
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.057138

ARTICLE

A Hybrid CNN-Brown-Bear Optimization Framework for Enhanced
Detection of URL Phishing Attacks

Brij B. Gupta1,*, Akshat Gaurav2, Razaz Waheeb Attar3, Varsha Arya4, Shavi Bansal5,
Ahmed Alhomoud6 and Kwok Tai Chui7

1Department of Computer Science and Information Engineering, Asia University, Taichung, 413, Taiwan
2Computer Engineering, Ronin Institute, Montclair, NJ 07043, USA
3Management Department, College of Business Administration, Princess Nourah bint Abdulrahman University, Riyadh,
11671, Saudi Arabia
4Department of Business Administration, Asia University, Taichung, 413, Taiwan
5Department of Research and Innovation, Insights2Techinfo, Jaipur, 302001, India
6Department of Computer Science, College of Science, Northern Border University, Arar, 91431, Saudi Arabia
7Department of Electronic Engineering and Computer Science, Hong Kong Metropolitan University (HKMU),
Hong Kong, China
*Corresponding Author: Brij B. Gupta. Email: bbgupta@asia.edu.tw
Received: 09 August 2024 Accepted: 26 November 2024 Published: 19 December 2024

ABSTRACT

Phishing attacks are more than two-decade-old attacks that attackers use to steal passwords related to financial
services. After the first reported incident in 1995, its impact keeps on increasing. Also, during COVID-19, due to
the increase in digitization, there is an exponential increase in the number of victims of phishing attacks. Many
deep learning and machine learning techniques are available to detect phishing attacks. However, most of the
techniques did not use efficient optimization techniques. In this context, our proposed model used random forest-
based techniques to select the best features, and then the Brown-Bear optimization algorithm (BBOA) was used to
fine-tune the hyper-parameters of the convolutional neural network (CNN) model. To test our model, we used a
dataset from Kaggle comprising 11,000+ websites. In addition to that, the dataset also consists of the 30 features
that are extracted from the website uniform resource locator (URL). The target variable has two classes: “Safe” and
“Phishing.” Due to the use of BBOA, our proposed model detects malicious URLs with an accuracy of 93% and
a precision of 92%. In addition, comparing our model with standard techniques, such as GRU (Gated Recurrent
Unit), LSTM (Long Short-Term Memory), RNN (Recurrent Neural Network), ANN (Artificial Neural Network),
SVM (Support Vector Machine), and LR (Logistic Regression), presents the effectiveness of our proposed model.
Also, the comparison with past literature showcases the contribution and novelty of our proposed model.

KEYWORDS
Phishing attack; CNN; brown-bear optimization

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.057138
https://www.techscience.com/doi/10.32604/cmc.2024.057138
mailto:bbgupta@asia.edu.tw


4854 CMC, 2024, vol.81, no.3

1 Introduction

The term “Phishing” is derived from the term “Fishing” because phishing attacks use “bait”
(attractive messages) to lure the victim and then “fish” for the personal information they want to steal
[1]. The first phishing attack was reported in 1995, in which attacks steal the victim’s account details
[1]. Since then, phishing attacks have been considered one of the most harmful cyber attacks [2–4]. In
this context, Fig. 1 presents the number of phishing websites from 2013 to 2022 [5]. The number of
phishing websites has increased during COVID-19 due to increased digitization. Also, Fig. 2 presents
the impact of phishing attacks on different sectors [6]. From Fig. 2, it is clear that the phishing attack
is a universal problem that needs efficient and accurate solutions.

Figure 1: Number of phishing websites detected

Figure 2: Phishing attack in different sectors

In the phishing attack using the malicious Uniform Resource Locator (URL), an attacker sends
the phishing link to the victim, which leads him to the phishing website hosting on the compromised



CMC, 2024, vol.81, no.3 4855

web server [7–10]. This malicious website is used to steal the valuable assets of the victim [11]. There are
two main approaches for the detection of phishing URLs. The first is the blocklisting approach, and
the other is the artificial intelligence-based approach [12]. In the first approach, a blocklist is prepared
to help users identify phishing URLs. However, this method is not economical because attackers use
different URLs to create a website. The second technique used deep learning and machine learning
models to identify phishing URLs [13].

