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ABSTRACT

Evaluating artificial intelligence (AI) systems is crucial for their successful deployment and safe operation in real-
world applications. The assessor meta-learning model has been recently introduced to assess AI system behaviors
developed from emergent characteristics of AI systems and their responses on a test set. The original approach
lacks covering continuous ranges, for example, regression problems, and it produces only the probability of success.
In this work, to address existing limitations and enhance practical applicability, we propose an assessor feedback
mechanism designed to identify and learn from AI system errors, enabling the system to perform the target task
more effectively while concurrently correcting its mistakes. Our empirical analysis demonstrates the efficacy of this
approach. Specifically, we introduce a transition methodology that converts prediction errors into relative success,
which is particularly beneficial for regression tasks. We then apply this framework to both neural network and
support vector machine models across regression and classification tasks, thoroughly testing its performance on a
comprehensive suite of 30 diverse datasets. Our findings highlight the robustness and adaptability of the assessor
feedback mechanism, showcasing its potential to improve model accuracy and reliability across varied data contexts.
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1 Introduction

Over the last two decades, artificial intelligence (AI)-based approaches have developed many
remarkable solutions, including image recognition [1], speech recognition [2], machine translation
[3], sentiment analysis [4], and text and image generation [5]. Hence, the significance of the safety
of deployed AI systems is boosted by the increase in the leveraging of proposed models and AI
applications. If the power of AI models is not adequately assessed before deployment, it can cause
remarkable undesirable events in the future [6–8].

Evaluating the robustness of AI models is challenging because researchers have encountered many
issues while developing machine learning (ML). Especially deep neural network (DNN) models as
adversarial examples change their outputs from the correct one to wrong [9], on image classification
[10,11], on large language models [12]. Explaining these models in this phenomenon is to identify its
source, which is related to either a hard instance or unknown [13]. Many conventional techniques fail
when a little distribution shift occurs in the unseen data [14,15].
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Traditionally, we evaluate an AI system using cross-validation (the prevailing method), which
involves assessing its average performance on unseen datasets, such as accuracy in classification or
mean absolute error in regression tasks on test sets. Additionally, we consider model self-confidence,
which indicates the extent to which an instance aligns closely with the target. For instance, a logistic
regression model generates the Maximum Class Probability (MCP), indicating the probability to which
a given object belongs to either the first or second class. However, this information can be obtained
only after acquiring an ML model’s output. Moreover, this represents solely the system’s certainty
regarding a specific example without indicating whether the system’s prediction is accurate. As an
illustration, when a DNN model classifies a perturbed image, it generates probabilities indicating the
likelihood of the input image belonging to each class, following the softmax distribution [16]. However,
the generated output needs to be more accurate due to its classification as an adversarial example.
These methods can lead to severe accidents. For instance, if a self-driving car misidentifies a “stop
sign” as a “45-km/h speed limit” due to adversarial perturbations [17].

Hence, it is essential to ascertain the accuracy of the anticipated output of any AI system prior
to its deployment, at the very least by assessing the probability of success or failure for each instance.
The assessor model, recently introduced by [7], is designed to evaluate AI systems in specific scenarios,
determining the likelihood of success for a deployed system. This framework is underpinned by various
broader impacts and illustrated with a single straightforward example of a classification problem. At
its core, the model serves as an AI meta-model, overlaying deployed AI systems, and is mandated to
fulfill five fundamental properties: anticipatory-forecasting the success of system outcomes for a given
task before utilizing the system; autonomous-operating as a distinct model without access to internal
system workings; granular-providing individual predictions for system behavior on each object;
behavioral-incorporating emerging traits of deployed systems during prediction; and distributional-
predicting outcomes based on system populations. Based on the characteristics, the assessor model is
expected to predict the behavior of the system differently and consistently in specific scenarios. For
instance, even if two systems perform the same task, they may do so in different ways, or a single
system might vary its approach across situations or tasks due to varying levels of complexity.

Another method of evaluating ML models involves the application of item response theory (IRT),
which gathers prediction outcomes for analysis. Unlike traditional approaches like calculating average
accuracies for classification tasks, IRT pertains to the domain of psychometrics, aiming to gauge and
analyze the abilities of respondents and the difficulty levels of items within a given survey. In this case,
items and subjects correspond to input objects and ML models, respectively [13]. In IRT, there is done
wide a range of analysis, particularly estimating the hardness of predicting each new instance by an AI
system is considered [13,18]. In this paper, we also leverage responses from ML models similar to IRT
to construct datasets to train and evaluate assessor models, however, the assessor-meta model learns
these responses instead of computing IRT parameters to explain ML models.

In this research, we enhance the effectiveness of the assessor model by introducing a methodology
aimed at reducing system errors. The initial assessor approach predicts a system’s single-input
prediction’s success or failure, similar to binary classification. Therefore, if we have AI systems and
their predictions on a test set, we can train an assessor model on this tuple of <system, input,
systemsuccess> by assuming we have classification problems. However, this approach must be adjusted
for regression problems. To implement with setting <system, input, systemsuccess>, we replace “system
success” with its “error” and train the assessor model on this setting without losing any properties.
Upon obtaining a prediction error from the assessor, we can determine whether to utilize the selected
system based on a predefined threshold.
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Our key contributions to this work: developing transformation from success probabilities to
predicting errors with their inverse for continuous variables; adjusting this idea for regression, logistic
regression, and classification with softmax output tasks on NN models and SVM. We also demonstrate
our results in over 30 datasets to validate this proposal. Additionally, as the research focuses on ML
models, the paper uses the terms “systems” or “models” interchangeably to refer to ML models, and
calls the assessor model the “assessor” throughout.

