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ABSTRACT

With the advancements in artificial intelligence (AI) technology, attackers are increasingly using sophisticated
techniques, including ChatGPT. Endpoint Detection & Response (EDR) is a system that detects and responds to
strange activities or security threats occurring on computers or endpoint devices within an organization. Unlike
traditional antivirus software, EDR is more about responding to a threat after it has already occurred than blocking
it. This study aims to overcome challenges in security control, such as increased log size, emerging security threats,
and technical demands faced by control staff. Previous studies have focused on AI detection models, emphasizing
detection rates and model performance. However, the underlying reasons behind the detection results were often
insufficiently understood, leading to varying outcomes based on the learning model. Additionally, the presence
of both structured or unstructured logs, the growth in new security threats, and increasing technical disparities
among control staff members pose further challenges for effective security control. This study proposed to improve
the problems of the existing EDR system and overcome the limitations of security control. This study analyzed
data during the preprocessing stage to identify potential threat factors that influence the detection process and
its outcomes. Additionally, eleven commonly-used machine learning (ML) models for malware detection in XAI
were tested, with the five models showing the highest performance selected for further analysis. Explainable Al
(XAI) techniques are employed to assess the impact of preprocessing on the learning process outcomes. To ensure
objectivity and versatility in the analysis, five widely recognized datasets were used. Additionally, eleven commonly-
used machine learning models for malware detection in XAI were tested with the five models showing the highest
performance selected for further analysis. The results indicate that eXtreme Gradient Boosting (XGBoost) model
outperformed others. Moreover, the study conducts an in-depth analysis of the preprocessing phase, tracing
backward from the detection result to infer potential threats and classify the primary variables influencing the
model’s prediction. This analysis includes the application of SHapley Additive exPlanations (SHAP), an XAI
result, which provides insight into the influence of specific features on detection outcomes, and suggests potential
breaches by identifying common parameters in malware through file backtracking and providing weights. This
study also proposed a counter-detection analysis process to overcome the limitations of existing Deep Learning
outcomes, understand the decision-making process of Al, and enhance reliability. These contributions are expected
to significantly enhance EDR systems and address existing limitations in security control.
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1 Introduction

Computers and the Internet have become integral to our daily lives with the advancement of
information technology (IT). However, with the increased use of these technologies, cyberattacks
have grown in frequency and sophistication [1]. These attacks pose significant threats by disrupting
networks and stealing sensitive information, including medical records, trade secrets, and financial
data [2].

The Fourth Industrial Revolution, driven by technologies such as the Internet of Things (IoT),
artificial intelligence (AI), and big data, is transforming industries into hyper-connected ecosystems
[3]. ToT allows devices to exchange data, while Al is utilized for perception, reasoning, learning,
and natural language processing [4]. These technologies are applied to various industries, enhancing
convenience and creating new value [5]. For instance, in recent years, Al has played a crucial role
in the field of prediction, particularly through machine learning (ML) and deep learning (DL)
methodologies. Consequently, research is actively conducted to improve the accuracy of Al-based
prediction. Studies employing eXtreme Gradient Boosting (XGBoost) [6], Long Short-Term Memory
(LSTM) [7], and hybrid structures like Convolutional Neural Network-LSTM (CNN-LSTM) have
shown that these approaches significantly enhance the accuracy of prediction and are regarded as
effective approach for forecasting demand [8].

However, these technological advancements have also led to new security threats, including
hacking and vulnerabilities that exploit these very technologies. To address these threats, Al-driven
models, especially in the context of IoT-integrated environments, are increasingly being employed
for security [9]. Despite these measures, cyberattacks continue to evolve, necessitating the constant
enhancement of security tools.

Endpoint Detection and Response (EDR) systems are a key component of cybersecurity, designed
to detect and mitigate security incidents at endpoints. Nevertheless, current EDR solutions primarily
react to incidents post-attack, limiting their effectiveness in proactive threat prevention. This study
emphasizes the need to enhance EDR solutions to support real-time detection and prediction by
leveraging Al-based methods, particularly Explainable AI (XAI) and its application in malware
detection.

This study aims to improve malware detection through a reverse analysis process, focusing on
extracting critical parameters from the detection process, measuring their influence, and validating
these results on real-world networks. The XGBoost model was selected for its superior performance,
while XALI, specifically SHapley Additive exPlanations (SHAP), was employed to classify and interpret
malware parameters. XAl was introduced because it can explain how individual features influence
malware detection, ensuring that EDR systems remain transparent and actionable.



