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ABSTRACT

Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-
facturing environments, enabling scalable and flexible access to remote data centers over the internet. In these
environments, Virtual Machines (VMs) are employed to manage workloads, with their optimal placement on
Physical Machines (PMs) being crucial for maximizing resource utilization. However, achieving high resource
utilization in cloud data centers remains a challenge due to multiple conflicting objectives, particularly in scenarios
involving inter-VM communication dependencies, which are common in smart manufacturing applications. This
manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm, enhanced with improved mutation and crossover operators, to efficiently place VMs. This
approach aims to minimize the impact on networking devices during inter-VM communication while enhancing
resource utilization. The proposed algorithm is benchmarked against other multi-objective algorithms, such
as Multi-Objective Evolutionary Algorithm with Decomposition (MOEA/D), demonstrating its superiority in
optimizing resource allocation in cloud-based environments for smart manufacturing.
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1 Introduction

Cloud computing is the most widely used computing platform of the decade offering prefabricated
service to organizations. Many organizations are adopting cloud models to improve the availability of
their business to people around the world. The organization does not need to establish a data center
in every region. Because of the cloud properties like on-demand (use only when you need), elasticity
(can increase or decrease the resource with easy steps), and pay-as-you-go model. Many organizations
are taking an active part in shifting their workload to cloud-based data centers. In recent years many
services have been given to consumers as off-the-rack offerings. For example, Amazon Web Service
(AWS) provides a service recognition service that has an inbuilt algorithm to perform facial recognition
with greater accuracy. The user needs to use their Application Programming Interface (API) and send
a request to the service without worrying about the type of algorithm used at the backend. The service
will help in identifying similar faces, annotation, or identifying text in images with a JavaScript Object
Notation (JSON) reply. The cloud has its footprint on delivering effective computational power to
numerous business use cases.

Cloud computing services models are majorly classified into IaaS (Infrastructure-as-a-Service),
PaaS (Platform-as-a-Service), and SaaS (Software-as-a-Service). In this manuscript, we are concerned
about the Infrastructure as a Service (IaaS) cloud which offers the highest amount of customization
compared to PaaS and SaaS [1]. In the IaaS cloud, the user has the freedom to bundle their virtual
server, by installing their operating system, configuring the amount of Random Access Memory
(RAM) and Central Processing Unit (CPU) needed for running the application, and also the
application runtime preference. The terms virtual server or virtual machine are interchangeably used
and referring the same entity in IaaS cloud. Virtual machines are space-sharing entities destined to
execute in the physical machine or servers. The servers’ resources like CPU and RAM are utilized by
the virtual machine until its lifecycle. When the virtual machines are terminated the server resources are
utilized by another virtual machine. The power consumed by the datacenters is directly proportional to
the number of virtual machines hosted in the datacenter and the communication between them VMs.
It is estimated that a typical datacenter consumes electricity equivalent to 25,000 households. A report
published in [2] states that a data center consumes 73 billion kWh, which is estimated to be 2% of the
total energy consumption of the United States. This increase in power utilization is due to inefficiently
managed datacenter resources. The increase in electricity utilization contributed highly to the emission
of greenhouse gases leading to global warming. In [3], it is estimated that around 45% of the electricity
is consumed by the server, 30% of the electricity datacenter is consumed by the networking devices,
and the remaining 25% of the electricity is consumed by Heating, ventilation, and air conditioning
(HVAC) system. Considering the above situation, our research is focused on reducing server resource
wastage and inter-VM communication. Reducing the two also reduces the energy consumed by the
HVAC systems.

Cloud providers need efficient algorithms to place the virtual machine as close as possible to a
physical machine. This is equivalent to the bin packing problem. The bin is comparable to a Physical
machine and VMs are equivalent to the number of items. The stated problem is a non-deterministic
polynomial-time hard (NP-Hard) problem and it is proved in the literature. Apart from this VM
placement, considering the inter-VM communication increases the complexity of the problem. Even
though we placed the VMs as compact as possible the inter-VM communication increases (usually
measured in terabytes) it is considered an inferior solution. This problem is equivalent to a muti-
dimensional bin packing algorithm. Deterministic algorithms are inefficient in solving NP-Hard
problems because deterministic algorithms intend to check every solution possibility (Brute Force)
in the large solution space. To solve an NP-Hard problem, we employ bio-inspired algorithms that use
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guided random components to effectively exploit the large search space. These algorithms are non-
deterministic and use heuristics to improve the existing solution even further during each iteration.