The rest of the paper is organized as follows: the next section summarizes relevant work; in
Section 3, we introduce the core elements of the assessor procedure, the transformation, and our
proposed approach to empower it; Section 4 presents a broad range of experiments as examples of
three widely used ML tasks; final sections discuss and conclude our findings.

2 Related Work

Since these assessor models have been recently proposed, their practical implementations are rare,
so the following subsections present an overview of other assessing methods divided into several types.
Nevertheless, one very similar approach is the use of instance hardness measure as part of the learning
process [19] by subtracting the value from the output of softmax. This measurement is also computed
from responses by a set of ML models, particularly multilayer perceptron, for classification tasks. Since
the instance hardness is combined in the training process with backpropagation in an MLP model, the
approach is not standalone.

2.1 Automated Machine Learning

Automated ML (AutoML) has been used widely to automate the entire process of building AI
system pipelines, including collecting data, data preprocessing, feature engineering, feature selec-
tion, meta-learning, hyperparameter searching, and neural network architecture searching without
requiring a deep knowledge of ML or any human intervention. During the hyperparameter and
neural network architecture searching using meta-learning, it may use various parameters to find
an appropriate model for the given task, likewise fine-tuning NN models [20,21]. Since it is so
popular, many ML frameworks have developed their AutoML versions, including Autosklearn,
AutoTensorflow, and AutoPyTorch. In the case of an instance-level assessment (the paper’s primary
focus), we also leverage similar parameters to constitute the emergent behavior of AI systems with
other related factors to this process.

The most significant difference between them is the assessor model aims to assess before
employing an AI system on each task. Suppose we know how an AI system behaves for every job.
In that case, we can apply this result to a range of AI problems such as combining models, explaining
AI systems, fixing outputs (the main objective of this paper), and auditing or certifying [7]. Moreover,
AutoML does not satisfy all properties of the assessor model listed above except distributional1.

2.2 Item Response Theory

One way to explain AI systems is to derive their IRT difficulties developed [13] supported by
regression examples for a broad range of ML tasks, including adversarial examples and out-of-
distribution samples. Authors acquire 10–20 responses for each item from models to estimate the
difficulties by training a meta-learning model on the responses. In this case, the “difficulty estimator”

1Nevertheless, AutoML searches several AI models and evaluates them based on some metrics according to the considered tasks. It usually suggests one of these models
while the assessor models evaluate them based on each instance separately. If the task is selecting a system, the assessor selects a system for each instance separately based
on success rate. In contrast, AutoML chooses only one system for generalization metrics, such as accuracy or loss on test sets.
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model is not an assessor model that holds the above properties. Similarly, IRT responses are leveraged
to build a weighted majority voting framework based on the hardness of instances in ensembles
by measuring how close the objects are to the boundary [19,22]. Another analysis of AI models at
the granular level based on IRT explored ML classifiers to estimate their behavior [13]. To explain
these classifiers, the authors combined latent variables of items and responses by models. Most of
this research has benefited from the two-parameter logistic model to identify instance abilities and
difficulties as a function of probabilities as follows:

Pr(Uij = 1|θj) = 1
1 + e−ai(θj−bj )

,

where Uij, ai, and bj are binary response of respondent i to question j, a slope, and a difficulty accord-
ingly. These parameters facilitate explaining the model abilities and instance hardness (difficulty). Our
main aim in this work is to train the assessor model to fix models’ outputs. However, we also used
similar responses to construct a dataset to train the assessor model on it. These approaches also do
not complete the properties of the assessor. Other work has been proposed to evaluate robustness
testing of ML families [18], speech synthesis [23].

2.3 Practical Implementations of Assessors

Several recommended fields of assessors are listed in a previous study [7] along with the proposal
of the assessor and its properties, providing a simple classification example to demonstrate its ability.
Moreover, one study proposed selecting and combining several systems to improve performance [24].
They developed a small random forest model to estimate how large language models can compile
an input prompt properly. To construct the relationship between items and responses, they extract
instance features from text and use the number of shots in training with systems’ characteristics
as three-dimensional space. Instead, we build this relationship differently because we aim to reduce
models’ errors.

2.4 Failure Predictions

Since many practical AI solutions are based on deep neural networks, their output mainly
produces MCP; this raises the question of whether the outputs are correct. One particular work in
[25] devoted to this is to depend on the True Class Probability instead of MCP by building an extra
loss function based on the model confidence. Similar to [19], this work also benefits from the actual
predictor. Therefore, it cannot be an assessor model.

3 Assessor Feedback Mechanism

This section explains the paper’s novelty by introducing the assessor and its significance. We
illustrate the proposed methodology as a regression task and consider classification problems as
regression tasks.

3.1 Notation

We define a set of systems representing their emergent behaviors by S = {s1, . . . , sN}, si ∈ R
n, and a

set of objects by matrix X ∈ R
M×m with corresponding target value vector y. Once we have both input

data and systems to predict them, we can construct a set to train an assessor model by denoting it with
matrix A ∈ R

K×(m+n), where K is the number of examples in an assessor dataset (which is later used to
train the assessor model), and m and n are dimensions of system and instance features, respectively.
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To collect responses from systems likewise in IRT, we can write as a matrix A.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1,1 . . . s1,n x1,1 . . . x1,m

. . . . . . . . . . . . . . . . . .

sN,1 . . . sN,n x1,1 . . . x1,m

s1,1 . . . s1,n x2,1 . . . x2,m

. . . . . . . . . . . . . . . . . .

sN,1 . . . sN,n x2,1 . . . x2,m

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

sN,1 . . . sN,n xM,1 . . . xM,m

. . . . . . . . . . . . . . . . . .

sN,1 . . . sN,n xM,1 . . . xM,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Dataset A represents a full combination of pair
(
si, xj

)
by joining the emergent behavior vector si

and input vector in each row of the matrix. In practice, we cannot build such a combination, so we can
randomly select pair

(
si, xj

)
to create batch examples. We also need to denote a error of pair

(
si, xj

)
by

ei
j which is a error of system i on prediction instance j. These emergent behaviors and errors may vary

slightly in different tasks so that we will define them for each task separately later.

