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ABSTRACT

In Intelligent Manufacturing, Big Data and industrial information enable enterprises to closely monitor and

respond to precise changes in both internal processes and external environmental factors, ensuring more informed

decision-making and adaptive system management. It also promotes decision making and provides scienti�c

analysis to enhance the e�ciency of the operation, cost reduction, maximizing the process of production and

so on. Various methods are employed to enhance productivity, yet achieving sustainable manufacturing remains

a complex challenge that requires careful consideration. �is study aims to develop a methodology for e�ective

manufacturing sustainability by proposing a novel Hybrid Weighted Support Vector-based Lévy �ight (HWS-LF)

algorithm. �e objective of the HWS-LF method is to improve the environmental, economic, and social aspects

of manufacturing processes. In this approach, Support Vector Machines (SVM) are used to classify data points

by identifying the optimal hyperplane to separate di�erent classes, thereby supporting predictive maintenance and

quality control in manufacturing. Random Forest is applied to boost e�ciency, resource allocation, and production

optimization. AWeighted Average Ensemble technique is employed to combine predictions frommultiple models,

assigning di�erent weights to ensure an accurate system for evaluating manufacturing performance. Additionally,

Lévy �ight Optimization is incorporated to enhance the performance of the HWS-LF method further. �e

method’s e�ectiveness is assessed using various evaluation metrics, including accuracy, precision, recall, F1-score,

and speci�city. Results show that the proposed HWS-LF method outperforms other state-of-the-art techniques,

demonstrating superior productivity and system performance.
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1 Introduction

The technologies, people, and procedures that make it possible to collect, store, and analyze

extremely large data sets are collectively referred to as “Big Data.” This can be utilized in business

applications by moving the gathered information into important data using big data advancements

[1]. Here are some of the applicable targets that are used for better energy management. The first

and foremost objective is utilized to further develop better energy that incorporates smart energy

frameworks and advancing sustainable power sources. The subsequent one is to grow the proficient

versatility solutions for limiting vehicle use and greenhouse gas discharges [2]. This mostly depends on

sharing data with everyone in the industry’s value chain. It quickens the production arrangement cycle

of an industry, employs a cutting-edge information-based strategy and reduces production complexity.

These platforms will connect people, things, and systems through their applications and services

[3]. By applying enormous information strategies helps to improve the strength of the examinations

and helps the prescient investigation. The referenced abilities come up in numerous businesses

with various factors and speeds, i.e., their requirements, in view of providers and establishment

strategies [4]. In this method, the actual manufacturing process dynamically evolves over time, and

during the process, a variety of unavoidable and unanticipated disturbances, such as those related

to resources or jobs, may occur. There are more opportunities for production organizing to benefit

from emerging technologies, such as cloud computing, big data, the Internet of Things (IoT), and

others [5]. By permitting IoT solutions to find inference rules or information to incorporate into

different machines or the cloud and big data permits the city to accomplish an exact understanding

of an enormous arrangement of data gathered from various sources. This information generates

unstructured data from observations collected through various methods [6]. Big Data Information

addresses the assortment, handling, examination, and usage of immense measures of information

produced inside the assembling environment. It not only involves gathering information, but also helps

in removing important insights from it to drive to upgrade effectiveness and enable sustainability [7].

The investigation of big data for Intelligent and Sustainable Manufacturing presents different open

doors for organizations to advance their tasks, lessen ecological effects, and make items that fulfill the

needs of a consistently evolving market [8–10]. The proposed IoT-based sensor gathers temperature,

dampness, accelerometer, and spinner information from the mechanical production system process

while the big data handling stage handles and stores a lot of created sensor information [11–15].

This helps in recognizing the data types and information sources utilized in ML and Farming Huge

Information, whether organized, semi-organized, or unstructured, as per their condition. From this

perspective, this work fosters an incorporated structure of models, difficulties, and contemplations

involving huge information for using big data for a smart environment. It provides such knowledge in

an integrated framework, notwithstanding the way that an information-use project for brilliant urban

communities requires all such information [16,17]. Big data is the main thrust behind the change

of assembling into a wise and economical industry through the combination of AIoT and different

learning techniques. Recently, it has developed rapidly in the assembling stage through huge volumes

of information that are expected from different sensors, machines, and various cycles [18–20]. One of

the foremost concerns is to expand information security protection, which handles enormousmeasures

of assembling information and results in cyber threat issues. To address these issues, machine learning

calculations can break down this information continuously to enhance creation processes, anticipate

machinery failure, and further develop product quality. The inspiration to embrace these innovations

and make a way towards a more shrewd, effective, and environmentally friendly assembled biological

system. The above mentioned are some of the drawbacks that motivated me to do this research.