In this manuscript, we propose a modified Multi-Objective Genetic Algorithm (MOGA) to
place the virtual machine improving data center resource utilization and reducing the inter-VM
communication that in turn reduces the operating burden on networking equipment. The highlights
of the research article are mentioned below:

1. A modified Multi-Objective Genetic Algorithm (MOGA) for Virtual Machine for Virtual
Machine Placement is proposed. Optimal resource utilization and inter-VM communication
are addressed using the proposed algorithm.

2. A novel mutation and crossover operator is proposed to improve the efficiency of the algo-
rithm.

3. A fat tree topology-based communication model is adopted for the calculation of total data
transfer between the VMs in the data center.

4. Resource utilization and inter-VM communication are modeled as minimization problems.
The performance metrics resource wastage and inter-VM communication is compared with
MOPSO and Space More Efficient Algorithms (SPEA).

The rest of the paper is organized as follows: Section 2 (Literature Survey) outlines the state of
art technologies used for building an energy-efficient data center. Section 3 (Problem Formulation)
presents the mathematical modeling of server resource utilization and Inter VM communication
as a multi-objective minimization problem. Section 4 (Methodology) presents the modified Particle
Swarm Optimization (PSO) algorithm to optimize the above-stated objectives. Section 5 presents
Experimental Setup and Results with comparison and performance graphs.

2 Related Work

In this section, we present the state of algorithms/methodologies discussed in recent years. In
recent years cloud providers and scientists have been very much focused on reducing the carbon
footprint to build green data centers. Datacenter energy consumption is an active research field for
many cloud providers and scientists. All the stakeholders are working to achieve better utilization
of the data center by refining the existing solutions and practices. Building an energy-efficient data
center not only depends on proposing effective algorithms but also on building energy-efficient
hardware [4] (DVFS) and using renewable/green energy sources (solar, wind, hydro energy). Without
loss of generality, our research work focuses on building an algorithm to effectively utilize data center
resources.

The deterministic algorithm presented in [5] is a greater fit for the problem with a smaller search
space. The advantage of using such an algorithm provides us with an exact solution. If the search space
increases this algorithm takes exponential time to find the solution. In real-time, working with smaller
search spaces is very occasional. Also, these deterministic algorithms fail to work in multi-objective
space where two or more objective functions need to be optimized simultaneously. The algorithm
employed for bin packing greedy algorithms such as Least Fill First Bin Packing [6], Most Fill First
Bin Packing [7] and Next Fit Bin Packing [8] can also be used for VM placement problems. Greedy
algorithms are also deterministic algorithms and better than exact algorithms but while exploring
the search space the solution falls into local minima. Greedy algorithms cannot be parallelized to
execute in multiple machines for faster solution finding. The next class of algorithms is a meta-heuristic
algorithm. The algorithms are designed to imitate the behaviors of animals birds or insects.
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Genetic algorithms are made to imitate the evolutionary process of human beings. Genes of two
parents are exposed to the process of crossover and mutation to produce a new offspring. The new
offspring is evaluated using the objective function. If the offspring is a better-performing individual,
then the solution is considered else the crossover of the mutation is performed again to produce
a better-performing individual. Genetic algorithms are mostly widely applied for permutation-
based NP-Hard problems including traveling salesperson problems, bin packing problems, flow shop
scheduling problems, and even VM placement problems. In [9], the authors proposed a multi-objective
fuzzy-induced genetic algorithm to optimize resource utilization and power consumption in cloud
data centers. The proposed algorithm was compared with various bin-packing algorithms to show
its superiority. In [10], the authors proposed a genetic algorithm and it is implemented in the real-
time cloud data center at the Office of the Merchant Marine and Ports of Tunisia (OMMP). The
real-time implementation shows a reduction in resource wastage and leads to a profitable business.
The authors used uniform crossover and uniform mutation to generate a new offspring. In [11], the
authors proposed an improved genetic algorithm to optimize the availability and energy consumption
of a data center. A problem-specific selection operator, crossover, and mutation operator are proposed
in the manuscript. In [12], the authors proposed a hybrid algorithm where a part of the optimization
is carried out by a genetic algorithm and the remaining is carried out by a best-fit bin packing-
based algorithm to reduce power utilization and resource wastage. The proposed algorithm is also
used to compare well-known instances of the Travelling Salesman Problem (TSP) and Flow shop
scheduling problems. Variation of genetic algorithm for solving Virtual Machine Placement (VMP)
in a multi-objective perspective is presented in [13]. In [14], the authors proposed a multi-objective
variation of the genetic algorithm with decomposition to optimize three objectives simultaneously.
Permutation-based partially mapped crossover and multi-point mutation are used because of the
larger gene structure (100 and 200 VMs). Apart from the genetic algorithm, other algorithms such
as ant colony optimization, firefly algorithm [15], bat algorithm, and particle swarm algorithm [16]
are majorly used in VMP. The above state algorithm works well for discrete optimization problems.
Unlike genetic algorithms (natively permutation-based), the challenge in adopting these algorithms lies
in implementing effective discretization methodologies. The author proposed an order-filling method
to discretize the continuous values used along with the bat algorithm. The bat algorithm was initially
proposed as a single objective algorithm. The author used the working methodology and proposed a
multi-objective version of the bat algorithm.