3.2 Background

Explaining AI/ML systems is one of the challenging parts of AI; therefore, a considerable amount
of research efforts has been dedicated over the years. Early assessment of their behaviors before
acquiring their outputs may prevent unexpected incidents in the future. One straightforward example
of selecting problems from our life is a leader controlling a group to do given tasks and control the
results of finished tasks. The problem of the leader is to assign each task to one of the group members.
As the leader is experienced, the leader probably knows what tasks certain members can successfully
finish and what kind of errors the member can make on a particular task. Like the leader, we also wish
to build a meta-model called “assessor” that must satisfy the properties in section Introduction and
explain any system for a given task.

The first significant benefit is to estimate probability Pr(success; si, xj) indicating the likelihood
of successfully predicting instance i for system j if the prediction results are categorical. Building
such a model is easier for a classification task, but if the task is continuous, then another method
should be considered. In [7], authors advised using a parametric assessor model by supposing Gaussian
distribution. However, in the current study, the assessor learning strategy is the target contribution by
introducing an error threshold.

The first step to implementing an assessor model is to construct a meta-model with two inputs:
system behaviors and input data (if we join them as shown in Eq. (1), it may have only one input). Then,
we should collect responses from each system for each instance as shown in Section 3.1. In practice,
the size of A would be N × M if it is built; therefore, we randomly chose system i and instance j and
trained the assessor model in batches.

The flow of input instances in the deployed systems with their assessor meta-model: firstly, the
input data are used in the assessor model with system features; then, regarding the assessor’s decision,
whether it is passed to a desirable system to predict or reject; if not rejected, then, finally, the system
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output will be fixed with the assessor’s output, and if the actual value of the output exists, then it will
be added to the assessor dataset to train the assessor model further.

3.3 The Proposed Methodology

This methodology is based on learning errors of system responses over instances instead of just
assessing a system to see whether it can succeed. To adapt it, assume we have a regression task, and
we have given a set of pretrained systems S with their behaviors. For a pair of system i and instance j,
we can find the true error as follows:

ei
j = yj − ŷi

j, (2)

where yj is a given target value of xj, and ŷi
j is predicted value of target yj for instance j by system i. Now,

we can train our assessor model on a joint vector of pair (si, xj) by targeting error ei
j. After selecting one

of the systems2. According to the output of the assessor, the output of system i in predicting instance
j can be fixed by simple substitution of Eq. (2):

yj = ŷi
j + ftrun(êi

j), (3)

where êi
j is a prediction of the assessor since the assessor itself is an ML model, êi

j is not a true error of
system i for instance j, and ftrun is a truncation function as follows:

ftrun(êi
j) =

{
êi

j if |êi
j| ≤ ε

0 otherwise
, (4)

where ε denotes a threshold parameter determined differently. The critical characteristic of assessor
models is that they are meta-ML models, similar to other models designed to operate under uncer-
tainty. This inherent uncertainty can sometimes result in significant prediction errors in specific cases,
making it necessary to clip such errors to prevent the adverse side effects associated with assessor
models. The optimal value of the error threshold, ε, depends on the nature of the task, the task type,
and the methodology employed to solve it. For instance, an ε value of 0.25 may be sufficient for logistic
regression tasks, but in regression tasks, ε cannot be universally applied, as the range of model errors
can be significantly larger. Therefore, each task requires a distinct and carefully calibrated value of ε

to manage prediction errors effectively. We will primarily use Eq. (4) in experiments in the subsequent
section and evaluate its utility in Section 5.1.

After introducing an error-learning strategy by the assessor instead of the success probability
of systems, we cannot convert that error to this probability Pr(success; si, xi) as proposed originally
for only regression tasks. So, one straightforward method is including maximum-error parameter
emax > 0. If the predicted error of pair (si, xj) by the assessor is less than the parameter, we can
then make a decision that system i can succeed in predicting instance j. However, this approach
produces only success or failure, not probability Pr(success; si, xj) as defined in [7]. To overcome this
limitation, we might use the following definition for only regression problems, but Eq. (5) cannot give
us Pr(success; si, xj) directly, instead it is only “Relative Success”.

Predicting instance performance (PIP) For the pair (si, xj) and a pretrained assessor model with
a threshold emax. Eq. (5) computes the performance of predicting (Relative Success) an instance for
regression tasks.

2In this case, we suppose that the task of the assessor mode is selecting the best model. In general, we can select any system out of the systems, and we fix its error.
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Rpip =
⎧⎨
⎩1 −

∣∣êi

∣∣
emax

if |êi| ≤ emax

0 otherwise
, (5)

where êi
j is the predicted error by the assessor on object j for a given system i.