1.1 Research Gap

Recently, researchers have been proposing deep learning models for detecting phishing websites
with the help of URLs; however, most of the approaches show a degradation in the recall values after
the phishing attack is recorded. Hence, the current limitation of the phishing attack detection models
is the low recall value [7]. In addition, selecting the most relevant features from the URLs is also an
important factor of an efficient phishing attack detection model [14]. Moreover, there is a research
gap in understanding how hyper-parameter tuning can improve the performance of the deep learning
model [15].

1.2 Contribution

As there are not many deep learning models that use efficient optimization techniques, in
this paper, we proposed a hybrid CNN-brown-bear optimization (BBOA) framework for enhanced
detection of URL phishing attacks. Our proposed framework uses random forest to extract relevant
features, and then BBOA is used to train the CNN model. We only used a single layer of CNN and
trained our model for five epochs, which makes our proposed model lightweight and less complex.

We used random forest for feature extraction because it offers robustness against overfitting,
handles high-dimensional data well, and can automatically capture non-linear interactions between
features, providing a reliable assessment of feature importance. The BBOA is known for its strong
global search capability and robustness in diverse problem landscapes, effectively balancing explo-
ration and exploitation to avoid local optima. Due to these advantages, our proposed approach
outperforms the other standard deep learning and machine learning models and performs better than
current phishing detection models.

1.3 Paper Organization

The rest of the paper is organized as follows:

• Section 2 presents the related work.
• Section 3 gives details about the proposed approach.
• Section 4 presents the simulation results.
• Section 5 concludes the paper.

2 Related Work

Liu et al. [16] propose a novel approach called TransURL for malicious URL detection, utilizing
a character-aware Transformer combined with three feature modules-Multi-Layer Encoding, Multi-
Scale Feature Learning, and Spatial Pyramid Attention. This design enhances the extraction of
character-level information and structural relationships from URLs. The model significantly improves
class-imbalanced, multi-classification, cross-dataset testing, and adversarial scenarios. However, the



4856 CMC, 2024, vol.81, no.3

limitations include potential complexity in training due to the multi-module structure and challenges
in generalizing to diverse URL patterns not covered in the training data.

Liu et al. [17] propose PMANet, a pre-trained Language Model-Guided multi-level feature
attention network designed to enhance malicious URL detection by addressing limitations such as
domain adaptability, character-level information, and local detail extraction. PMANet introduces
a novel post-training program using self-supervised learning objectives and a layer-wise attention
mechanism, effectively integrating hierarchical representations of URLs. However, the limitations
include the potential for high computational costs associated with the multi-layer attention mechanism
and the reliance on extensive training data for effective adaptation to the URL domain.

Bu et al. [7] proposed a deep learning-based phishing website detection technique that used genetic
algorithms to select optimal features. The focus of the proposed approach is to increase the recall value.
Bu et al. [14] proposed a phishing URL detection approach using deep convolutions autoencoder and
character-level URL features extraction. However, the author didn’t use any feature selection and
optimization techniques.

Kamble et al. [2] proposed a SqueezeNet-based phishing website detection technique. The
SqueezeNet model is optimized using Hunter Prey Optimization (FDHPO). The proposed model
selects optimal features from the web, ocular, and Natural Language Processing (NLP) features.
However, using the SqueezeNet model increased the overall complexity of the proposed model. Also,
sometimes SqueezeNet leads to over-fitting. Alamosa et al. [15] used a systematic approach to build
optimized deep learning to detect phishing websites. The proposed deep learning model is based on
LSTM, ANN, and CNN; the model is optimized by grid search and genetic algorithm. However, the
proposed approach is complex due to the use of grid search and genetic algorithms. Rani et al. [18]
proposed a machine learning model for phishing website detection with the help of website URLs. The
author used TreeSHAP and Information Gain to extract the best features. Then, the extracted features
are used to predict the phishing URLs using Naive Bayes, Random Forest, and XGBoost techniques.
However, using TreeSHAP increased the proposed model’s computational cost.