CMC, 2024, vol.81, no.3 4487

Section | provides an overview of the research background and its significance. Section 2 presents
an analysis of related studies, focusing on AI detection models currently under active research. In
Section 3, the testing process for the proposed model is described, along with the criteria for selecting
the most commonly used models. The performance of XAI learning models applicable in existing
EDR systems is also compared and analyzed. Furthermore, this section explains the selection process
for the algorithm employed in the proposed backtracking analysis method. Section 4 examines the
SHAP prediction results from the XAI model, detailing the characteristics of the inference and
backtracking analysis process. Lastly, Sections 4 and 5 discuss the hypothesis established to verify the
proposed experiment. By backtracking the target files and identifying common parameters in malware,
potential security breaches are anticipated, with weights assigned to each parameter. Consequently, the
proposed security control process is refined, allowing for predictive and preventive actions by tracking
results backward using XAI.

2 Related Research
2.1 Traditional Malware Detection Methods

In earlier days, malware was predominantly designed for general computers, especially targeting
the Windows operating system. Until around 2010, most malware targeted these systems due to the
lack of alternative devices. However, the proliferation of mobile devices, such as smartphones, tablets,
and PDAs, along with the growth of cloud computing and IoT environments, has expanded the range
of platforms susceptible to malware. Consequently, malware detection and classification methods now
need to operate effectively across diverse devices, platforms, and operating environments.

Fig. | illustrates a typical flow of malware detection processes, showing how classification
algorithms and data mining techniques are applied to extract meaningful features from raw data
for malware classification [3]. These selected features are trained with ML algorithms or rule-based
learning techniques to separate malware from benign. Further classification can be performed to
increase awareness of the malware’s content and purpose by detecting the type and class of malware
to which it belongs [5].

2.2 AI-Based Malware Detection Model Analysis

Recent advances in Al-based malware detection methods show promise, particularly against
traditional malware types. However, these methods often fail to detect zero-day attacks, requiring
continuous model enhancement [10]. Previous studies use malware detection approaches of new
technologies such as behavioral, heuristic, and model confirmation-based detection and DL, cloud,
mobile device, and IoT-based detection. Table | summarizes several Al-based detection models, listing
the features they use, their algorithms, and performance results.
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Figure 1: Flow diagram of malware detection approaches and capabilities
Table 1: Summary of relevant measures for malware detection approaches
Ref. Features in dynamic Algorithms Dataset Performance
analysis
[9] File system and registry - Ransomware of 25 Not
in windows. Permission families mentioned
monitoring in Android
[10] File system, I/O — 715 ransomware DR 96.7%
monitoring
[11] File system, Access - 148,223 general DRx* 96.3%
patterns, and I/O Data malware
buffer entropy
[12] API calls, Registry key NB and SVM 582 ransomware of 11~ ROC: 0.995
operations, families, and 942

File/Directory system

goodware

(Continued)
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Table 1 (continued)
Ref. Features in dynamic Algorithms Dataset Performance
analysis
[13] HTTP traffic - 750 CryptoWall 4.0 DR 97%-98%
characteristics ransomware
traffic—750 Locky
ransomware traffic
[14] API calls SVM 588 logs, 312 CA 97.48%
goodware, and 276
ransomware logs
[15] Entropy analysis - Not mentioned CA 92%
[16] API calls RF, SVM, SL,and 168 ransomware CA 98.2%
NB
[17] Command and control RF 265 CA 87%
(C&C) server ransomware-related
flows
[18] Portable Executable (PE) — 450 ransomware CA 70%
File
[19] Network traffic DT (J48 classifier) 210 ransomware, 264 F196.8%
benign
[20] Ransomware opcodes DT, RE, kNN, NB, 1787 ransomware CA 99.3%
(Machine Language GBDT
Instructions)
[21] API calls SVM, DT, RF, 360 ransomware, 532 CA 96.1%
GBDT general malware, and
460 benign software
[22 API function calls, - 1000 ransomware, DR 90%
counts of the behavioral 1000 benign software
features, and counts of
the memory features
[23] Selects key features using NB, RF, and SMO 582 ransomware, and ~ CA 79.3%—
Multi-Objective Grey 942 goodware 82.67%
Wolf Optimization and
Binary Cuckoo Search
algorithms
[24] Master File Table (MTF) - Logs with 2000 user CA 97.4%
and I/O Request Packets activity and 2000
(IRP) ransomware activity
[25] I/O operation, LBA, and RF, SVM, kNN, 7 ransomware families F1 0.57-0.99
Entropy CNN
[26,27] Semantic information Bi-LSTM Logs CA
from logs 96.5%0-99.7%