Similarly, we adjust the proposed methodology above to logistic regression tasks by elementary
changes. The logistic regression with sigmoid output usually varies in the interval [0, 1] that identifies
the class probability of an input instance. Suppose we have data set by in matrix X ∈ R

M×m with
target value yi ∈ {0, 1}. Without loss of generality, we can apply this method to logistic regression
tasks. However, if the task is a multiclassification task, where yi = {0, 1, 2, . . . , k}, a workaround with
one-hot encoding should be applied, which is the core of the softmax solution. So, Eq. (3) will be a
subtraction of vectors: true one-hot encoded vector of yj = [0, . . . , 1, . . . , 0] and prediction vector by
softmax output ŷi

j ∈ R
k of system i for instance j. Hence, the assessor model also produces a vector

êi

j ∈ R
k for each one-hot encoding.

4 Experiments

This section demonstrates a wide variety of results of the proposed methodology shown above for
described tasks. In the first subsection, we provide more examples than others based on one dataset
in various settings to present the proposed methodology’s abilities and limitations along with some
challenges.

4.1 Construction Assessor Dataset

The assessor dataset on which we train our assessor model consists of system feature values,
instance feature values, and systems’ error responses in predicting these instances. The process of
gathering responses might have several considerable challenges with various solutions. We build
the behavior of ML models for each type of task slightly differently, mainly concentrating on the
architecture of NN and SVM models described in Appendices A and E, including the hidden layer,
number of parameters, hyperparameters, and other aspects. In turn, we leverage instance feature values
without any preprocessing, but Reference [24] constructs these values from some patterns of texts, such
as numbers and dates.

4.2 Regression Task Results

To illustrate the results derived from the assessor model on regression task, we leverage blog
feedback [26,27] that contains about 60 k instances extracted from approximately 6 GB plain HTML
documents collected from 37,279 Hungarian blog pages. Each object in the dataset is described by 280
features and one target value, which is the number of feedback (comments). The task of the dataset
is to forecast the number of feedback for a given piece of news. Additionally, the dataset was split
into a train set (52 K objects) and 60 test sets (roughly 127 instances in each) to analyze the model
performance.

First, 30 randomly generated systems were trained on the training set, and then how the assessor
model assessed these systems was investigated by averaging the results over the examples. Each system
is a one-hidden layer NN model with the following architecture shown in Appendix A. Due to
the random selection of losses during training systems, we remove some systems with NaN (Not
a Number) loss values or some systems’ average PIP is less than a threshold value on the training
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set3. After omitting these systems, we have left several systems, so the assessor accuracies on a system
whose average PIP is the highest4 are shown in Fig. 1 over 59 test sets, and the first set is used to
train the assessor model. The detailed setups and steps of the training assessor model are described in
Appendices B and C.

Figure 1: Average assessor accuracies on 59 test sets by four metrics

In Fig. 1, all accuracies are close to 1 except the balanced one. According to these accuracies,
the developed assessor model usually predicts well; it reaches near one on a few test sets without
dispatching the considered system. Nevertheless, this assessor performance for a system with the lowest
average PIP significantly differs from that in Appendix D, as both systems have various behaviors.

Typically, all rates in the latter scenario are markedly higher than in the former. This occurrence is
similar to the class imbalance problem in classification settings because the assessor model suffers from
few error responses produced by exceptionally reliable systems. This issue also occurs in the proposed
feedback mechanism for the best and selected systems while not for the worst system demonstrated
in Fig. 2; the corrections have contrasting effects. As the chosen system for each input instance is
determined by the assessor’s identification of the lowest error, this phenomenon does not exert a
significant negative impact but manifests in highly accurate models.

Figure 2: Regression output correction by the assessor

3According to PIP in Eq. (5), it is computed based on the predicted error by the assessor for pair (si , xj). If we replace the predicted error with the true error after acquiring
an output of system i on object j and average it over examples in the training set, we calculate the average PIP for system i.

4In the rest of the paper, we refer to a system with the highest PIP as “The best system,” and a system with the lowest PIP as “The worst,” and a system selected by the
assessor model concentrating the lowest error for each input instance as “The selected system”.
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After correcting the model outputs, the worst system outperforms two out of nine systems, and
the rest of the errors are close to the best and selected models. Nevertheless, the correction technique
can have little influence on the two systems. In contrast to these outcomes, we see better results for
classification problems in the following subsection. Both results are produced on various feedback
truncation rules than Eq. (4), as detailed in Appendix B

Furthermore, Table 1 presents additional findings regarding regression tasks across various
datasets. Similarly, the preceding results in the regression corrections shown do not demonstrate
improvement for “the best” and “the selected” systems. However, they positively affect the worst
systems, with the outcomes being the best in two datasets and comparable in others.

Table 1: Mean absolute errors on 9 datasets for regression tasks

Dataset Best system Corrected1 Worst system Corrected Selected system Corrected

Abalone 1.5940 1.5611 2.8605 1.5361 1.5356 1.5306
Student-mat 1.7379 1.7244 4.2026 2.4342 1.8100 1.8154
Student-por 0.8819 0.8822 3.0246 1.5066 1.1537 1.1764
Parkinsons 6.3193 6.2298 12.0504 4.5156 5.6415 5.5233
Conductivity 10.1215 9.9895 18.5874 10.7542 9.2176 9.1177
Housing 2.3533 2.5339 9.7025 2.4315 2.4864 2.4429
Bike 0.1644 0.3489 11.9682 3.8720 0.5550 0.5994
FCV 6.9897 7.2341 11.0670 5.7713 5.1004 5.1005
LWEF 0.0971 0.0966 0.1855 0.0769 0.0823 0.0827
Note: ∗Boldface and boldface with italic style are used to highlight the better results among relevant pairs and the best results in Tables 1–3.
1Columns named “Corrected” store the corrected values of the previous columns. All dataset details can be found in Appendix F.