A multi-objective virtual machine (VM) placement algorithm based on evolutionary methods with
decomposition has been proposed [17]. Their approach aims to address multiple conflicting objectives,
including resource utilization and communication overhead, through efficient VM placement strate-
gies in cloud data centers. In another study, authors in [18] presented a VM placement algorithm based
on a Multi-Objective Evolutionary Algorithm with Decomposition (MOEA/D), aimed at optimizing
placement in distributed cloud environments. Their work demonstrated significant improvements
in balancing resource allocation, reducing energy consumption, and enhancing cloud infrastructure
efficiency. The authors also discuss interoperability issues in cloud computing, which is a key concern
in multi-cloud and hybrid-cloud environments [18]. Their study laid the groundwork for addressing
system compatibility challenges and improving resource integration across different cloud platforms.
A foundational algorithm in this domain was proposed by [10], inspiring many modern swarm-based
methods for VM placement. PSO has been widely adopted due to its simplicity and effectiveness in
solving multi-dimensional optimization problems.
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Finally, a power-aware, performance-guaranteed VM placement algorithm is presented in [11],
offering a hybrid solution that combines energy efficiency with performance constraints. Their work
provided a comprehensive framework for optimizing energy usage in cloud environments without
compromising performance, making it relevant for power-sensitive applications.

3 Problem Formulation

As discussed earlier, VM placement is equivalent to the bin packing problem. The set of virtual
machine requests from the cloud consumer must be spawned in the available physical machine without
wasting server resources. The VM demands are specified in terms of CPU and RAM. In our research
work, we do not consider the storage requirement because it is provided by the centralized storage
arrays connected using Storage Area Network (SAN) fabric. VM can execute in any of the Polynomial
Machines (PM) in the data center, and the storage can be routed to the PM using the SAN network.
Since we do not know the type of physical machine each cloud provider is installed in the data center,
to generically represent the utilization in our research article we use a percentage of utilization. For
example, consider a physical machine has 10 CPU cores and 20 GB of RAM which is equivalent to
100% of the resources being free in PM, the VM request needs 2 core CPU (20%) and 4 GB RAM
(20%). The VM is allocated to the PM as a result 20% CPU is utilized and 20% of the RAM is utilized.
The remaining 80% of CPU and RAM can be allocated to some other VMs or it is considered as
resource wastage Wi.

Wi =
M∑

i=1

[
yi ×

|(θPi − ∑N

j=1(xi,j.Rp,j)) − (θMi − ∑N

j=1(xi,j.RM,j))| + ε∑N

j=1(xi,j.Rp,j)) + ∑N

j=1(xi,j.RM,j))

]

xi,j =
{

1 if VMj is allocated to PMi

0 otherwise

yi =
{

1 if PMi is used
0 otherwise (1)

The total available resource of physical machine (PMi) is denoted with the pair (θPi, θMi), where θPi

denotes the total available CPU and θMi represents total available RAM. There can be any number of
PM in a datacenter, out of that which not hosted with VMs/workloads are hibernated. The term yi is
a binary variable where (yi = 0) denotes the PMi is switched off. Hence the entire equation become
null and excluded from calculating wastage. The term xi,j denoted the virtual machine VMj hosted in
Physical machine PMi. The term (Rp,j, RM,j) denotes the VM request CPU and RAM. An example
calculation for resource wastage is illustrated below Fig. 1.