Note: *DR: Detection Rate, CA: Classification Accuracy.
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3 How to Improve XAlI-Based Malware Detection

This section provides a brief background on ML algorithms. Additionally, it describes the selected
dynamic features that form the input vectors of the feature extraction tool, test setup, and ML
algorithm [28].

3.1 XAI Model

Explainable Al (XAI) is critical for enhancing the transparency of Al systems, especially in
high-stakes domains like cybersecurity, medicine, and defense. While traditional Al models (often
seen as “black boxes”) achieve high accuracy, their decision-making process is not interpretable [29].
XAI improves trust by allowing human users to understand how and why Al systems make certain
predictions.

In cybersecurity, model interpretability is vital. Although deep learning (DL) models have proven
effective for malware detection, their complexity and opacity pose challenges when it comes to
understanding their decisions. In response, this study adopts XAI techniques, specifically SHAP, to
balance the trade-off between predictive performance and model transparency [14].

3.2 Need for Preprocessing in EDR Systems

Preprocessing plays a crucial role in malware detection by filtering and refining raw data before
it is processed by detection algorithms. For example, the quality of data may be improved through
techniques such as data normalization, feature selection, and data augmentation, and the performance
of the model may be maximized through this. It is possible to increase the efficiency of model
learning by selecting important variables in the feature selection process and removing unnecessary
variables. This step significantly improves detection accuracy and efficiency by eliminating irrelevant
features, reducing noise, and enhancing the signal-to-noise ratio in the dataset. In the current study,
dynamic API calls, access patterns, and other system-level features were used as input to XAl-based
models. These preprocessing techniques were essential in boosting both detection performance and
the interpretability of results.

In the field of information security, the explainability of a model in ML is inversely proportional to
its predictive performance (e.g., accuracy). DL models, the most powerful and complex ATl algorithm,
are also the most difficult to explain. The role of XAl is to increase explainability while maintaining
high performance. In this study, we propose the ability to detect and predict malware using XAl so
that the results remain actionable through ML. In the past, it has been identified as a limitation that
Al only informs the result when supporting decision-making and cannot logically explain on what
grounds it reached this decision [29]. DL, a representative field of Al, enables judgment by extracting
implicit knowledge rather than explicit knowledge from repetitive large-volume data. Although this
method can improve the efficiency of risk assessment for existing malware or malicious code, it is
difficult to say that it has secured fairness and accuracy [30]. Trust in the system is contingent on
how the conclusions are drawn in an algorithm such as a black box. XAl is attracting attention to
supplement the limitations of artificial intelligence.

3.3 Selection of XAI-Based Malware Detection Algorithm

ML is at the heart of Al and is one of the fastest-growing fields of AI. ML theories and
methods are widely used to solve complex problems in engineering applications and science. ML is
typically classified into supervised, unsupervised, and reinforcement learning. This study predicts risk
factors using the model used in previous studies among ML models. The main parameter settings
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were determined using a grid search. Of the 11 ML classification models (kNN, Decision Tree,
SVM, SGD, Random Forest (RF), Neural Network, Naive Bayes, XGBoost, CatBoost, AdaBoost
GradientBoosting), RF, XGBoost, Catboost, AdaBoost, and NN algorithms were selected for this
study. These algorithms are used for behavior-based detection and some other detection approaches.
Although each algorithm has strengths and weaknesses, it cannot be concluded that one algorithm
is more efficient than another. However, some algorithms may outperform others regarding data
distribution, number of features, and dependencies between attributes [31].

Various machine learning algorithms were evaluated in this study, including kNN, Decision Trees,
Random Forest, Support Vector Machines (SVM), and Neural Networks. After careful comparison,
the XGBoost model was selected for its superior accuracy and efficiency in handling complex data sets
[15]. Table 2 presents the model configurations used in this study.