4.3 Classification Task Results

Likewise in the regression task, in this case, we also generate all NN models with only one hidden
layer randomly and train an assessor model on their error responses across datasets. However, the
assessor model is not as large as in the regression. We utilized 10 datasets to showcase the results of
the proposed methodology in balanced and F1 scores presented in Table 2 for binary classifications.
In most cases in Table 2, the feedback produced by the assessor model has affected on the values of
both metrics considerably well (i.e., negative effects occurred on only three datasets for the best system
and one dataset for the selected system).

Table 2: Average balanced/F1 scores of logistic regression task

Dataset Best system Corrected Worst system Corrected Selected system Corrected

Mushroom 1.00/1.00 1.00/1.00 0.50/1.00 1.00/1.00 1.00/1.00 1.00/1.00
Adult 0.82/0.66 0.82/0.67 0.49/0.03 0.70/0.56 0.73/0.62 0.75/0.63
Spam 0.82/0.78 0.92/0.91 0.49/0.20 0.68/0.53 0.64/0.44 0.66/0.57
Rice 0.85/0.88 0.92/0.93 0.50/0.70 0.90/0.91 0.88/0.91 0.91/0.93
Raisin 0.87/0.86 0.86/0.86 0.45/0.60 0.84/0.83 0.75/0.75 0.79/0.80

(Continued)
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Table 2 (continued)

Dataset Best system Corrected Worst system Corrected Selected system Corrected

Bre. Cancer 0.94/0.93 0.96/0.95 0.48/0.04 0.90/0.88 0.84/0.82 0.85/0.83
Shoppers 0.88/0.93 0.88/0.93 0.48/0.62 0.73/0.91 0.67/0.93 0.68/0.93
Magic 0.77/0.71 0.80/0.74 0.50/0.00 0.82/0.77 0.77/0.70 0.78/0.72
Rejafada 0.90/0.91 0.90/0.90 0.50/0.00 0.79/0.75 0.81/0.82 0.81/0.83
Chess 0.94/0.93 0.95/0.95 0.49/0.61 0.82/0.83 0.92/0.92 0.91/0.91

To demonstrate the results for softmax output, we apply the proposed approach for multi-
classification problems, and likewise the earlier experiments, we also employ NN models in the
same manner. As described in the preceding section, we encode class labels into their one-hot
form. For example, the true labels are encoded as y = [0, 0, . . . , 1, . . . , 0], the respective pre-
dicted ones as ŷ = [0.02, 0.05, . . . , 0.95, . . . , 0], and the errors are computed as yerror = y − ŷ =
[−0.02, −0.05, . . . , 0.05, . . . , 0]. Since the error term in this task is not a scale similar to preceding both
experiments, we sum absolute values of yerror to prefer and decide whether an ML model can succeed on
a particular example. In turn, our assessor model also produces multiple outputs for each class. Table 3
presents the outcomes of the proposed method on this task. Analogous to outcomes in Table 2, error
correction increased the average accuracies of most systems on almost all datasets, except in two cases:
MNIST and Fashion MNIST for the best model.

Table 3: Average accuracies of multiclassification task by softmax output

Dataset Best system Corrected Worst system Corrected Selected system Corrected

Students 0.7016 0.7367 0.4915 0.6824 0.6768 0.7152
Mat. Health 0.5320 0.6108 0.3941 0.6108 0.5025 0.6059
MNIST 0.9502 0.9502 0.5147 0.6071 0.7634 0.8129
Fash. MNIST 0.8432 0.8431 0.5046 0.5667 0.7304 0.7397
Dry Bean 0.8715 0.9071 0.5417 0.6566 0.8711 0.8825
Car 0.8295 0.9104 0.5723 0.8728 0.7717 0.8179
Thyroid 0.9479 0.9507 0.9389 0.9389 0.9389 0.9403
Optical 0.9466 0.9475 0.7758 0.8265 0.8701 0.8808
Cover 0.7471 0.7498 0.4572 0.6496 0.7027 0.7225
Letters 0.7245 0.7268 0.4168 0.4308 0.7103 0.7130

5 Discussion

Assessors were initially introduced to elucidate the behaviors of AI models, mitigating their
unpredictable decisions on each new incoming instance. Before deploying them, we can utilize
assessors to evaluate whether a system functions correctly, determining the probability of success or
failure. Retaining all the attributes of assessors, the proposed method transforms the probability into
an error term, which serves as the training input for the assessor meta-model. This model provides
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feedback for each case to rectify the outputs. The first challenge here is to construct a vector that
explains the emergent characteristics of predictors. This work builds it from NN model architectures
and other hyperparameters relevant to the training process. A broad range of provided computational
research results shows that the current approach has considerable positive outcomes for inaccurate
systems along with notable increases for more accurate models. The rationale behind this might be
that each dataset should be treated individually, which is also associated with calibration concerns.
This study employs nearly identical architectures across all datasets.

This constraint primarily pertains to regression problems. While reducing errors in less accurate
systems also elevates errors in other systems. Nonetheless, as depicted in Fig. 1 for 59 test sets, there
is a slight improvement, as evidenced in Table 1. Specifically, this constraint is observed in only 8 out
of 18 cases, yet most values are very similar. Moreover, in the final two task categories, the results
presented in Tables 2 and 3 exhibit notable improvement compared to the regression task.

Analyzing the limitations of the proposed approach is worthwhile, given that the method has
not yet been theoretically guaranteed. Initially, we partitioned datasets into three segments: training
(for ML model training), validation (to create an assessor dataset), and testing (for assessor eval-
uation), using seeds that may vary. In specific configurations, we encountered outcomes that were
not advantageous. Nevertheless, conducting research across multiple datasets necessitates meticulous
implementation of both models and assessors tailored to each domain5. Another limitation is that
the bigger architecture of assessors is utilized compared to the systems to calibrate two inputs6. We
hope that if tasks demand more complex ML models, then the lack disappears since the application
in [24] is a tiny Random Forest model that helps to train Large Language Models. Finally, the study
exclusively utilized NN and SVM-based models, indicating that adapting it to other models would
require additional research, which could be identified as future work.

