, RQ3 and RQ4 conclude based on our research findings as following:

RQ1: The introduction section, we conclude that the requirements do have an effect on TCP, as
depicted in Table 1 based on given parameters. These parameters are highlighted in different existing
studies which we consider in the formulation of RPTSP and in the evaluation of RPTSP to improve
the TCS and TCP process after change in requirements to reduce irrelevancy and similarity.

To answer the RQs, we used parameters mentioned in Table 3 to find the accuracy of reuse and
selection of requirements (RQ2), evaluate the change impact analysis (RQ3) and identify the FDR
(RQ4), respectively.

RQ2: The TCP process in the RPTSP model is greatly impacted by the appropriate reuse and
requirement selection. The model uses a hybrid methodology that combines TCS and RP. The model
seeks to enhance TCP through efficient reuse and requirement selection. More precisely, the model
prioritizes requirements based on input from stakeholders and historical experiences by using CBR
techniques to find comparable and relevant requirements. This technique increases the overall TCP
procedure efficiency by ensuring that test cases correspond to the most important and frequently
changing requirements.

RQ3: Yes, the change effect analysis that is part of the RPTSP model enhances the TCP
process. The RP and clustering examine how requirements change over time. The model facilitates
the identification of relevance, reuse opportunities, and modifications through the consideration of
requirements similarity and its impact. The TCP procedure is guaranteed to adjust to changing
software requirements thanks to this change effect analysis. As a result, the TCP process is more
effective because of the model’s capacity to anticipate changes and prioritize test cases appropriately.

RQ4: Indeed, increasing the FDR is one of the goals of the RPTSP model. A process of prioritizing
test cases according to the expected and clustered requirements is integrated into the model. The
RPTSP model makes sure the most significant and relevant test cases are run early in the testing
process by utilizing the APFD metric. The findings show that in all three cases, the FDR attained
using the RPTSP model is higher than 90%. This indicates that the model’s prioritization mechanism
helps find errors early on, which raises the process’s overall FDR during software testing.

5 Practical Implications

The RPTSP model aims to improve the software testing process in agile environment by aligning
requirements with test cases. The practical implications of this model are significant, offering improve-
ments in accuracy, efficiency, and overall product quality. Scenario-based modeling helps in identifying
primary requirements and user expectations. This leads to a clear specification of requirements, by
reducing ambiguities. The categorization of requirements into user-based and system-based through
SA, the model ensures that all stakeholder priorities are considered and conflicts are minimized. Using
CBR to cluster requirements based on similarity helps in reusing previous knowledge and ranking
requirements effectively. The use of semi-supervised K-means clustering method helps in organizing
large amounts of data into meaningful clusters, reducing ambiguity and complexity. By applying the
apriori algorithm, the model identifies frequent patterns in requirements, ensuring that test cases are
selected based on relevance and historical usage. The APFD metric is used to prioritize test cases,
ensuring that the most critical ones are executed first, leading to higher FDR.

The practical implications that demonstrate its applicability and benefits in real-world. Agile
projects, for which we consider case B healthcare system. A healthcare is developing a system to
manage records of patients, schedule appointments, and handle billing. Scenario-based modeling

20 CMC, 2024

outlined use cases such as “Patient record management” and “Appointment scheduling”. Require-
ments were classified into user-based (e.g., appointment scheduling) and system-based (e.g., database
management) using SA. CBR and semi-supervised K-means clustering organized requirements,
ensuring that similar needs were grouped and prioritized effectively. The apriori algorithm highlighted
frequently used requirements, and the APFD metric prioritized test cases for critical functionalities
like patient data security. The requirement classification and clustering reduced ambiguities, leading to
more accurate requirement predictions. Prioritized test cases based on historical usage and criticality
ensured that the most important functionalities were tested first. Efficient clustering and prediction
minimized redundant and irrelevant requirements, streamlining the testing process.

The RPTSP model offers a structured approach to aligning requirements and test cases, leading
to significant improvements in the software testing process within agile environments. By focusing
on requirement specification, clustering, prediction, and prioritized testing, the model enhances
efficiency, accuracy, and overall product quality.

6 Conclusions

In this paper, we proposed the RPTSP model, which improves the redundant and irrelevant
requirement selection process and FDR. The identification of parameters improves the requirement
prediction and testing in ABE. In this study, we have identified the parameters that help identify
redundant and irrelevant requirements to reduce the rate of fault detection during validation. Three
different cases have been used to evaluate the RPTSP model. This research will help practitioners in
the industry to improve the performance of agile-based software requirements and testing.