In this work, a technique named Hybrid Weighted Support Vector-based Lévy flight (HWS-LF)



CMC, 2024, vol.81, no.3 4897

algorithm to enhance production sustainability is proposed. The objective of enhancingmanufacturing

sustainability through the integration of BigData and IoT is to improve environmental, economic, and

social aspects of manufacturing processes. This involves optimizing resource utilization, minimizing

waste, and reducing environmental impact through data-driven methods. The use of Big Data and IoT

aims to enhance operational efficiency, enable predictive maintenance, and promote smart decision-

making. The aim is to create a more sustainable and resilient manufacturing ecosystem that balances

economic growth with environmental and social responsibility.

The following are the main contributions to this work:

• In this work, we proposed a hybrid Support Vector with Lévy flight architecture to eliminate

the irrelevant steps in manufacturing.

• The proposed architecture creates an effective production schedule for increased production.

• The proposed technique includes Lévy flight optimization and is used for tuning the hyperpa-

rameters in this work.

The proposed HWS-LF method introduces the practical aspects of integrating IoT devices into

manufacturing environments.

The rest of the paper is organized as follows: Section 2 describes the literature survey of intelligent

manufacturing using AIoT. In Section 3, the proposedmethodology of this work is explained in detail.

Section 4 contains the results and discussion of the experiments conducted in this work. This paper

concluded in Section 5 with a few future works.

2 Related Works

The related work section is framed in such a way that certain machine learning algorithms are

developed for various industrial problems and how various industrial applications are handled using

big data analytics. Rosati et al. [11] evaluated a big data analytic model with the techniques of machine

learning and novel IOT for Predictive Maintenance (PdM) in the industry, which is based on Decision

Support System (DSS). This paper revealed how to solve PdM tasks by overcoming various challenges,

such as the identification of notations in the component wears. The proposed DSS consists of a

predictive model, feature extraction, cloud storage, data collection, and so on. The result of the

experiment conveyed how the proposed method acts best in computation efforts as well as predictive

management. In the meantime, the major characteristics, such as downtime and loss of productivity,

were not clearly discussed in this research. Valaskova et al. [12] presented the deep learning technique

to analyze and evaluate BigData Analytics and Cognitive Automation in Cyber-Physical Systems. The

data of five thousand six hundred respondents was examined and gathered from three major sectors:

McKinsey, the World Economic Forum, and management events. The obtained data was then tested

to determine the system’s performance. Meanwhile, two significant aspects, production execution and

robotic systems, were not analyzed in this paper.

Lăzăroiu et al. [13] evolved Robotic Wireless Sensor Networks, Smart Process Planning as well as

Geospatial Big Data Management Algorithms by using Deep Learning techniques. The perceptible

literature reviews of Web Science, Scopus as well as ProQuest were thoroughly executed for nearly one

year, and the studied research was published. Quality examining tools like Dedoose, Mixed Method

Appraisal tool, Distiller SR and so on were deployed to overcome the various challenges consisting of

finding robust connections through the examined topics. Meanwhile, this paper does not analyze or

inspect the production execution system as well as dynamic scheduling.
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Lai et al. [14] employed reinforcement learning to control the cognitive optimal settings of

AIoT industrial applications. The production schedule utilizing the cognitive learning of artificial

intelligence (AI) and the entire productivity was affected by mechanical control in the Artificial

Intelligence of Things (AIoT). The whole control risk and accidental control were created by the issue

of cognitive evaluation in deep learning (DL). To moderate the greatest value of deep reinforcement

learning based on expectation in cognitive psychology of AIoT, a new technique was proposed in this

article. The cognitive computing’s value overfitting was reduced by the proposed technique based on

exception using the Tanh softmax policy. When compared to the cognitive learning algorithm, the

proposed technique attained a total score with a six-fold increase. Utilizing the IoT and surrogate

models based on AI, Chiu et al. [15] established a smart management system for aquaculture farms.

To solve the issues in aquaculture farming, a fish monitoring and control mechanism based on smart

IoT and containing various IoT devices for collecting data was employed. This mechanism was used

to monitor various parameters, such as the quality of the water in the fish ponds, and correct them

automatically. A DLmodel was used to forecast the growth of fish. The AIoT was used to control and

manage various apparatuses in the fishpond. The proposed mechanism successfully monitored and

controlled various parameters in the aquaculture fish pond.

To enhance the security of AIoT in threat identification and situational awareness, Tan et al. [16]

developed a HoneyNet technique. The AIoT was mostly used in Industry 4.0 and in various fields like

commercial, industries, and customers. A large number of security threats were faced by the smart

devices, cloud nodes, and smart gateways in AIoT. The conventional security techniques for AIoT

faced various challenges. A HoneyNet technique that contains threat identification and situational

awareness for increasing the security of AIoT was proposed in this paper. The proposed technique

was evaluated and the results exhibited that the proposed technique proved it superiority in terms

of effectiveness and feasibility. For the implicit group recommendations, Yu et al. [17] employed a

secure AIoT. Social computing applications like group recommender mechanisms benefitted from

the insights provided by the AIoT. There was a need for personalized services as a large number of

individuals were connected across the world. Utilizing the face two issues and the aggregation, the

conventional techniques used in capturing the group-level preference were developed without the feed-

back of implicit preference. To solve these issues, a secure AIoT for implicit group recommendations

(SAIoT-GR) was proposed in this article. The SAIoT-GR was not exposed to the complex environ-

ments that contain unclear group’s preferences.