5.1 Ablation Study

Other models. We conducted analogous experiments employing SVM models for regression and
classification tasks on the datasets. However, the behaviors of SVM models differ from those of NN
models, resulting in diverse outcomes, as illustrated in Appendix E. Individual datasets and models
require distinct approaches when selecting mechanism components.

Truncations. Truncation systems7 is one way to balance a dataset on which we train an assessor
model whereas, Truncating high errors8 by particular systems mitigates sudden instabilities of the
assessor model since these values are targets for assessor datasets. Ultimately, with both ML models
and a meta-model, an assessor trained on the responses of these models, we need to address two
uncertainties: those of the ML models and the assessor. As a solution, we specifically introduced a
truncation function in Eq. (3), such as Eq. (4), detailed in Appendix G. Without feedback truncations,
the proposed method could prove ineffective, yielding unfavorable outcomes, as demonstrated in
Table A6.

Broader impacts. Modifying the assessor models’ original concept makes it possible to harness
their capabilities. It opens up new research avenues, complementing existing ones outlined in [7],
including failure explanation, maintenance, and revision. For instance, this could represent a novel
step toward ensemble learning and AutoML, aiming to preempt ML model failures and address their

5The complete source code is located in the link.
6In all settings, the calibration has only been adjusted for the feedback mechanism, not for selection models. Therefore, the best models based on average accuracy are

more accurate than the selected ones by assessors.
7Dropping less accurate systems is natural since we do not prefer them in practice.
8We only applied truncations for regression tasks with values of 70, 50 for the first and second regression results.
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inaccuracies in detail. Specifically, employing each weak learner with an assessor model is a potential
avenue for future research, particularly in bootstrap aggregating.

6 Conclusion

We proposed an approach to enhance the advent of assessor models by introducing the error term
instead of probabilities on a particular instance. This enables us to solve two relevant problems jointly
to explain the behaviors of AI models as examples of ML models. The empirical findings underscore
the benefits of the proposed method and the challenges that require resolution in future work.
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Appendix A. Neural Network Architecture Properties

Table A1 presents each NN regression model built with a single hidden layer by randomly selecting
its parameters. These parameters that describe the emergent behaviors of systems are so flexible that we
can modify them regarding our task. However, they have to save all properties of the assessor model.
Table A2 also illustrates the same parameters for logistic regression and softmax outputs. We built
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each NN regression model with a single hidden layer by randomly selecting its parameters presented
in Table A1.

Table A1: NN model properties of regression tasks

# Name Value

1 Number of neurons in the hidden layer {10, 15, 20, . . . , 500}
2 Hidden layer activation Elu, exponential, gelu, etc.
3 Optimizer Adam, AdamW, Adamax, etc.
4 Learning rate [1e-4, 1e-1]
5 Decay [1e-4, 1e-1]
6 Loss MeanSquaredError, etc.
7 Batch size {4, 8, 16, 32, 64, 128}
8 Epochs {10, 15, 20, . . . , 100}
9 Average PIP (5) of a system on training set Based on a value of emax

10 Average PIP (5) of a system on validation set Based on a value of emax

11 Mean absolute error on training set
12 Mean absolute error on validation set
13 Number of trainable parameters
14 Number of non-trainable parameters

Table A2: NN model properties of logistic regression tasks

# Name Value

1 Number of neurons in the hidden layer {5, 10, 15, 20, 25, 30}
2 Hidden layer activation Elu, exponential, gelu, etc.
3 Optimizer Adam, AdamW, Adamax, etc.
4 Learning rate [1e-4, 1e-1]
5 Decay [1e-4, 1e-1]
6 Batch size {4, 8, 16, 32, 64, 128}
7 Epochs {10, 15, 20, . . . , 80}
8 Training loss
9 Training accuracy
10 Validation loss
11 Validation accuracy

Appendix B. Neural Experimental Setups and Details

While producing research results, we leveraged two different setups for regression and logistic
regression with multiclassification tasks due to the difference between datasets. In both setups, we
first generated NN models (numbers of models may vary in different tasks on datasets) according to
their system features presented in Tables A1 and A2. Next, we train them on the training sets and check
their performance on validation sets to complete their behavior values, such as validation scores. Once
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we have trained systems, we truncate them regarding their performance. Finally, we produce the error
responses from randomly selected systems on the training sets to warm up the assessor model, and we
then train the assessor model on error returns from the validation sets.

During the training, we used the early stopping strategy with different values for systems and
assessors. Therefore, the initial randomly selected epochs also changed according to this, and we
updated the relative values of systems. The dataset used in the regression task has few values
significantly greater than most examples. This circumstance generated a few huge errors (target
truncation) that caused the assessor model to be trained inconsistently over batches of examples. To
mitigate this challenge, we truncated the errors with a threshold 70. However, this problem can only
occur in part of the two tasks. Moreover, feedback truncation is applied as the following equation for
the first experiment, Blog feedback dataset:

for the best and selected systems, ftrun(êi
j) =

{
êi

j if |êi
j| ≤ 7.5

0 otherwise
;

for the worst system, ftrun(êi
j) =

{
êi

j if |êi
j| ≥ 5

0 otherwise
.