The evaluation shows the following outcomes:

• The RPTSP model extensively improved the redundancy and irrelevancy of requirements (more
than 90%) at the initial level compared to other clustering and AHP methods.

• The evaluation metrics results show that the RPTSP model significantly outperforms other
existing techniques to avoid irrelevant and redundant requirements.

• The result also described that FDR is improved through the predicted requirements, improving
the irrelevancy in TCS and reducing ambiguity and complexity.

• Identification of relevant and redundant requirements demonstrates accuracy close to 100%,
precision over 90%, and recall over 90%. As a result, our APFD rises as a result of relevant
and non-redundant requirements, correct TCP and relevant TCS. The results demonstrate that,
there is over 80% APFD at an earlier stage as compared to WPM (such as clustering and AHP).

7 Potential Limitations and Future Work

In this research, we align the testing process for new and change requirements by predicting
accurate and redundant requirements against TCS. Hence, it improves the requirement validation
process, we analyze that there is need to manage or more focus on requirement pre changes implemen-
tation, during change implementation and post change implementation as a future work. We can also
automate the process by providing one platform for aligning the requirements and testing activities.
There is need to enhance RPTSP model in terms of both static and dynamic configuration testing
processes due to modern tools and techniques. In the future, we are planning to implement this model
through a proper tool that will solve the redundancy and irrelevancy of requirements and identify
more faults based on the selection and prediction of requirements. In the future, we are trying to plan
more RQs to evaluate FDR and compare it with more existing strategies.

CMC, 2024 21

Acknowledgement: Not applicable.

Funding Statement: Not applicable.

Author Contributions: Conceptualization, Irum Ilyas and Yaser Hafeez; Formal analysis, Irum
Ilyas, Sadia Ali, Mamoona Humayun and Muhammad Aqib; Funding acquisition, Nabil Almashfi
and Ghadah Alwakid; Project administration, Mamoona Humayun, Nabil Almashfi and Ghadah
Alwakid; Supervision, Yaser Hafeez and Mamoona Humayun; Validation, Irum Ilyas, Sadia Ali and
Mamoona Humayun; Writing—original draft, Irum Ilyas; Writing—review & editing, Irum Ilyas and
Muhammad Aqib. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Due to privacy considerations, the data supporting the study’s
conclusions cannot be shared.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Q. Riaz, Fateh-ur-Rehman, B. Maqbool, and W. H. Butt, “Customization of requirement engineering

best practices for Pakistan software industry,” in 2018 Int. Conf. Comput. Math. Eng. Technol. (iCoMET),
Sukkur, Pakistan, IEEE, Mar. 2018, pp. 1–6. doi: 10.1109/ICOMET.2018.8346347.

[2] S. -W. Lee and T. Nakatani, “Requirements engineering toward sustainable world,” in Communi-
cations in Computer and Information Science, Singapore: Springer Singapore, 2016, vol. 671. doi:
10.1007/978-981-10-3256-1.

[3] S. Ali, Y. Hafeez, S. Hussain, and S. Yang, “Enhanced regression testing technique for agile software
development and continuous integration strategies,” Softw. Qual. J., vol. 28, no. 2, pp. 397–423, Jun. 2020.
doi: 10.1007/s11219-019-09463-4.

[4] R. D. Estrada-Esponda, M. López-Benítez, G. Matturro, and J. C. Osorio-Gómez, “Selection of software
agile practices using analytic hierarchy process,” Heliyon, vol. 10, no. 1, Jan. 2024, Art. no. e22948. doi:
10.1016/j.heliyon.2023.e22948.

[5] R. Wieringa, “Requirements engineering since the year one thousand,” in 2017 IEEE 25th Int. Requirements
Eng. Conf. (RE), Lisbon, Portugal, IEEE, Sep. 2017, pp. 480–481. doi: 10.1109/RE.2017.25.

[6] Y. Lu et al., “How does regression test prioritization perform in real-world software evolution?,” in
Proc. 38th Int. Conf. Softw. Eng., Austin, TX, USA, ACM, May 2016, pp. 535–546. doi: 10.1145/28
84781.2884874.

[7] S. Ali, Y. Hafeez, S. Hussain, S. Yang, and M. Jamal, “Requirement prioritization framework using case-
based reasoning: A mining-based approach,” Expert Syst., vol. 38, no. 8, Dec. 2021, Art. no. e12770. doi:
10.1111/exsy.12770.