In the above illustration, three VMs are considered. The first two virtual machines are placed in
PM1 and the third virtual machine is placed in PM2. The PM3 is switched off since it is not hosted
with any VMs. The total datacenter wastage is the sum of wastage of all PMs. The entire calculation
is model in the Eq. (1) is also called as objective function or fitness function.
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Figure 1: Resource wastage calculation—illustration

The next objective formulation is concerned with the inter VM communication. A cloud consumer
may deploy multiple virtual machine in a cloud datacenter. Each of these VMs need to communicate
with each other to complete a given task. When the VMs are placed in different PMs the communi-
cation from one VM should pass thorough a set networking devices to reach the destination. This in
turns compromises the Quality of Service (QoS) for the VMs executing in cloud. At the same time, the
networking devices are heavily utilized, and the power consumption will also increases. It is estimated
in [3] that 30% of electricity is consumed by the networking devices due to misplacement of VMs.
It is desired to place inter communicating VMs in single physical machine to reduce the impact on
networking devices. For our research work we considered the datacenter follows fat tree topology as
shown in the Fig. 2. The physical machines are denotes with the numbering PM1 to PM16. An access
swich can accommodate only two PMsand the number of ports in only two (P = 2). Each PM can
accommodate number of VMs based on resource request. The access switch is further connected to two
aggregation switches to avoid single point of failure. Fat tree topology is most widely used datacenter
architecture because the datacenter can be easily scaled to support to multiple PM without affecting
the exiting implementation. The term hops is defined as the number interconnecting networking device
a data need to be routed to reach the destination. The volume of data need to be routed from a VMi

to VMj is denoted as di,j.

The data transfer from source to destination has four special cases mentioned in the Table 1. The
case C1 is the most desired placement which does not use any networking devices (hops = 0). But, this
kind of placement is rarely possible because the sum of requested resource of all VMs from a single
cloud consumer mostly exceeds the resource capacity of PM. The Case C2 is most obvious placement
where the communication will pass through only one networking devices to the destination. But when
the number virtual machines from single cloud consumer are more, we cannot contain them all in two
physical machines. The number of hops needed to reach the destination is 2. The Case C4 is considered
as worst case scenario in cloud architecture. Consider the VMi is placed in PM3 and VMj is placed



CMC, 2024, vol.81, no.3 4749

in PM10. The data need to be routed through access switch, aggregation switch, core switch and once
again to aggregation switch, access switch and to the destination. The communication trace is depicted
with dotted line in Fig. 2. This placement increases impact on networking devices and number of hops
needed for this communication is 6.

Figure 2: Flat tree topology

Table 1: Data transfer rate on links

Case Positions Example Hops Data rate on links

C1 Under same physical
machine

Two virtual machine
placed in PM1

0 0 × di,j

C2 Under same access
switch

VM1 is hosted in PM1 then
VM2 is placed in PM2

2 2 × di,j

C3 Under same
aggregation switch

VM1 is hosted in PM1 then
VM2 is placed in PM3

4 4 × di,j

C4 Under same core
switch

VM1 is hosted in PM3 then
VM2 is placed in PM10

6 6 × di,j

For example, if VMi is hosted in PM3 then VMj is placed in PM10 as depicted in the Fig. 2 with
dotted lines then 6 hops are need to reach the destination. Pi,j denotes the physical machine where the
VMi and VMj is hosted. The data transfer volume is calculated as below:

di,j = hop
(
Pi,j

) × d(VMi, VMj) (2)

If 500 MB of data need to transferred between 2 VMs say VMi and VMj that are hosted in in PM3

and in PM10 then

di,j = hop
(
P3,10

) × d
(
VMi, VMj

) = 6 × 300 = 1800MB

For the entire datacenter, the data transfer volume can be calculated using the below equation
(minimization Objective function).
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D =
n∑

i=1

n∑
j=1

hop
(
Pi,j

) × d(VMi, VMj) (3)

Both the objectives namely resource wastage and inter-VM communication are discussed in this
section with a neat illustration. The problem we have here is conflicting objectives. The minimization
of resource wastage objective may hurt inter-VM communication objectives. This kind of problem
cannot be solved using traditional bin packing or deterministic algorithms. In the upcoming section,
we discuss a multi-objective optimization and the algorithm.