The equations for the second regression experiment on 9 datasets are shown in Table A1 (in
Section 4.2):

for the best and selected systems, ftrun(êi
j) =

{
êi

j if
∣∣êi

j

∣∣ ≤ 0.25emax

0 otherwise
;

for the worst system, ftrun(êi
j) = êi

j.

Experimental parameter settings. In the first research, we set up the following: the number
of randomly generated systems to truncate less accurate systems was used, and the random seed.
Since the maximum value of the dataset target is, that is an appropriate value. The parameters of
logistic regression and multiclassification tasks varied significantly in different datasets. Due to the
randomness, the presented results will vary even in the same settings. Tables A3–A5 illustrate the
number of neurons and parameters during the experiments in Tables 1–3 (in Section 4). Additionally,
in all problems, we use the same random parameters: learning_rates = linspace (1e-5, 1e-1, 50),
weigth_decays = linspace (1e-5, 1e-1, 50), epochs = range (10, 80, 5), batch_size z = [4, 8, 16, 32, 64,
128], 30 random models, random seed = 42 for all datasets. Note that the seed value, 42, is only used
in datasets into three subsets: training, validation (also for collecting responses for assessor datasets),
and testing for testing assessors’ performances.

Table A3: The architecture values of random NN models and hyperparameters of regression tasks

Name(s) Neurons Accuracy range, max_error

Abalone, student-mat, student-por Range (5, 30, 5) (0.2, 1), 2
Parkinsons Range (30, 300, 5) (0.2, 1), 10
Bike Range (20, 60, 5) (0.2, 1), 10
Conductivity Range (30, 300, 5) (0.3, 1), 15
LWEF Range (300, 3000, 5) (0.2, 1), 0.1

(Continued)
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Table A3 (continued)

Name(s) Neurons Accuracy range, max_error

Housing Range (5, 30, 5) (0.2, 1), 12
News Range (50, 300, 5) (0.2, 1), 50
FCV Range (50, 300, 5) (0.2, 1), 25

Table A4: The architecture values of random NN models and hyperparameters of logistic regression
tasks

Name(s) Neurons Accuracy range

Mushroom Range (5, 30, 5) (0.5, 1)
Adult, spam, rice Range (5, 30, 5) (0.4, 0.85)
Raisin, bre. cancer, shoppers, magic Range (5, 30, 5) (0.4, 1)
Rejafada, chess Range (30, 300, 5) (0.3, 1)

Table A5: The architecture values of random NN models and hyperparameters of multiclassification
tasks

Name(s) Neurons Accuracy range

Students, MNIST, dry bean, car, fash. MNIST Range (30, 100, 5) (0.5, 1)
mat. health Range (30, 100, 5) (0.4, 1)
Thyroid, optical Range (5, 30, 5) (0.8, 1)
Letters, Cover Range (30, 300, 5) (0.3, 1)

Appendix C. The Procedure for Training an Assessor

Algorithm A1 trains an assessor model by collecting error responses from a given ML population
and dataset. Initially, we do not know which model produces lesser error than others, so we train
an assessor on errors produced by randomly selected models. In this, we assume that we have some
functions. The complete code of the implementation can be found in the https://anonymous.4open.
science/r/ass-feedback-616Clink, accessed on 18 October 2024.

Algorithm A1: The procedure for training an assessor
Algorithm TrainAssessor(X , y, x_systems, systems, assessor, random, n)

ntrain = Len (X)

n_systems = Len(x_sytems)
nsf = NumberOfFearure

(
xsystems

)
yass = Zeros (ntrian)

X_ass = Zeros((n_t, n_sf ))

(Continued)

https://anonymous.4open.science/r/ass-feedback-616Clink
https://anonymous.4open.science/r/ass-feedback-616Clink
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Algorithm A1 (continued)
sind = Zeroz (ntrain)

procedure Train(nepochs)
for i, model in enumerate(systems)

cond = i == sind

if Sum(cond) != 0 then
ypred = Predict (model, X [cond])
yass[cond] = ypred

x_ass[cond] = x_systems[i]
end if

end for
errors = y-y_ass
TrainModel(assessor, X, x_ass, errors)

end procedure
if random == True then

for i=5 to n do
s_ind = RandInt(0, n_systems, n_train)
TRAIN(500)

end for
end if
for i=1 to n do

a_preds = Zeros(n_train, n_systems)
input_x_system = Zeros(n_train, n_sf)
for j=1 to n_systems do

input_x_system[:] = x_system[j]
a_preds[:, j] = Predict(assessor, X, input_x_system)

end for
s_ind = Argmin(Abs(a_preds), axis=1)
TRAIN(500)

end for
end procedure

Appendix D. Average Accuracies of the Worst System

All scores in some sets are close to 70%. Therefore, the assessor works quite well for this system,
as shown in Fig. A1.

Appendix E. Results of Other Models

For the ablation study, we also included SVM-based models to illustrate the advantages and
disadvantages of the proposed work. To implement using SVM, we leveraged scikit-learn library. As
emergent behaviors of models, the hyperparameters: kernel types (‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’), C
(regularization term, range (1, 50, 1)), degree of the polynomial kernel range (1, 10, 1), coefficient
linspace (0, 0.2, 10), tolerance linspace (1e-3, 1e-2, 10), training accuracy and validation accuracy
are used to describe SVM-classification models. For regression tasks, we only included mean absolute
errors on training and validation tests. The rest of the settings are the same as the NN models described
in the central part of the work. For instance, we trained the assessor models using Algorithm A1.
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Table A6 illustrates the outcomes in various settings. The last column of the table, ‘truncation values,’
is feedback truncation. Note that the seed value, 42, is only used to divide datasets into three subsets:
training, validation (also for collecting responses for assessor datasets), and testing for reporting
assessors’ performances.