Table 2: Model and parameters

Model Parameters

XGBoost Basic properties = number of trees = 500; learning rate = 0.300; replicable training;
regularization Lambda = 1; max_depth = 6

RF Number of trees = 10; number of attributes = 7; max_depth = 8

SGD Loss function classification Hinge; ¢ = 0.10 regularization = ridge (L.2) strength (o) =

0.00001; optimization with learning rate = constant initial learning rate = 0.0100,
inverse scaling exponent = 0.2500 (default); number of iterations = 1000; tolerance
(stopping criterion) = 0.0010

kNN Number of neighbors = 5; Metric = Euclidean; Weight = Uniform

Tree Min. number of instances in leaves 2, maximal tree depth = 100

NN Neurons in hidden layers = 100, Activation Relu, Solver Adam Regularization o =
0.0002, Maximal number of iterations = 200

Gradient Basic properties 1) number of trees = 100, learning rate = 0.100, replicable training;

boosting Growth Control 1) max_depth = 3; training instances = 1.00

CatBoost Basic Properties 1) number of trees = 100; learning rate = 0.300; regularization
Lambda = 3; max_depth =6

AdaBoost 1) Base estimators = Tree; number of estimators = 50; learning rate = 0.8000; Fixed
seed for random generator = 10,000, 2) Boosting method = Classification algorithm
=SAMME. R

SVM C=1.0

Naive Bayes  —

3.3.1 Algorithm Selection Performance Comparison for Backtracking Analysis

For the performance evaluation of the ML model, metrics such as area under the curve (AUC)
and classification accuracy (CA) commonly used in previous studies were used. The classification
performance evaluation metric uses a confusion matrix. In this study, five balanced data sets (e.g.,
malicious/benign) and five imbalanced data sets (e.g., malware families) are all addressed to the
classification problem. AUC and CA scores were used. The performance evaluation was compared
using the curve and SHAP value for visualization. In this paper, the distribution map and numerical
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values of the existing XAI’s features are expressed as a matrix to analyze security threat factors in
a method close to approximate values. It suggests a process to determine the correlation of data.
Therefore, all five data sets used as the proposed performance evaluation criterion had common
detection characteristics, and variables representing malware detection were distinguished.

3.3.2 Dataset

This study conducts classification prediction modeling using a total of five data sets. Data sets
#1 and #2 are IEEE malware data. Data set #3 is NSL-KDD, data set #4 is Drebin, and data set #5
is the Microsoft malware classification data set. The configuration of the data sets is summarized in
Table 3.

Table 3: Data set configuration

Data set Type Model
Type Instances Total Ratio  AdaBoost CatBoost XGBoost RF SVM
instance
AUC Fl1I AUC F1 AUC Fl1 AUC Fl1 AUC FlI
Data set #1 Train 80,000 100,000  8:2 1 1 1 1 1 1 1 1 1 1
(IEEE) Test 20,000

Data set #2 Train 35,101 43876 82 0.969 0.97 0.996 0.9760.996 0.9760.998 0.97 0.987 0.951
(IEEE) Test 8775

Data set #3 Train 536 670 8:2 0.969 0.97 0.996 0.9760.996 0.9760.998 0.97 0.987 0.951
(NSL-KDD) Test 134
Data set #4 Train 29,525 36,906 82 0.998 0.993 1 0.995 1 0.997 1 0.9950.42  0.707
(Drebin) Test 7381

Dataset #5  Train 68,962 86203 82  0.896 0.8160.676 0.6260.736 0.6710.895 0.809 - -
(Microsoft) — Test 17,241

The division of data to be used for ML training and prediction classification of the data set in this
study reveals that data set #1 is a malware detection data set (100,000 instances), with a total of 35
features (variables). The train and test data are split 8:2, with 80,000 instances used for training and
20,000 instances for verification.

Based on the data information of data set #2, dynamic_api_call_sequence_per_malware_
100_0_306, the instance is 43,876, and features are composed of 100 numeric types. Based on the
feature descriptive statistics, the mean of the variables is distributed as t_36 124.14 and t_1 211.48.
The median ranges from t_0 82 to t_1 24. The spread ranges from 0.28 for t_1 to 0.68 for t_16. The
minimum values range from 0 to 2. The maximum value is 306.

Dataset #3 extracted a total of 670 instances. 42 were selected as features, 12 were categorical
features, and 29 were composed of numerical variables.

Dataset #4 is the Drebin data set with 17,453 (47.29%) positive samples and 19,453 (52.71%)
malware sample. It consisted of a total of 36,906 instances. It consisted of 138 variables.