Prabakaran et al. [11] proposed variational autoencoders (VAE) and deep neural networks (DNN)
based approach for the detection of URL-based phishing attacks. However, VAEs can struggle
with capturing high-frequency details in data, making them less effective for tasks requiring precise
feature extraction. Sahingoz et al. [19] proposed a bat-based optimization algorithm for detecting
phishing websites. However, the bat algorithm-based optimization method can suffer from premature
convergence in complex search spaces and struggle with scalability when applied to significant or
high-dimensional problems. Adane et al. [20] proposed a stack-based model for detecting phishing
websites. The proposed approach extracts the features from Uni-variate feature selection (UFS).
However, UFS may miss the interaction between the features because it only evaluates each feature
independently. Sahingoz et al. [21] proposed a real-time-based phishing website attack detection
model. The proposed model used seven machine learning models of natural language processing
(NLP) for feature extraction. However, NLP-based feature extraction can struggle with understanding
context and nuances in language; hence, it is inefficient in extracting features. Saha et al. [22] presents
a data-driven method for detecting phishing webpages using a deep learning approach. The proposed
method used the primary method for feature extraction but did not use hyperparameter tuning.

Jain et al. [23] proposed the detection of phishing websites by analyzing the URLs in the HTML
source code. The extracted URLs are differentiated into 12 different features, and then these features
are used to train the machine learning model. However, the proposed approach did not use the
optimization techniques. Yang et al. [24] proposed a multidimensional feature detection approach



CMC, 2024, vol.81, no.3 4857

based on deep learning. The proposed approach is two-phased: in the first phase, the sequence-based
features of the URL are extracted; in the second phase, URL statistical features, webpage text features,
and webpage code features are extracted for the classification. The author used a threshold to select the
second phase. Mourtaji et al. [25] proposed a phishing URLs detection model based on six different
feature extraction methods, including the blocked method, lexical and host method, content method,
identity method, identity similarity method, visual similarity method, and behavioral method. Then,
the author used machine learning and deep learning-based models to identify malicious URLs.

In summary, there are many deep learning and machine learning models for detecting phishing
URLs; however, they do not use optimization methods efficiently. Some did not use feature and
hyper-parameter extract techniques, and others did not use efficient optimization techniques. This
is a research gap that is covered in this paper.

3 Proposed Approach

This section presents the details of the proposed framework. Fig. 3 presents the details of the
model. The framework leverages feature selection, a convolutional neural network (CNN), and the
Brown-Bear Optimization Algorithm (BBOA) for efficient and accurate detection.

Figure 3: Proposed model



4858 CMC, 2024, vol.81, no.3

3.1 Dataset Representation and Normalization

Assume we have a dataset D with N samples, each having n features and belonging to one of k
classes:

D = {(x1, y1), (x2, y2), . . . , (xN, yN)} (1)

where xi ∈ R
n is the feature vector for sample i, and yi ∈ {1, 2, . . . , k} is the class label.

3.2 Normalization

We apply min-max normalization to each feature to scale them to the range [0, 1]:

x′
ij = xij − min(xj)

max(xj) − min(xj)
(2)

The normalized feature matrix X ′ is represented as:

X ′ =

⎡
⎢⎢⎣

x′
11 x′

12 · · · x′
1n

x′
21 x′

22 · · · x′
2n

...
...

. . .
...

x′
N1 x′

N2 · · · x′
Nn

⎤
⎥⎥⎦ (3)

3.3 Feature Selection Using Random Forests

Random Forest is used to evaluate the importance of each feature by constructing multiple
decision trees.

3.3.1 Feature Importance

For each feature fj, its importance I(fj) is calculated as the average decrease in impurity over all
trees:

I(fj) = 1
T

T∑
t=1

∑
nodes split on fj

�It(fj) (4)

where T is the total number of trees.

3.3.2 Feature Selection

We select the top d features based on importance scores:

F = {f1, f2, . . . , fd} ⊂ {1, 2, . . . , n} (5)

The reduced feature matrix is:

X ′
F = X ′[:, F ] ∈ R

N×d (6)

3.4 CNN Model Architecture

The CNN consists of a single convolutional layer and a fully connected layer.



CMC, 2024, vol.81, no.3 4859

3.4.1 Convolutional Layer

The convolutional layer applies filters W with biases b:

Z = ReLU
(
X ′

F ∗ W + b
)

(7)

where ∗ denotes the convolution operation, ReLU is the activation function.

3.4.2 Fully Connected Layer

The output of the convolutional layer is flattened and passed through a dense layer:

Flatten(Z) = z1, z2, . . . , zm (8)

O = σ (Z · Wfc + bfc) (9)

where Wfc and bfc are the weights and biases of the fully connected layer, and σ is the softmax activation
function:

σ(oi) = eoi

∑k

j=1 eoj
(10)

3.4.3 Loss Function

The cross-entropy loss is used to train the model:

L(Y , Ŷ) = − 1
N

N∑
i=1

k∑
c=1

yic log(ŷic) (11)

where Y is the true label matrix and Ŷ is the predicted probability distribution.