Figure A1: Average assessor accuracies of 59 test sets by 4 metrics for the worst system

Table A6: Results of SVM models

Dataset Best system Corr. Worst system Corr. Selected system Corr. Trun. values in Eq. (4)

60 random models, accuracy range [0.55, 1], random seed 42

Students 0.7571 0.7571 0.6508 0.6508 0.6904 0.6904 0.05
Students 0.7571 0.7582 0.6508 0.6531 0.6904 0.6949 0.3
Students 0.7571 0.7593 0.6508 0.6588 0.6904 0.696 0.35
Students 0.7571 0.7616 0.6508 0.6734 0.6904 0.7028 0.4
Students 0.7571 0.7605 0.6508 0.6893 0.6904 0.7096 0.45

50 random models, accuracy range [0.3, 1], random seed 50

Car 0.9798 0.9798 0.7457 0.7457 0.8468 0.8439 0.05
Car 0.9798 0.9827 0.7457 0.7225 0.8439 0.8353 0.2
Dry bean 0.9277 0.9277 0.6834 0.6878 0.8953 0.8957 0.1
Dry bean 0.9277 0.9277 0.6834 0.6923 0.8953 0.8986 0.3
Spam 0.9349 0.9349 0.3746 0.3746 0.8241 0.8241 0.1
Spam 0.9349 0.9305 0.3746 0.3746 0.8241 0.8436 0.25
Spam 0.9349 0.9273 0.3746 0.3800 0.8241 0.9001 0.45

20 random models, accuracy range [0.8, 0.9], random seed 10

Shoppers 0.8783 0.8783 0.8483 0.8483 0.869 0.8690 0.25
Shoppers 0.8783 0.8792 0.8483 0.8496 0.869 0.8678 0.4
Shoppers 0.8783 0.8820 0.8483 0.8500 0.869 0.8670 0.45

Truncation effects. The table stores a range of examples with various settings to illustrate how
truncations are helpful. In the first setting, all error mitigations are positive from 5% to up to 45%,
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whereas they are only slightly better for the best model in the second setting and not valid for other
models.

Appendix F. Datasets

All used datasets are well-known and publicly available to leverage in research works. Most of
them are downloaded from [27] (UCI), and the number of instances in each dataset is more than 500,
up to 581,000 for better evaluation. Table A7 describes all datasets and their external links used in
the work.

Table A7: Dataset details

Name Task

Abalone Predicting the age of abalone from physical measurements. The target range is
[1, 29].

Student-mat Evaluating students in math. The target range is [0, 20].
Student-por Evaluating students in Portugal. The target range is [0, 20].
Parkinsons Oxford Parkinsons’s Disease Telemonitoring Dataset. The range target is [7,

55].
Bike Predicting a number of shared bikes of a company. The target range is [1, 977].
Conductivity Predicting a critical temperature from the extracted features. The target range is

[0, 185].
LWEF Predicting a total energe of a Large-scale Wave Energy Farm (LWEF). The

target range is [3.388944, 4.177659]. (Target values are divided by 1,000,000).
TEY Predicting turbine energy yield (TEY). The target range is [170, 100].
FCV Predicting a number of comments for a post. The target range is [0, 1305].
Housing Predicting cost of houses. The target range is [5, 50].
News Predicting the number of shares per news. The target range is [1, 843, 300].
Mushroom It contains physical characteristics of mushrooms to classify the edibility of

mushrooms.
Adult The aim of this dataset is to predict whether personal income exceeds

$550,000/year.
Spam Email spam dataset
Rice Classifying two types of rice: Cammeo and Osmancik
Raisin Classifying two types of Raisin: Kecimen and Besni
Br. cancer Classifying two types of breast cancer: malignant and benign
Shoppers Online Shoppers Purchasing Intention with shopping or not.
Magic Classifying gamma (signal), hadron (background) of high energy gamma

particles in an atmospheric Cherenkov telescope.
Rejafada REJAFADA (Retrieval of Jar Files Applied to Dynamic Analysis) needs to be

detected jar malware.
Chess A binary classification task of chess game about wining.
Students Predicting students’ status: dropout, enrolled and graduated
Maternal health Its main aim is to monitor maternal health risk.
MNIST 28 × 28 gray-scale Handwritten digits dataset benchmark.

(Continued)
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Table A7 (continued)

Name Task

Fashion MNIST 28 × 28 gray-scale Fashion image dataset benchmark.
Dry Bean Dry bean grain images to classify 7 types of them by visual extracted features.
Car Evaluating cars.
Thyroid Classification of Thyroid diseases.
Optical Optical recognition of handwritten digits.
Cover Classification of pixels into 7 forest cover types based on attributes.
Letters Database of character image features; try to identify the letter.

Appendix G. Truncations

Feedback truncations have been carried out differently for regression and classification tasks. For
regression, we use a threshold of 0.25∗max_error for only the most accurate and selected systems, not
for the worst systems. That is, we do not add predicted errors by assessors to the outputs of worst
models. Whereas, for classification tasks, we employ a different approach to adjust the idea for all
datasets simultaneously; instead of one threshold, we use thresholds [0.1,0.2,0.3,0.4,0.5] because the
output for this task ranges from 0 to 1. While choosing results, we took only the best ones from the
five results because we have 20 datasets, and each requires a distinct threshold, which is rare even
when altering any hyperparameters. For this reason, the classification results look better than the
regressions’. If we remove this truncation, the corrects often are unfavorable, decreasing accuracies
instead of increasing.
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