Bi et al. [18] developed an enterprise architecture (EA) based on IoT, big data analytics (BDA) and

digital manufacturing (DM). In this study, Shannon entropymetric was employed tomeasure the com-

plexity of systems. As a result, the method enhanced system capabilities, increased flexibility, resilience

and adaptability. The views, levels and organizations were highly diversified for standardization. Also,

managing system complexity and achieving long-term stability. On the other hand, EAs lacked a

systematic method for justification, evaluation and comparison. In the contemporary manufacturing

landscape, characterized by technological advancements, both academia and industry have increas-

ingly focused on smartmanufacturing to enhance sustainability and efficiency in production processes.

To illustrate the practical application of the framework, a scenario within the additive manufacturing

industry is presented. Meanwhile, the method required more processing time and large datasets for

training. To further describe the existing models, a comparison was made, which is depicted in Table 1.
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Table 1: Descriptions of related works

Author Techniques Aim Merits Demerits

Rosati

et al. [11]

Machine

learning

For Predictive

Maintenance (PdM)

in the industry

Higher computation

efforts and predictive

management

Down time and

loss of productivity

was not clearly

discussed

Valaskova

et al. [12]

Deep

learning

Analyze and evaluate

big data analytics and

cognitive automation

in cyber physical

system

Higher efficiency Production

execution and

robotic systems

was not analyzed

Lazaroiu

et al. [13]

Deep

learning

Big data management Higher accuracy Not analyzed

dynamic

scheduling

Lai et al. [14] Reinforcement

learning

Control the artificial

intelligence of things

industrial applications

Increased efficiency Reduced

overfitting

Chiu

et al. [15]

Deep

learning

Establish a smart

management system

for aquaculture farms

Efficiently

monitored and

controlled various

parameters in the

aquaculture fish

pond

The computational

complexity is high

Tan et al. [16] HoneyNet Identification and

situational awareness

for increasing the

security of AIoT

Increased

effectiveness and

feasibility

Required more

computational

resources

Yu et al. [17] Secure

artificial

intelligence

of things

To capture the

group-level preference

without the feedback

of implicit preference

Higher efficiency

and accuracy

Not applicable for

complex

environments

Bi et al. [18] IoT, BDA

and DM

Develop enterprise

architecture

Managing system

complexity and

achieving long-term

stability

Required more

computational

resopurces

Majeed et al.

[20]

Deep

learning

Develop big

data-driven

framework for

sustainable and smart

additive

manufacturing

Enhance

sustainability and

efficiency in

production processes

Required more

processing time

and large datasets

for training
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Research Gap

The usage of machine learning algorithms in intelligent manufacturing enhances manufacturing

processes. The time consumed for the production can be reduced with these algorithms, and the

production rate can be increased. The existing methods DSS, SAIoT-GR, and HoneyNet used

for comparing the results obtained from the proposed method contain a few limitations, such as

small network size, unclear input data, lack of details about downtime and productivity loss, and

dynamic scheduling. The HWS-LF is proposed in this paper to rectify these limitations. The following

subsections describe the research gaps.

Effective planning: The proposed HWS-LF creates better plans for increasing production and

reducing the time and cost of production by eliminating excess or unwanted steps in manufacturing.

To achieve this, the HWS-LF contains the hybrid support vector and optimization algorithm of Lévy

flight.

Production time: The time for production is an important parameter that decides an industry’s

efficiency. The proposed HWS-LF uses the Lévy flight optimization to optimize the various stages in

the proposed architecture for effective processing and to achieve a reduced production time.

Accuracy in production: Production accuracy is an important parameter in deciding the quality

of a product produced in an industry. The HWS-LF architecture effectively processes the input and

creates the best plan for accurate production.

Integration Challenges: Traditional manufacturing systems often operate in silos with limited

connectivity and data-sharing capabilities. The integration of Big Data and IoT technologies into

these systems poses significant challenges. The HWS-LF method should focus on addressing interop-

erability issues, developing standardized communication protocols, and creating seamless interfaces to

ensure the smooth integration of data generated by IoT devices with existing manufacturing processes.

Scalability Issues in Big Data Analytics: Scalability issues may arise when dealing with large

volumes of data generated by IoT devices. The HWS-LF method should develop scalable and

efficient algorithms, distributed computing architectures, and cloud-based solutions to handle the

massive datasets generated in real-time by sensors, actuators, and other IoT devices in manufacturing

environments.

Security and Privacy Concerns: The integration of Big Data and IoT in manufacturing introduces

new security and privacy challenges. Traditional manufacturing systems may not be adequately

equipped to handle the increased vulnerability to cyber threats. Research should focus on developing

robust cybersecurity measures, encryption techniques, and privacy-preserving algorithms to safeguard

sensitive manufacturing data and ensure the secure operation of interconnected systems.