4 Multi-Objective Optimization

The multi-objective optimization problem required specialized concepts to process and identify
optimal values. In comparison with the single objective optimization problem, the fitness function
produces only one value to be minimized, i.e., scalar quantity. But, in multi-objective optimization for
a given problem instance, it is evaluated by more than one fitness function to produce a vector. For
example, for two objective optimizations the output produced by the fitness function contains two
values [y1, y2].

Consider the input instance of the permutation problem is x = [x1, x2, . . . , xn] where n
denotes number of VMs. The multi objective optimization function is denoted with f (x) =
[f1 (x) , f2 (x) , . . . , fk (x)] where k denotes number of objectives. Each of the objective have equality and
inequality constraints. These constraints are vital in reducing the search space. For example, a VM say
VMi should not be placed in multiple PM is an inequality constraint. The input instance is evaluated
using the fitness function to produce the output vector y, x → fk(x) → y where y = [y1, y2, . . . , yk].
All the input instance exists in decision space or search space, once it is evaluated using the fitness
function the outputs are plotted in objective space.

The comparison of solution is a major issue in multi-objective optimization problems. For
example, in multi-objective optimization the outputs are vector quantity. Consider two outputs of
bi-objective optimization problem in the decision space as A = {4, 5}, and B = {5, 4}. Out of the
two solution A and B which one is better performing solution? In comparing solution A and B we
cannot say A is better than B or B is better than A, because considering minimization problem the A
performs better in 1st objective and B performs better in 2nd objective. The solution A and B are non-
dominated solution. The collection of multiple non dominated solution plotted in objective space is
called as Pareto Optimal Front. For continuous optimization problem the pareto front appears similar
as shown in the Fig. 3, but for discrete optimization problems, the steady curve is unattainable.

Figure 3: Illustration of pareto optimal front for bi-objective minimization problem
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5 Proposed Methodology

In this section, we cover the modified multi-objective version of the Particle Swarm Optimization
algorithm (PSO). Initially, the particle swarm optimization algorithm was proposed to solve single
objective continuous optimization problems. Throughout the literature, there are many variations of
PSO algorithms that exist for multi-objective continuous optimization problems. As a part of our
research, we have a discrete version of the multi-objective PSO algorithm with improved exploration
methodology.

The PSO algorithm is a swarm-based heuristic algorithm that can be observed in many of the
creatures like flocks of birds searching for food. PSO methodology concentrates on specific to gain
collective intelligence. Each permuted virtual machine sequence is called a particle. Each of the
particles has two components called personal best and current fitness value. For the whole population
of the particle, there exists only one global best. Initially, each particle is evaluated using the objective
function to get its fitness values. During the first iteration, both the personal best and current fitness
value of the particle remain the same. The global best is the best-performing particle in the entire
population. From the next iteration onwards, each of the particles will shift its position to find the
optimal solution guided by the global best and the personal best value. The importance given to the
global best and personal best is controlled by the parameters c1 and c2.

vi (t + 1) = wvi (t) + c1r1 [pi (t) − xi (t)] + c2r2[g (t) − xi (t)] (4)

xi (t + 1) = xi (t) + vi(t + 1) (5)

The current position of the particle is denoted with xi (t) and next position of the particle is
denoted with xi (t + 1) where xi is the ith particle. Such that we initialize n number of particles called
population. The personal best of the population is denoted with pi (t) and the global best solution is
denoted with g (t). w is the weight initialized to 0.9 and gradually decreases to 0 and the number of
iteration increases.

vi (t + 1) = wvi (t) + c1r1 [pi (t) − xi (t)] + c2r2 [g (t) − xi (t)] (6)

Algorithm 1: Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm
Inputs: Number of Virtual Machine (Nvm), Maximum Iteration (MaxIt), Number of Particles (N),
Objective function f (), Algorithmic parameters (w, c1, c2), Traffic Pattern Matrix (TPM), Virtual
Machine Dataset VMDS, g (t) = ∞.
Initialize the number of particles using randperm()function
//Evaluate each particle and update the current fitness value
for i = 1 to xn

Assign pi (t) = f (xi)

if xi (t) .cost < g (t) .cost then
Update the global best value with xi (t)

end for
Determine the non-dominated solution based on the concepts discussed in Section 4.
for i = 1 to MaxIt

for j = 1 to xn

Calculate the velocity vi (t + 1) based on the Eq. (4).
Update the current position of the particle xi (t + 1) using the Eq. (5).