[8] S. Ali, M. Imran, Y. Hafeez, T. R. Abbasi, W. Haider and A. Salam, “Improving component based software
integration testing using data mining technique,” in 2018 12th Int. Conf. Math. Actuar. Sci., Comput. Sci.
Stat. (MACS), Karachi, Pakistan, Nov. 2018, pp. 1–6. doi: 10.1109/MACS.2018.8628368.

[9] M. Shameem, R. R. Kumar, M. Nadeem, and A. A. Khan, “Taxonomical classification of barriers for
scaling agile methods in global software development environment using fuzzy analytic hierarchy process,”
Appl. Soft Comput., vol. 90, no. 6, May 2020, Art. no. 106122. doi: 10.1016/j.asoc.2020.106122.

[10] B. Şahin, “Route prioritization by using fuzzy analytic hierarchy process extended dijkstra algorithm,” J.
ETA Marit. Sci., vol. 7, no. 1, pp. 3–15, 2019. doi: 10.5505/jems.2019.39306.

https://doi.org/10.1109/ICOMET.2018.8346347
https://doi.org/10.1007/978-981-10-3256-1
https://doi.org/10.1007/s11219-019-09463-4
https://doi.org/10.1016/j.heliyon.2023.e22948
https://doi.org/10.1109/RE.2017.25
https://doi.org/10.1145/2884781.2884874
https://doi.org/10.1111/exsy.12770
https://doi.org/10.1109/MACS.2018.8628368
https://doi.org/10.1016/j.asoc.2020.106122
https://doi.org/10.5505/jems.2019.39306

22 CMC, 2024

[11] N. Mahmood et al., “Mining software repository for cleaning bugs using data mining technique,” Comput.
Mater. Contin., vol. 69, no. 1, pp. 873–893, 2021. doi: 10.32604/cmc.2021.016614.

[12] S. Mondal and R. Nasre, “Colosseum: Regression test prioritization by delta displacement in test coverage,”
IEEE Trans. Softw. Eng., vol. 48, no. 10, pp. 4060–4073, Oct. 2022. doi: 10.1109/TSE.2021.3111169.

[13] R. Yan, Y. Chen, H. Gao, and J. Yan, “Test case prioritization with neuron valuation based pattern,” Sci.
Comput. Program., vol. 215, Mar. 2022, Art. no. 102761. doi: 10.1016/j.scico.2021.102761.

[14] A. Samad, H. Mahdin, R. Kazmi, and R. Ibrahim, “Regression test case prioritization: A systematic
literature review,” Int. J. Adv. Comput. Sci. Appl., vol. 12, 2021. doi: 10.14569/issn.2156-5570.

[15] A. Gupta, N. Mishra, A. Tripathi, M. Vardhan, and D. S. Kushwaha, “An improved history-based test
prioritization technique technique using code coverage,” in Adv. Comput. Commun. Eng. Technol.: Proc.
1st Int. Conf. Commun. Comput. Eng., Rajshahi, Bangladesh, Springer International Publishing, 2015.

[16] X. Wang and S. Zhang, “Cluster-based adaptive test case prioritization,” Inf. Softw. Technol., vol. 165, no.
2, Jan. 2024, Art. no. 107339. doi: 10.1016/j.infsof.2023.107339.

[17] A. M. Pitangueira, R. S. P. Maciel, and M. Barros, “Software requirements selection and prioritization
using SBSE approaches: A systematic review and mapping of the literature,” J. Syst. Softw., vol. 103, no.
14, pp. 267–280, May 2015. doi: 10.1016/j.jss.2014.09.038.

[18] M. A. Siddique, W. M. N. Wan-Kadir, J. Ahmad, and N. Ibrahim, “Hybrid framework to exclude similar
and faulty test cases in regression testing,” Baghdad Sci. J., vol. 21, no. 2, Feb. 2024, Art. no. 0802. doi:
10.21123/bsj.2024.9710.

[19] A. Bajaj and O. P. Sangwan, “A systematic literature review of test case prioritization using genetic
algorithms,” IEEE Access, vol. 7, pp. 126355–126375, 2019. doi: 10.1109/ACCESS.2019.2938260.

[20] H. Mirzaei and M. R. Keyvanpour, “Reinforcement learning reward function for test case prioritization
in continuous integration,” in 2022 9th Iran. Joint Congress Fuzzy Intell. Syst. (CFIS), Bam, Iran, Islamic
Republic of IEEE, Mar. 2022, pp. 1–6. doi: 10.1109/CFIS54774.2022.9756464.

[21] M. Khatibsyarbini et al., “Trend application of machine learning in test case prioritization: A review on
techniques,” IEEE Access, vol. 9, pp. 166262–166282, 2021. doi: 10.1109/ACCESS.2021.3135508.