Dataset #5 consists of the Microsoft BIG 2015 data set [5] with a total of 86,203 instances, with
positive samples of 43,125 (50.03%) and malware sample of 43,078 (49.97%).

A supervised learning-based ML model algorithm was applied to automatically recognize mali-
cious code through malware classification data and classify. This study used 11 ML classification
models (kNN, Decision Tree, Support Vector Machine (SVM), Stochastic Gradient Descent (SGD),
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RF, Neural Network, Naive Bayes, XGBoost, CatBoost, AdaBoost GradientBoosting). Models with
low effectiveness were excluded through learning and verification processes using the given data of
this study. Furthermore, although boosting and bagging stacking were conducted, special AUC and
CA were not superior, so they were excluded. The H/W components used in the experiment were 12th
generation Intel(R) Core(TM) 17-1260P 2.10 GHz and X64 based processor 32.0 GB for memory, and
the operating system was Winl1 Pro Edition.

4 Malware Traceback Analysis Method for the Proposed XAI-Applied Security Control System

This study extracted parameters that can be reversely traced using the existing XAl concept. These
processes were used to identify items that affect the target parameter in the experiment. Detailed
experimental results are described in Section 4.1. The data features were analyzed using the XGBoost
algorithm as an XAl target. The analyzed data was retrained and applied to XAl after the ML process.

Existing XAl is when DL identifies arbitrary data as malware, using another Al tool to monitor
and determine when it is classified as malware [25]. The proposed model is added to the existing
XAI DL process, and you can check which features are judged to be malware in Fig. 2. As a result
of experiments to confirm the hypothesis, it would be possible to attribute and analyze malware by
applying reverse XAl through the XGBoost algorithm in the dataset.

Today Task
= = Wiy did you do that?
i Ceciswonor = Why not something else?
P Training Machine Learned Recommendation * When do you succeod?
Data [*] Leaming [+ o o ction * When do you fal?
r Process = Whencan | trust you?
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Figure 2: XAI analysis methods added to the model

Fig. 3 illustrates the basic process of existing XAl. The dotted box in this Fig. 3 at the bottom
represents the analysis process. Several facts were reconfirmed through the proposed XAI model.
First, XAl is useful when results are inaccurate. Second, the measure of the explanatory effect may
change over time. Third, it helps measure and analyze the detection models of users and XAI systems.
However, this XAl described the detection result and its contents, unlike the existing Al learning model
that expressed only the result value [29]. However, this study intended to identify which parameters
influenced the technology being improved through experiments. If this effect is known, it is possible
to observe in detail the factors that affect the labeling or feature processes in advance.
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Furthermore, it is possible to analyze the characteristics of malicious files by classifying files to be
managed intensively through impact. Based on these improvements, the characteristics of malware and
the threat to its files could be predicted and removed in advance. Finally, through various experiments,
the XAI structure was changed to the reverse direction, and a new method was proposed to extract
parameters that can represent malware. Consequently, the main variables for predicting malware
detection could be identified.

4.1 XAI-Applied Malware Analysis-Detection Model Measurement Results

SHAP (SHapley Additive exPlanations) values provide the contribution of each feature to the
prediction of the selected class by taking the training model and reference data for the inputs and using
the provided data [32]. SHAP values are a technique used in ML to interpret a model’s predictions and
understand the importance of each input feature contributing to those predictions. It provides a way
to attribute the predictions of a particular instance to individual features. It aims to fairly distribute
“credits” or “contributions” among the input features of the model. In the context of ML, SHAP
values quantify the impact of each feature by measuring the change in prediction when a feature value
is included or excluded. By calculating a SHAP value for each feature, you can understand how much
each feature contributes to the model output for a particular instance.

A positive SHAP value indicates that the feature contributes positively to the prediction, while
a negative value indicates the opposite. The size of the SHAP value indicates the strength of the
contribution. SHAP values can describe individual predictions, understand the importance of features
at a global level, and evaluate the behavior of the entire model. It enables the interpretation of complex
models such as ensemble methods, deep neural networks, and gradient boosting machines, often
considered “black box” models. While SHAP is a powerful interpretability tool, it is computationally
expensive and may slow down real-time detection in high-speed environments. This presents a limi-
tation for real-time applications, but we propose optimizations through feature selection to mitigate
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this issue. In the experiment conducted using the selected model XGBoost, the horizontal axis of each
graph represents the impact on the model output, measured as the contribution of each feature to
the prediction results. The unit of measure is based on the SHAP value itself, which quantifies the
influence of each feature on the outcome. The vertical axis lists the features analyzed for each dataset,
showing their contribution distribution.