3 Proposed Methodology

Inappropriate arrangement of workflow, inexperienced labour, inaccurate work setup, handling

of non-essential products, excess stations as well as lack of resources are considered as come crucial

issues in sustainable manufacturing. In order to overcome such issues, a novel method is proposed

via five major stages: data collection, document systemization, operation analysis, manufacturing

sustainability, and performance evaluation. The detailed description of each significant stage, as

mentioned in Fig. 1, is discussed as follows, and the nomenclature and symbols used in the proposed

work are depicted in Appendix A.
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Figure 1: Overall architecture of proposed work

3.1 Collection of Data

In this phase, some of the essential qualities, which include the overall performance of all the

events that take place in the manufacturing time period in the work station, are thoroughly recognized.

The overall data are gathered from some reliable sources, which include consulting with the workers,

knowing the history of management tasks, conducting interviews, studying company records, and

so on.

3.2 Systemizing Documents

In the second stage, all the documents and reports collected in the first stage are arranged

according to the production department’s needs. This arrangement or classification takes place based

on the machinery’s requirement, the total number of technicians, the layout types, and the skills

requirement.

3.3 Operation Analysis

The third stage provides the number of operators in each and every process, number of equipments

used in each and every operation, the time taken to complete each operation and so on.
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3.4 Enhancing Manufacturing Sustainability

In this phase, the rejection or elimination of non-productive operations takes place to improve

and to achieve the maximum production level, thereby enhancing the manufacturing sustainability.

This enhancement is achieved by employing a novel HWS-LF algorithm thorough examination of the

work place activities. The detailed description of the novel algorithm is discussed as follows.

3.4.1 Support Vector Machine (SVM)

Different machine learning methods are used broadly by utilizing support vector machines given

fundamental risk minimization standards. This helps vector machine calculation isolate the classes

using the last surface and enhances the edge among the different classes using the dataset. In addition

to separating the two classes, the primary objective of SVM calculations is to find an optimal

hyperplane for the dataset training. Training information are presented by
{

yj, xj
}

. j = 1 . . . s, xj =

{1,−1}, here, s demonstrates the total number of prepared samples, and the vector training, which

includes two crucial classes xj = 1 used in class α1 and xj = −1 in class α2. In this if the classes are

isolated persistently, it is feasible to characterize to some degree on hyper plane characterized by vector

w with inclination a are been isolated by classes are displayed as follows;

w.y+ a = 0 (1)

In order to identify hyper plane, xj(w.yj + a) ≥ 1 for xj = 1 (class α1), xj(w.yj + a) ≥ 1 for xj = −1

(class α2). These two can be related in based on following:

xj
(

w.yj + a
)

− 1 ≥ 0 (2)

The ideal hyper-plane between two classes is characterized by expanding the difference between

the closest classes. It helps in separating two classes by their greatest distance between help vectors and

the Lagrangian multiplier can be used to define the cost function are shown as follows:

min
1

2
‖w‖

2
(3)

K = min
1

2
‖w‖

2
−

∑s

j=1
bj

(

xj
((

w.yj
)

+ a
)

− 1
)

(4)

Whereas, α1 indicates the lagrangian multiplier. By introducing slack variables namely ξj, the

constraints of non-linearly separable classes can be altered.

K = min
1

2
‖w‖

2
+D

∑s

j=1
ξj (5)

However, D demonstrates the punishment or consistent boundaries that decide the relationship

between preparing error. By utilizing a larger number of factors, feature selection issues can be taken

care of by utilizing Random Forest (RF) calculation. Additionally, it is extremely effective when

handling regression issues. The RF classifier effectively removes the least important features, reducing

insignificant features and enhancing the proposed system’s applicability.

3.4.2 Random Forest

The RF calculation is a conspicuous strategy for cooperative learning created for unsupervised

learning, classification, and regression. However, this technique is most frequently used for data

prediction and high-dimensional modeling. The fundamental motive of random forest is to figure out
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the proper model for examining the connection between both the dependent variable and independent

variable for the weight assurance of each element. This random forest algorithm contributes to the

construction of numerous classification trees during the training phase, and the generation process

produces the final outputs of all classification trees. In order to operate the random forest model,

two principal boundaries should be taken as really important: ntry signifies the quantity of elements

in square roots and ntree indicates how many trees are needed to operate this model. The previously

mentioned boundaries can be improved to limit or lessen the generation mistake. Random forest

computation utilizes Gini index as an action for choosing the contamination of a given component

comparable to the remaining classes. The Gini index can be figured by the probability
∑

i 6=j
ql = 1− qj

in sorting that class j. The Gini index can be communicated utilizing following condition;

JL (q) =
∑i

j=1
qj

∑

i 6=j
ql = 1 −

∑i

j=1
q2j (6)

Whereas, j ǫ {1, 2, . . . i}. As a result, a decision tree is designed to use a particular set of features to

grow to its maximum depth. However, as with any algorithm, it should be chosen and set up carefully

to solve the problem at hand. The weight capability of the support vector machine is improved by

utilizing a weighted average ensemble technique which is communicated beneath.