[22] A. Ali et al., “A data mining technique to improve configuration prioritization framework for component-
based systems: An empirical study,” Inf. Technol. Control, vol. 50, no. 3, pp. 424–442, Sep. 2021. doi:
10.5755/j01.itc.50.3.27622.

[23] X. Wang and H. Zeng, “History-based dynamic test case prioritization for requirement properties in
regression testing,” in Proc. Int. Workshop Cont. Softw. Evol. Deliv., Austin, TX, USA, ACM, May 2016,
pp. 41–47. doi: 10.1145/2896941.2896949.

[24] J. C. S. Coutinho, W. L. Andrade, and P. D. L. Machado, “Requirements engineering and software testing in
agile methodologies: A systematic mapping,” in Proc. XXXIII Brazil. Symp. Softw. Eng., Salvador, Brazil,
ACM, Sep. 2019, pp. 322–331. doi: 10.1145/3350768.3352584.

[25] N. L. Atukorala, K. C. Chang, and K. Oyama, “Situation-oriented evaluation and prioritization of
requirements,” in Requirements Eng. Toward Sustain. World: Third Asia-Pacific Symp. APRES 2016,
Nagoya, Japan, Springer Singapore, Nov. 10–12, 2016, vol. 671, pp. 18–33.

[26] Y. Hafeez, S. Ali, N. Jhanjhi, M. Humayun, A. Nayyar and M. Masud, “Role of fuzzy approach towards
fault detection for distributed components,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1979–1996, 2021.
doi: 10.32604/cmc.2021.014830.

[27] M. Shameem, A. A. Khan, M. G. Hasan, and M. A. Akbar, “Analytic hierarchy process based prioritisation
and taxonomy of success factors for scaling agile methods in global software development,” IET Softw.,
vol. 14, no. 4, pp. 389–401, Aug. 2020. doi: 10.1049/iet-sen.2019.0196.

[28] R. Santos, A. Albuquerque, and P. R. Pinheiro, “Towards the applied hybrid model in requirements
prioritization,” Procedia Comput. Sci., vol. 91, pp. 909–918, 2016. doi: 10.1016/j.procs.2016.07.109.

[29] S. Dhingra, G. Savithri, M. Madan, and R. Manjula, “Selection of prioritization technique for software
requirement using fuzzy logic and decision tree,” in 2016 Online Int. Conf. Green Eng. Technol. (IC-GET),
Coimbatore, India, IEEE, Nov. 2016, pp. 1–11. doi: 10.1109/GET.2016.7916822.

https://doi.org/10.32604/cmc.2021.016614
https://doi.org/10.1109/TSE.2021.3111169
https://doi.org/10.1016/j.scico.2021.102761
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.1016/j.infsof.2023.107339
https://doi.org/10.1016/j.jss.2014.09.038
https://doi.org/10.21123/bsj.2024.9710
https://doi.org/10.1109/ACCESS.2019.2938260
https://doi.org/10.1109/CFIS54774.2022.9756464
https://doi.org/10.1109/ACCESS.2021.3135508
https://doi.org/10.5755/j01.itc.50.3.27622
https://doi.org/10.1145/2896941.2896949
https://doi.org/10.1145/3350768.3352584
https://doi.org/10.32604/cmc.2021.014830
https://doi.org/10.1049/iet-sen.2019.0196
https://doi.org/10.1016/j.procs.2016.07.109
https://doi.org/10.1109/GET.2016.7916822

CMC, 2024 23

[30] R. Naseem et al., “Empirical assessment of machine learning techniques for software requirements risk
prediction,” Electronics, vol. 10, no. 2, pp. 168, Jan. 2021. doi: 10.3390/electronics10020168.

[31] F. Shao, R. Peng, H. Lai, and B. Wang, “DRank: A semi-automated requirements prioritization method
based on preferences and dependencies,” J. Syst. Softw., vol. 126, no. 6, pp. 141–156, Apr. 2017. doi:
10.1016/j.jss.2016.09.043.

[32] P. Achimugu and A. Selamat, “A hybridized approach for prioritizing software requirements based on
K-means and evolutionary algorithms,” Comput. Intell. Appl. Model. Control, pp. 73–93, 2015.

[33] X. Wang and H. Zeng, “Dynamic test case prioritization based on multi-objective,” in 15th IEEE/ACIS Int.
Conf. Softw. Eng. Artifi. Intell. Network Parallel/Distrib. Comput. (SNPD), Las Vegas, NV, USA, IEEE,
Jun. 2014, pp. 1–6. doi: 10.1109/SNPD.2014.6888744.