(Continued)



4752 CMC, 2024, vol.81, no.3

Algorithm 1 (continued)
Calculate the objective value using the Eqs. (1) and (3).
if rand() <0.5 then

randomly shuffle the positions of the virtual machine in the particle xi.
find its fitness value.
Apply concept of domination along with newly generated solution
if new.xi dominates all solution then

assign xi = new.xi

if new.xi dominates all solution then
assign xi = new.xi

if pi (t + 1) < pi (t) then
assign pi (t + 1) = pi (t)

if pi (t + 1) < g (t) then
assign g (t) = pi (t + 1)

end for
end for
Output: g(t)

The first term wvi (t) is equivalent to the current velocity of the particle multiplied by the weight
w. Then the equation is divided into two major parts (as shown in Algorithm 1) called exploration and
exploitation. Exploration means searching the space entire so that the particle will not strike into local
minima. Exploitation means searching for the best solution within a confined search area. Initially, the
exploration term will be given more weightage than exploitation as the number of iterations increases,
exploration is minimized and we concentrate only on exploitation. The above algorithm is made to run
for 100 iterations MaxIt = 100 with the population size N = 100. The corresponding minimization
objectives are measured and the Pareto-optimal solution is collected in an external array. During each
iteration, the best-performing particles are subjected to the concept of domination. The final results
are tabulated in Section 6.

6 Experimental Setup and Results

The concepts described above were executed in MATLAB version R2022a in a computer system
with the specification of an Intel core i3 processor with 16 GB of RAM running Windows operating
system. The dataset needed to carry out the experimentation was statistically generated using the
generating VM algorithm mentioned. Using this algorithm 200 virtual machines are generated by
changing the reference probability values to (0 and 1) and the reference CPU and RAM is fixed
Rm = 50 and Rc = 50. Using the parameter we generated two datasets with the resultant correlation
coefficients of −0.7843 (Strong negative) and 0.7571 (Strong positive).

The inter-VM communication matrix is generated randomly, and the same dataset is used for
running all the experiments and multiple independent runs. The VMs along the rows denote the source
and the VM along the columns denotes the destination. A matrix is created of size 200 ∗ 200 and the
values inside denote data volume. All the data volumes are represented in MBs and round off to the
nearest 10’s (11 MB is rounded to 10 MB).

The proposed algorithm MOPSO is compared with MOEA/D in Table 2 which shows the
superiority of finding the minimal Pareto front solution. Also, the plots in Fig. 4 show that MOPSO
explores the search space more effectively compared to MOEA/D. The solutions represented in red are
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the non-dominated solutions. Since it is a discrete optimization problem the curve is discontinuous. The
plots in Fig. 4a,b represent the results obtained for the strong negative dataset and Fig. 4c,d represent
the results obtained for the strong positive dataset. Fig. 4a,c are the results of the MOPSO algorithm
and Fig. 4b,d are the results of the MOEA/D algorithm.

Table 2: 30 unique non-dominated solutions collected via independent runs

MOPSO MOEA/D

Strong positive Strong negative Strong positive Strong negative

N.D. solution Resource wastage InterVM.C Resource wastage InterVM.C Resource wastage InterVM.C Resource wastage InterVM.C