3.4.3 Weighted Average Ensemble

Ensembles are made from a combination of weighting aspects from the average score of all the

individual learners. High-performance ensembles can be achieved by analyzing and understanding

the high-end parameters. The performance-tuning Nested method is introduced to achieve high-

performance ensembles.

(WaYa +WbYb +WcYc + . . . . . . . . . +WnYn) (7)

From the above equation,W denotes the accurate weight of the product which is based on reliable

percentage whereas Y shows the count of vote.

3.4.4 Levy Flight Optimization

Levy Flight (LF)Optimizationmethod is based uponwireless sensors network environment which

is associated with the LF motions. The efficiency of the study can be increased by LF in uncertain

conditions. In environment, LF has the ability to stimulate by most of the physical as well as natural

inspired circumstances. Fruit Flies, Spider Monkeys and also Humans are classified and come under

in natural category which all can practice the lane of LF style. In the other hand, scattering of the

fluorescent particles is termed as physically stimulated phenomena. The essential qualities of the LF

can be studied by the cooling and noise actions under the exact condition. In comparison with the

Brownian Random Walks method, LF method acts much more effective to explore the unspecified

large areas of search space. The step length and direction are the two major properties to be identified

for executing the LF. The step length follows the distribution of the LF and the direction keep on

moving forward and reaches the position of a target and this can be determined by the equal and

stable distribution. These characteristics can be identified by many of the methods but Mantegna

technique gives out the most reliable and effective results among all of other methods. In accordance

with Mantegna’s technique, the derivation is as follows:

SL =
V

|U|
1/α

(8)



4904 CMC, 2024, vol.81, no.3

From the above equation, SL defines as the Step length and α denotes the Levy distribution indices

in which the boundary lies in 0 < α ≤ 2, where V and U are

V ∼ N
(

O, σ 2

V

)

,U ∼ N(O, σ 2

U
) (9)

The Standard deviation σV and σU are termed as

σU =















g(1 + α) × sin(πα/2

g

[

1 + α

2

]

× α × 2(α−1)/2















1/α

, σU = 1 (10)

Here, the gamma function g for an integer x is defines as

g (x) =

∫ ∞

0

hx−1e−hdh (11)

Mathematically, the prescribed LFD method shows the Euclidean distance ED in the first two

adjacent points which denotes as Xa and Xb using

ED (Xa,Xb) =
√

(xb − xa)2 + (yb − ya)2 (12)

where (Xa,Ya) is the position coordinates ofXa and (Xb,Yb) is theXa coordinate position. The method

begins its mechanism by altering the position of these points using

Xb (h+ l) = LevyFlight(Xb (h),Xlead,HB,SB) (13)

From the above equation, h denotes indices for the numbers of iteration. Where HB and SB are

represented as the highest as well as the lowest values respectively in two dimensions of the search

spaces. Xlead denotes the location of the agent which has the least quantity of neighbors and this terms

as LF direction. And now the equation is written as

Xb (h+ l) = SB+ (HB− SB) rnum() (14)

From the above equation, rnum() denotes the function used to create the Random numberRn such

that

rnum () = Rn,Csv = 0.5 (15)

Here, Csv denotes the Comparative Scalar Values with Rn in each and every time of the position

Xb. The prescribed method alters the position of Xa by using

X new

a
(h+ l) = Levyflight(Xa (h+ l),TP,SB,HB) (16)

The above equation shows the last position for Xa. The total fitness target of the neighbors TFN

in Xa (h) is shown by

TFN =
∑TN

s=1

D (s) × Xs

TN
(17)

where Xs is a nearer position of Xa (h), S is index of the neighbor, TN denotes the total numbers of

Xa (h) neighbors. This will be the time complexity of a prescribed method making use of the Big O

Notation is expressed as O(n log n) without considering about objective characteristics and number



CMC, 2024, vol.81, no.3 4905

of iterations n. The advantages of the described method are high ability of exploration, high level of

exploitation, stability in between the exploitation as well as the exploration.

3.4.5 Proposed HWS-LF to Enhance Manufacturing Sustainability

Manufacturing sustainability helps in the improvement and development of the organization in a

socially evenhanded and environmentally friendly way instead of limiting fossil fuel byproducts and

pollution. Sustainability has become an integral part of business strategy, and the UN Sustainability

2030 agenda emphasizes this fact. The agenda includes various initiatives such as smartmanufacturing,

energy-efficient buildings, and low-impact industrialization, which are aimed at promoting sustainable

practices in businesses. By adopting these initiatives, businesses can not only contribute to the

environment but also improve their overall efficiency and profitability. This HWS-LF technique helps

in pursuing a reasonable decision and ideal hyperparameters of HWS are exposed to an updated

exhibition. A portion of the hyper boundaries utilized in the HWS assists with supporting systems

that are changed and enhanced utilizing the demand LF algorithm. This approach is valuable in

deciding the overall best arrangement with less step distance and more enhancement span. Also,

it limits nearby optimum features and thus improves the execution of the calculation. The HWS

algorithm’s hyperparameters are adjusted by addressing complexity with the help of the LF algorithm.