In Fig. 4, the graphs illustrate the contribution of each feature to the prediction. The red color
represents the effect on the prediction result as the feature value increases, whereas the blue color
represents the effect as the feature value decreases. For example, in the experimental results for Dataset
#5, the higher the value (red) of the variable ‘AVProductlnstalled’, the smaller the effect on the
prediction result, while the lower the value (blue) has a greater effect. This indicates that this variable
has the greatest effect in XGBoost for this particular dataset.

4.2 Malware Traceback Security Analysis Model Applied with XAI

Fig. 3 has already shown the proposed reverse analysis model, which traces back detection results
to identify which parameters contributed to a malware classification. This approach not only enhances
detection accuracy but also helps system administrators understand the specific characteristics of
detected malware. The reverse analysis process can also provide insights into potential preventive
measures, thus addressing concerns about the lack of proactive defense mechanisms, such as Intrusion
Prevention Systems (IPS) and advanced threat intelligence.

Fig. 5 is the analysis process applying the proposed model in the network for the experiment.
It is configured with minimal impact on the existing network. As the experimental conditions of this
study, after inputting the same data set and confirming the lowest performance result, five final models
were selected, and the experiment was equally conducted within 100 repetitions of epochs in the same
period.

In Fig. 5, traditional security equipment and control processes are schematically illustrated. The
various analysis results from the security devices on the left of Fig. 5 are analyzed and resolved in
the second area on the right. In this process, the question mark and the diamond shape in the middle
determine whether an analysis is possible. Then, unique signatures represented by each file are checked
and uploaded to the existing detection engine. Undiscovered threat attacks are classified as unknown
attacks.

As proposed, by examining the malware detection results and process using the XAI model,
various threats can be identified, including viruses, malicious codes, DoS, DDoS, information system
damage, scanning, hacking traces, via hacking, information leakage, forgery and falsification, and
illegal access attempts. It was classified, and an accident analysis was conducted for each type.
However, it is necessary to analyze events for each detection type to detect malware. Optimized
detection is possible through reverse XAl claimed in Fig. 3. In traditional security control, signature-
based detection and Al engines have similar judgment processes.

In Fig. 5, the analysis process and the detection pattern are finished only when the end is at the
bottom. Therefore, the proposed analysis modeling method proposes to perform the analysis process
in parallel with the existing method through mirroring. Consequently, the proposed self-detection and
the reverse engines will be combined, and only the results will be delivered to the controller to identify
the problem from those results. Therefore, the proposed analysis modeling has the advantage of being
able to perform the analysis process simultaneously with minimal impact on the existing system and
network configuration.
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Figure 5: Security analysis modeling using XAI

Fig. 6 is a drawing of the result obtained after sending the actual data using Fig. 5. Fig. 6 is
expressed to improve readability because it is not easy to read the SHAP results described above.
As depicted in Fig. 6, the part that affects the prediction of the XGBoost model the most among
the test data is Organizationldentifier, and the value of 0.67 was confirmed. Next is Cityldentifier,
with an influence of 0.36. The third is Countryldentifier. In Fig. 6, 63 parameter values on the left
were extracted and used in common. These parameters are values commonly used by malware in the
data set and general files. The features and scores at the bottom left are numerical values representing
the experimental results. The twelfth parameter, Organizationldentifier, was detected the most, and
this parameter was predicted to represent a threat. In existing general files, this parameter was not
significant and was detected most frequently in malware—the value of this most frequently detected
parameter would be meaningful.