[34] Z. Q. Zhou, C. Liu, T. Y. Chen, T. H. Tse, and W. Susilo, “Beating random test case prioritization,” IEEE
Trans. Reliab., vol. 70, no. 2, pp. 654–675, Jun. 2021. doi: 10.1109/TR.2020.2979815.

Appendix A

Table A1: Evaluation of parameters on different satisfaction level

Parameters HS S N DS HD

EG CG EG CG EG CG EG CG EG CG

RIR 24 1 65 25 6 26 2 24 0 66
EA 43 1 52 39 2 42 2 43 0 54
TMR 35 1 55 38 7 36 2 35 0 57
SA 42 2 53 41 2 42 1 42 0 55
IP 43 2 52 44 2 41 1 43 0 52
FS 53 2 43 38 2 51 1 54 0 43
HIR 44 2 53 43 1 40 1 44 0 51
RPP 42 2 55 44 2 44 1 43 0 52
PDR 43 2 54 45 2 41 1 41 0 54
ERI 32 3 53 42 5 33 3 30 0 57
PTC 33 3 59 33 5 30 3 33 0 59
RCR 53 2 58 38 2 50 1 54 0 43
RRR 44 2 42 38 1 40 1 45 0 51
PAI 42 2 53 43 2 44 1 43 0 52
ICA 43 2 54 44 2 41 1 44 0 52
IUS 29 2 60 32 8 32 2 31 0 60
FDR 24 1 65 25 6 26 2 24 0 66
FCTC 35 1 55 38 7 36 2 35 0 57

https://doi.org/10.3390/electronics10020168
https://doi.org/10.1016/j.jss.2016.09.043
https://doi.org/10.1109/SNPD.2014.6888744
https://doi.org/10.1109/TR.2020.2979815

24 CMC, 2024

Table A2: Demographic information of participants

Participants Experience CG EG

Project manager owner </> 2 Years 2 2
Team leaders </> 2 Years 2 2
Requirement analyst </> 1 Years 2 2
Developers </> 2 Years 2 2
Stakeholders/Customers </> 4 Years 2 2
Quality analyst </> 2 Years 2 2

Table A3: Detailed test cases and their outcome

Test case id Test scenario Test case Pre-condition Test steps Expected
result

Actual
result

Status

TC-001 Unlock car
door with
valid key fob
signal

Verify that the car
door unlocks
when the key fob
sends a valid
unlock signal

1. The car is
locked

1. Press the unlock
button on key fob

Car door
unlocks and
the lights flash

Car
door
unlock

Pass

2.The key fob is
within the range
of car receiver

2. Observe the car
door locks

TC-002 Unlock car
door with
manual key

Verify that the car
door unlocks
when the manual
key is used

1. The car is
locked

1. Insert the
manual key into
car door lock

Car door
unlocks and
door can be
opened

Car
door
unlock

Pass

2. The manual key
is available

2. Move the key to
unlock position
3. Observe the car
door locks

TC-003 Unlock car
door with
smart entry
system

Verify that the car
door unlocks
when smart entry
system detects the
key fob in
proximity

1. The car is
locked

1. Approach car
with key fob in
your possession

Car door
unlocks and
door opens
without
pressing any
button on key
fob

Car
door
unlock

Pass

2. The key fob is
within the
proximity range of
car smart entry
system

2. Attempt to
open the car door
by pulling handle

TC-004 Attempt to
unlock car
door with an
invalid key fob
signal

Verify that the car
door does not
unlock when an
invalid key fob
signal is sent

1. The car is
locked

1. Press the unlock
button on the
invalid key fob

The car door
remains
locked and no
unlocking
occurs

Car
door
locked

Pass

2. An incorrect
key fob is available

2. Observe the car
door locks

TC-005 Unlock car
door with low
battery in key
fob

Verify the car
door unlocks
when the key fob
has a low battery

1. The car is
locked

1. Press the unlock
button on the key
fob with a low
battery

The car door
unlocks but
there may be a
delay or
reduced signal
strength

Car
door
unlock
but a
delay

Pass

2. The key fob has
a low battery but
is still operational

2. Observe car
door locks

	Towards Improving the Quality of Requirement and Testing Process in Agile Software Development: An Empirical Study
	1 Introduction
	2 Related Work
	3 Proposed RPTSP Model
	4 Results and Discussions
	5 Practical Implications
	6 Conclusions
	7 Potential Limitations and Future Work
	References
	Appendix A