1 5.8087 5.5473 13.004 5.5798 5.0773 5.5523 13.6396 5.5571
2 5.5667 5.5492 13.6952 5.5508 7.1938 5.5292 12.6929 5.5731
3 6.0352 5.5462 13.2778 5.5742 5.7185 5.534 11.2201 5.5746
4 6.2173 5.5317 13.6523 5.5687 7.21 5.5237 15.73 5.5471
5 5.1579 5.5649 12.6 5.5916 4.8081 5.5685 14.3803 5.5489
6 6.0589 5.5391 14.627 5.5481 5.8435 5.5328 18.1012 5.5395
7 5.2243 5.5506 12.4265 5.5933 7.0338 5.5313 11.7388 5.584
8 5.6027 5.545 12.7573 5.5897 6.5272 5.5321 12.0351 5.5746
9 5.0939 5.1579 13.7678 5.5676 5.0035 5.5592 12.8283 5.5744
10 6.1954 5.5412 13.8698 5.5689 4.5092 5.5826 12.8628 5.5643
11 7.2336 5.5391 13.7769 5.5695 4.5309 5.5571 12.8755 5.5508
12 5.4784 5.5584 14.937 5.5634 4.6172 5.6017 14.2315 5.5546
13 5.2527 5.5651 12.2899 5.5851 4.6781 5.5412 18.3802 5.5454
14 5.461 5.5649 14.4308 5.5666 4.8002 5.5593 15.188 5.5506
15 5.1579 5.5462 14.9924 5.5632 5.0082 5.5449 12.2527 5.5622
16 5.5355 5.5342 13.157 5.5702 5.4272 5.5468 11.7787 5.5887
17 5.1585 5.5578 12.6322 5.5813 5.6186 5.5361 11.8747 5.583
18 5.1391 5.5674 14.6709 5.5687 5.6549 5.5311 12.64 5.5561
19 6.4327 5.5361 14.5368 5.5695 5.6812 5.5424 14.5911 5.554
20 4.8975 5.5363 14.7723 5.5679 5.7438 5.5347 12.6363 5.5599
21 6.7992 5.5321 12.2454 5.5872 5.8439 5.5367 11.6016 5.5798
22 4.8499 5.5618 14.8549 5.537 5.9085 5.5336 13.5892 5.5565
23 5.3958 5.5613 15.1404 5.5521 6.029 5.5317 14.8164 5.5561
24 5.7831 5.5389 12.7634 5.5586 6.1101 5.5239 11.8939 5.5758
25 4.8244 5.5738 17.9699 5.5519 6.8806 5.5195 15.233 5.5473
26 5.5561 5.5574 18.5899 5.5441 6.085 5.5305 12.9108 5.5601
27 5.2947 5.5668 14.8721 5.5618 4.3649 5.5529 11.9508 5.5496
28 6.3629 5.5384 12.6904 5.563 4.898 5.5523 11.6988 5.5794
29 4.8129 5.5866 17.0495 5.5494 5.0053 5.5361 11.8746 5.5738
30 5.3615 5.5641 14.9155 5.5529 6.1212 5.5201 12.8344 5.5685
Min 4.3649 5.1579 11.2201 5.537 4.8129 5.5195 12.2454 5.5395
Max 7.0233 5.5866 18.2589 5.5332 7.21 5.6017 18.3802 5.5887
S.Dev 0.5994 0.0733 1.5797 0.0125 0.8241 0.0184 1.8149 0.0135
Avg 5.5916 5.5387 12.1655 5.5602 5.5977 5.5426 13.336 5.563

Minimizing the impact on networking devices during inter-VM communication leads to reduced
latency, improved throughput, better resource utilization, and decreased packet loss, all of which
enhance overall system performance. This optimization is essential for maintaining the efficiency
and reliability of cloud environments, especially in scenarios where real-time data exchange and high
performance are critical.
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Figure 4: MOPSO vs. MOEA/D in solution exploration to attain global minima

7 Conclusion

This paper addresses the multi-objective version of virtual machine placement considering
resource wastage and inter-VM communication as a minimization objective. The problem is designed
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for flat tree topology with 200 VM are scheduled to be placed in the physical machines. The
mathematical model for the problem is illustrated with an example. The NP-Hard problem is effectively
tackled by the proposed MOPSO algorithm, which performs considerably better than the MOEA/D
algorithm. The algorithm is designed based on the concept of particle swarm optimization and adopted
to address multi-objective problems. The experimental results show that the proposed algorithm
explores the search space more effectively and can able to find more unique Pareto optimal solutions.
In the future, we like to consider various networking architectures measuring the networking impact
with the occurrence of VM migration.

Future work will involve refining the experimental setup by incorporating detailed performance
metrics such as energy consumption and runtime analysis, as well as comparing with a broader
range of multi-objective optimization techniques. Additionally, statistical validation will be used to
demonstrate the significance of the results, ensuring a robust and scalable solution for cloud data
center optimization.
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