Based on verifying the actual data, Organizationldentifier significantly influences malware. In
Fig. 6, the middle graph expresses the risk and frequency from 0 to 1. The closer to 0, the smaller
the impact; the closer to 1, the greater the possibility of malicious files by parameter detection.
The bar graph on the right in Fig. 6 represents the cumulative value. Based on the SHAP value of
the dataset, Organizationldentifier (organization room identification), which has the highest value
among variables, has the greatest effect, and Cityldentifier, Census_PrimaryDiskTotalCapacity, and
Countryldentifier values affect malware determination.
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Figure 6: Malware detection parameter extraction results

In combining with the proposed EDR process based on XAl, it is possible to simultaneously
verify the process and result of notification contents from the user side and confirm the exact reason
for the percentage (e.g., statistical values and similar values) of the existing Al for the detection result.
It was an experiment. Therefore, rather than improving the engine of the existing AI EDR system,
we optimized the XGBoost model selected through performance comparison among various models
most used in XAl It was configured as a back end of the existing legacy equipment and analyzed
data simultaneously. Consequently, it was possible to identify problems in the process that could not
be resolved because of the nature of the existing endpoint control, and it is expected to serve as a basis
for more clearly identifying questions about Al results.

5 Conclusion

In this study, the approach to generating malware datasets and features, as well as the methodology
for malware detection and classification, was verified based on previous research. By using the same
ML classification algorithm using the open data set of the previous study, the running time was
reduced, and an ML model with excellent performance was selected. Open data sets were used for the
data set, objectivity was secured, and comparative analysis was performed using common parameters.

Five models were trained using the same data set to support the claims of this study. The
XGBoost model was selected with an average of 94.2% of malware results. The reverse analysis
process of XAI was performed using the selected XGBoost model. Moreover, various variables and
parameters were detected and analyzed. Afterward, because of checking the detected parameters, the
part that was determined to be the most threatening factor in malware and impacted prediction was
identified as Organizationldentifier. The value is +0.67 based on 1. The closer this value is to 1, the
more serious the threat is relative to other parameters an important variable to determine whether
it is malware. The second threat parameter is Cityldentifier, with an impact of 0.36. The third is
Census_PrimaryDiskTotalCapacit.

What we learned through the proposed XAl inverse model is that we were able to grasp the
visibility and properties of data that could not be analyzed with the well-explained results of the
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existing XAl or the results from the general AI model. This experiment is expected to enable an
intensive analysis of the file in the future inflow using network traffic of malware. Moreover, it will
be a parameter adjustment value that can be predicted in advance when the file is decomposed and
operated at the endpoint or when an unknown attack is attempted. This experiment is expected to
contribute significantly to solving the cause analysis using only the strengths of the existing XAl and
Al models by tracing back the result analysis area and Al detection results presented as limitations in
traditional security control.

This study presents an enhanced method for malware detection using Explainable Al (XAI)
integrated with the XGBoost model. By employing SHAP values, we provide transparency in feature
influence, making the model’s predictions interpretable and actionable in real-world scenarios. One of
the critical concerns in cybersecurity is the balance between detection accuracy and interpretability.
This study successfully demonstrates that by employing reverse analysis techniques, malware detection
can be both accurate and transparent, thus addressing key limitations in traditional EDR systems.
Additionally, by identifying critical parameters that contribute to malware detection, this study opens
up new avenues for proactive security measures, including enhanced intrusion prevention strategies.

Moreover, this study identifies certain challenges such as handling large datasets and the com-
putational expense of SHAP values. Future research should focus on optimizing these processes
to enable real-time application in large-scale, high-speed environments. Reducing the complexity of
SHAP while maintaining its explanatory power is crucial for improving EDR system efficiency. This
study contributes significantly to the field by offering a transparent, explainable approach to malware
detection, which could be a foundation for future proactive security systems that not only respond to
threats but also prevent them.

With deeper investigation, it is possible to secure the visibility of the endpoint by collecting various
information from the endpoint and analyzing the behavior based on the collected information, Al
(ML), and Indicator of Compromise (IOC). It will be possible to filter known and unknown attacks
in advance with technologies such as detection. Many existing research papers have emphasized
the superiority of detection accuracy of EDRs using specific datasets, but this paper has shown
that malware detection accuracy has been improved by applying machine learning to five accessible
datasets. In addition, it has significance as the first research paper to apply an explanable Al technique
that can examine the reliability of artificial intelligence.

While existing research papers typically focus on quantitative performance in terms of malware
detection accuracy, they often lack data on time costs. Consequently, this study also faces the
limitation of not presenting improvements in time costs. Further research should explore user-friendly
technologies and time-cost advancement to improve complex reporting and results within existing
security systems. Additionally, if the processes and improvements proposed in this study can address
the “why” behind detection rates—providing statistically similar results within the existing system—
it may be possible to elucidate the “black box” process inherent in DL. Increased transparency and
reliability of results are expected to be achieved.
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