It assigns the best candidate solutions as a leading agent and separates the healthy and effective ones

from the undesirable ones. Drawing the beneficial outcome using LF calculation, the hyperparameters

are tuned. SVM, Random Forest, Weighted Average Ensemble, and Lévy flight Optimization are

employed in enhancing manufacturing sustainability through the integration of Big Data and IoT.

3.4.6 Proposed HWS-LF to Validate Energy Consumption

To validate the efficiency of energy consumption using support vector machines (SVM) combined

with Levy flight optimization, the process generally begins by gathering relevant data on energy

consumption, such as historical usage patterns, environmental factors, and operational parameters.

SVM, a machine learning technique, is used to classify or predict energy consumption patterns

based on this data. However, the performance of SVM heavily depends on the proper tuning of

its hyperparameters, which can be optimized using Levy flight-based optimization. Levy flight is a

stochastic optimization algorithm inspired by the random movements of particles or organisms that

can explore the search space efficiently by combining local exploitation and global exploration. By

employing Levy flight optimization to fine-tune the hyperparameters of SVM, such as the penalty

parameter (C) and kernel parameters (e.g., gamma), the model can achieve higher prediction accuracy

for energy consumption efficiency. After the model is trained and optimized, its effectiveness can

be validated by comparing predicted energy consumption with actual data using metrics like mean

absolute error (MAE), root mean square error (RMSE), or R-squared. The workflow of the proposed

HWS-LF algorithm is given in Fig. 2. The combination of SVM’s classification strength and Levy

flight’s optimization ability ensures a robust and adaptive model that can generalize well, thus

providing a valid approach to assess and enhance energy consumption efficiency in various systems.



4906 CMC, 2024, vol.81, no.3

Figure 2: Flow diagram of the proposed HWS-LF algorithm

4 Results

This section evaluates the proposed HWS-LF model’s sustainable manufacturing capability.

It verifies sustainability with various evaluation measures and compares its outputs with existing

methodologies like DSS, SAIoT-GR, and HoneyNet. The details are given below.

4.1 Experimental Setup

Themethod is executed on an Intel(R) core (TM) i7-8700 systemwith a 3.20 GHz speed processor

and 32 GB memory. The OS utilized here is Ubuntu Linux 18.04.1 LTS. The simulation is performed

in the MATLAB platform.

4.2 Parameter Setting

The hyperparameter is the network parameter which defines the network structure that includes,

dropout, hidden units’ size activation function, and weight initialization, as well as how the network

parameters such as momentum, batch size, learning rate, and epochs are trained [19]. The processes of

determining best settings for hyperparameters in a learning algorithm is referred to as hyperparameter

tuning. Hyperparameter tuning identifies optimal values for hyperparameters to minimize the loss

function, thereby enhancing results. The performance of the HWS-LF method is enhanced through

applying the optimal parameters. Table 2 describes the parameters and their values. The parameter

settings are given as follows:

Table 2: Parameter settings

Parameter Values

Kernal Radial basis function

Data range normalization (−1, 1)

(Continued)
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Table 2 (continued)

Parameter Values

Cost 1

Criterion {gini}

Maximum depth 13

Maximum features 9

4.3 Dataset Description

The data was collected using IoT devices which carry sensors like an accelerometer, gyroscopic

sensor, temperature and humidity sensor, etc. The sensors are positioned on the industrial assembly

line and transmit data based on a particular time (seconds). Around 20 million records were gathered

within the testing time.

4.4 Evaluation Measures

Sustainable manufacturing performance of the proposed HWS-LF methodology is measured

using the various metrics. The definition and details of these metrics are described below:

Manufacturing cost: The manufacturing process includes some costs which comprises all the costs

consumed by the resources utilized.

Energy consumption: The manufacturing process consumes more energy. This comprises energy

expended during several activities like transportation of products, operation, and maintenance.

Productivity: The productivity is the computation of economic performance. It is the difference

or variation between the inputs utilized and output gained.

Resource efficiency: The effective use of the input resources will increase the sustainability such as

water, raw materials, etc.

Environmental impact: The negative environmental impacts caused by the manufacturing process

which causes detrimental effects to the economy. The impacts caused to the factors such as energy,

water, restricted material, disposed waste, noise pollution and heat are the various kind of environ-

mental impacts.

Operational safety: It defines the absence of risks like harm or injury to the human caused by

direct and indirect ways like equipment damages and environment scenarios. For the sustainable

manufacturing the safety must be high.

Accuracy:Accuracy represents the correctness of the system’s predictions, reflecting the ability to

correctly classify data points.

Precision: Precision measures the accuracy of positive predictions, enhancing the system’s capa-

bility to avoid false positives, which is important in manufacturing to prevent unnecessary resource

consumption.

Recall: Recall evaluates the system’s ability to capture all relevant instances, emphasizing the

importance of minimizing false negatives in manufacturing processes.
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F1-score: F1-score, a harmonic mean of precision and recall, provides a balanced assessment of a

system’s performance, especially when there is an uneven class distribution or when both false positives

and false negatives are significant concerns in the manufacturing sustainability.

Specificity: Specificity measures the system’s ability to correctly identify negative instances,

contributing to the reduction of false alarms and enhancing the precision of sustainability-related

decisions.

4.5 Performance Analysis

In Fig. 3, we gain valuable insights into the manufacturing cost implications of the proposed

HWS-LF model. Manufacturing costs encompass all the expenses involved in the production process,

including both direct and indirect costs. Direct costs consist of packaging expenses, direct labor costs,

and material expenditures, while indirect costs comprise fixed costs like equipment maintenance and

variable costs such as repair expenses. Fig. 3a holds importance in illustrating the HWS-LF method’s

capacity to significantly decrease manufacturing expenses. This reduction is crucial as it directly

enhances performance and efficiency. By sustaining lower manufacturing costs, the HWS-LF method

facilitates the establishment of a sustainable production environment. Notably, it underscores the

importance of efficient resource management, which not only enhances financial viability but also

aligns with the broader objective of sustainability in manufacturing, minimizing resource utilization

and fostering a more environmentally friendly and economically sound production landscape.

Figure 3: Manufacturing cost and energy consumption

In Fig. 3b, we delve into a critical aspect of the proposed HWS-LF model—its energy con-

sumption, which is meticulously compared with existing methods. The energy footprint of any

manufacturing process is a pivotal metric as it directly influences the sustainability and environ-

mental impact of production. Energy consumption is distributed across various phases within the

manufacturing process, making it imperative to optimize and minimize wherever possible to achieve

greater sustainability goals. The figure unequivocally demonstrates that the proposed HWS-LFmodel

excels in this regard by significantly reducing energy consumption when compared to conventional

sustainable manufacturing approaches. The noteworthy finding is that the mean energy consumption

for this model stands at a mere 3.78 kilowatt-hours per unit (kWh/unit). This remarkably low energy

utilization is not only a testament to the model’s efficiency but also underscores its potential for

achieving superior performance in sustainable manufacturing.
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In Fig. 4, a crucial aspect of manufacturing efficiency takes center stage—the productivity levels

of different methods are subjected to thorough analysis. It is widely acknowledged that higher

productivity is synonymous with enhanced sustainability in manufacturing operations, as it signifies

the ability to generate more output while utilizing fewer resources. The revelation in Fig. 4a is that

the proposed method, represented by the HWS-LF model, excels in terms of productivity when

compared to other underlying models. It is evident that the productivity percentage of the proposed

model soars to an impressive 95.7%. This figure not only signifies its superior performance but also

underscores its potential to significantly enhance sustainability in manufacturing. To put this into

perspective, the productivity of the proposedHWS-LFmodel surpasses that of the SAIoT-GRmethod

by 12.7% and outpaces the HoneyNet methodology by an even more substantial margin of 19%.

This substantial increase in productivity is a testament to the model’s effectiveness and efficiency in

optimizing manufacturing processes.

Figure 4: Productivity analysis and resource efficiency analysis

Fig. 4b provides a thorough examination of the resource effectiveness of the HWS-LF method,

a pivotal aspect in the context of sustainable manufacturing. This assessment encompasses five

crucial indicators aimed at quantifying resource efficiency within the manufacturing process. These

indicators encompass resource usage prevention, waste generation minimization, enhanced efficiency

through reduced resource utilization, process alterations, and the utilization of waste materials as

valuable resources. The outcomes presented in Fig. 4b are resounding the proposed HWS-LF model

consistently outperforms existing models in all five indicators. This unequivocally demonstrates its

remarkable ability to optimize resource utilization, curtail waste generation, and elevate overall

manufacturing efficiency. In Fig. 5a, the focus shifts to environmental impact, a paramount concern

in contemporary manufacturing practices. Negative environmental impacts can lead to hazardous

consequences for ecosystems and human well-being. Here, the figure serves as a stark reminder that

the proposed methodology, represented by the HWS-LF model, exhibits significantly fewer adverse

effects on the environment in comparison to other existing systems.

In Fig. 5b, a crucial aspect of the proposed HWS-LF methodology is meticulously evaluated: its

contribution to operational safety. Operational safety is a paramount concern in any technological

framework, and in this context, it signifies the method’s ability to provide a secure and reliable

working environment. The results presented stand out by offering a significantly higher percentage

of operational safety compared to other competent models. This achievement highlights its capacity

to ensure a safe and dependable operational environment, thereby extending the boundaries of
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sustainability beyond what other methods can offer. Computational time refers to the average time

taken by a system to complete its tasks, typicallymeasured in seconds. Thismetric is critical in assessing

the efficiency of a system. The analysis showcased in Fig. 6a underscores a compelling fact: the HWS-

LFmethod boasts a distinct advantage by consuming less computational timewhen compared to other

underlying systems. This efficiency is not just advantageous but essential for achieving optimal system

performance.

Figure 5: Environmental impacts and operational safety analysis

Figure 6: Computational time and accuracy analysis

Fig. 6b illustrates the accuracy performance of the HWS-LF and the existing methods for

enhancing manufacturing sustainability using Bigdata and IoT. The HWS-LF method outperforms

alternative approaches, achieving an accuracy of 98.72%. The DSS, SAIOT-GR and HoneyNet

methods follow closely with an accuracy of 97.64%, 96.58% and 95.47%, respectively, demonstrating

their effectiveness. The graphical representation indicates the better accuracy of the HWS-LFmethod,

emphasizing its efficiency. In Fig. 7a, a precision analysis is presented to validate the performance of

various methods. The HWS-LF method demonstrates better precision, achieving 97.83%. The DSS

method closely follows with a precision of 96.71%, displaying its performance in positively identifying

true positive instances. The SAIOT-GR and HoneyNet methods exhibit precision values of 96.57%

and 95.42%, respectively, demonstrating their effectiveness in minimizing false positives.

Fig. 7b depicts the performance evaluation of HWS-LF and existing methods based on recall.

The HWS-LF method exhibits better recall, achieving a value of 97.81%. The DSS method closely

follows with a recall of 96.78%, emphasizing its ability to effectively identify true positive instances.

The SAIOT-GR and HoneyNet methods obtain recall values of 95.62% and 94.53%, respectively,
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highlighting their efficiency in capturing actual positive instances. The performance validation high-

lights the better recall of the HWS-LF method, emphasizing its efficiency. In Fig. 8a, a graphical

representation based on the F1-score is presented to assess the performance of HWS-LF and existing

methods. The HWS-LF method achieves an F1-score of 97.79%, displaying a balanced trade-off

between precision and recall. The DSS method closely follows with an F1-score of 96.65%, indicating

a balance between accurate positive predictions and high recall of actual positive instances. The

SAIOT-GR and HoneyNet methods exhibit F1-score values of 95.56% and 94.27%, respectively. In

Fig. 8b, a performance evaluation based on specificity is illustrated forHWS-LF and existingmethods.

The HWS-LF method displays a better specificity value of 97.75%, demonstrating its efficiency. The

DSS, SAIOT-GR and HoneyNet methods exhibit specificity values of 96.67%, 95.52% and 94.48%,

respectively. The performance evaluation illustrates the HWS-LF method’s efficiency in accuracy,

precision, recall, F1-score and specificity for enhancing manufacturing sustainability using Bigdata

and IoT. Manufacturing and production are very generalized areas which are there in almost all

industries. The proposed models were executed through a dataset that has three major production

units, which means that the models are not too specific to analyze the performance in a single

productivity area. By considering the nature of the dataset and also the computational methods that

are used for the analysis, it is evident that the proposed model is a generalized approach for all the

manufacturing and production industries to analyze performance and to improve it efficiently.

Figure 7: Performance evaluation based on precision and recall

Figure 8: F1-score and specificity analysis
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5 Conclusion

To address challenges that arise in themanufacturing process and enhance sustainability, this study

introduces anHWS-LF technique aimed at improving efficiency by analyzingworkplace activities. The

analysis considers factors such as operation times and required equipment. Increased manufacturing

capacity is achieved through the implementation of the HWS-LF technique, which incorporates

SVM and RF algorithms, with parameters optimized using the LF algorithm. The proposed HWS-

LF technique achieved superior performance metrics, including an accuracy of 98.72%, precision

of 97.83%, recall of 97.81%, F1-score of 97.79%, and specificity of 97.75%, surpassing all other

existing models. The goal of enhancing manufacturing sustainability through the integration of Big

Data and IoT is to improve the environmental, economic, and social aspects of manufacturing

processes. The proposed method was evaluated using various metrics, including manufacturing costs,

energy consumption, productivity, resource efficiency, environmental impact, operational safety, and

computation time. The evaluation results demonstrate that themodel achieves enhanced sustainability,

with increased productivity and reduced computational and energy demands, consuming an average

of 3.78 kWh per unit. In the future, this method will be extended to assess its effectiveness across

multiple manufacturing industries, each with unique operational contexts, challenges, environmental

conditions, and requirements.
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Appendix A.

Table A1

Symbols Description

s Total number of prepared samples

w Degree on hyper plane characterized by vector

a Inclination

α1 Lagrangian multiplier

ξj Slack variables

D Punishment or consistent boundaries that decide the relationship between preparing

error

ntry Quantity of elements in square roots

ntree How many trees are needed to operate this model

W Accurate weight of the product

Y Count of vote

SL Step length

α Levy distribution

σV , σU Standard deviation

g Gamma function

(xa, ya) Position coordinates of xa
(xb, yb) xb coordinate position

h Indices for the numbers of iteration

HB and SB Highest as well as the lowest values of the search spaces

Xlead Location of the agent

rnum () Function used to create the Random number Rn

Csv Comparative scalar values

TFN Total fitness target of the neighbors

XS Nearer position of Xa (h)

S Index of the neighbor

TN Total numbers of Xa (h) neighbors
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