3.5 Brown-Bear Optimization Algorithm (BBOA)

The BBOA is employed to optimize the CNN parameters by simulating bear behavior.

3.5.1 Initialization

Initialize a population of bears, each with random parameter vectors:

θi = {Wi, bi, Wfc,i, bfc,i} (12)

3.5.2 Fitness Evaluation

Evaluate the fitness of each bear using the loss function:

f (θi) = L(θi; X ′
F , Y) (13)

3.5.3 Bear Movement and Update

Update each bear’s position using exploration and exploitation strategies:

θ t+1
i = θ t

i + α · rand() · (θ t
best − θ t

i ) + β · rand() · (θ t
random − θ t

i ) (14)

where α and β are constants, rand() generates a random number, θ t
best is the best solution at iteration

t, and θ t
random is a randomly chosen solution.



4860 CMC, 2024, vol.81, no.3

3.5.4 Selection and Iteration

Select bears with better fitness for the next iteration. Repeat until convergence or a stopping
criterion is met.

3.6 Convergence

BBOA determines convergence by monitoring the stability of the global best fitness value across
iterations. Convergence is achieved when global best fitness value changes become negligible over a
predefined number of iterations, indicating that the algorithm is likely near a local or global optimum.
This study tracked changes over five consecutive iterations to ensure efficient convergence.

3.7 Parameter Selection

We conducted preliminary tests for parameter selection to determine optimal values for critical
parameters like population size and the number of iterations. These values balance computational cost
with performance, allowing the model sufficient exploration without high computational overhead.
The chosen population size and iteration count provide a comprehensive solution space search, thus
supporting robust optimization.

3.8 Model Evaluation

Evaluate the final model using the optimized parameters θ ∗ on the test dataset Xtest:

Ŷtest = CNN(Xtest; θ ∗) (15)

Compute performance metrics such as accuracy, precision, recall, and F1-score.

This hybrid framework effectively combines feature selection, CNN, and BBOA to enhance the
detection of URL phishing attacks. Using Random Forest for feature selection reduces dimensionality,
while BBOA optimizes CNN parameters for improved classification performance.

3.9 Advantage of BBOA

Compared with other optimization techniques, BBOA demonstrates several advantages. Particle
Swarm Optimization (PSO), while effective for global optimization, often suffers from premature
convergence in complex landscapes due to its limited exploitation capability. In contrast, BBOA’s
adaptive balance between exploration and exploitation allows it to navigate effectively in high-
dimensional tasks. It is well-suited for optimizing complex models like CNNs in phishing detection.
Genetic Algorithms (GA), on the other hand, offer a robust exploration phase but generally require a
high number of generations to converge, resulting in higher computational demands. BBOA’s adaptive
behavior achieves efficient convergence with reduced risk of overfitting specific solutions, thereby
improving the model’s generalizability.

4 Result and Discussion

In this section, we provide details about the simulation environment and simulation results.

4.1 Experimental Setup

We tested our model on Windows 11, i5 system. In addition to that, we used NVIDIA GeForce
RTX 3050 GPU for the simulation purpose.



CMC, 2024, vol.81, no.3 4861

We built the CNN model with the help of Pytorch [26,27], which has version 2.2.1. In addition
of that, we used Pandas [28] of version 1.5.3, NumPy [29,30] of version 1.24.3, scikit-learn [31,32] of
version 1.4.1.post1, and mealpy [33] of version 3.0.1.

4.2 Dataset Representation

Our proposed model, used the Kaggle data to test our proposed modelaset [34]. The dataset
consists of the URLs of 11,000+ websites. In addition to that, the dataset also consists of the 30
features that are extracted from the website URL. The target variable has two classes: “Safe” and
“Phishing.” The distribution of the classes of the target variable is presented in Fig. 4.

Figure 4: Class distribution

4.3 Feature Selection

As we analyze, the dataset has many features, and not every feature greatly impacts the clas-
sification of the URLs. Hence, we used a random forest-based approach for the feature selection.
The details of the approach are given in Section 3. Random forest ranks the features according to
the accuracy, and then the top ten highly ranked features are selected. Fig. 5 represents the rank
of the features. Fig. 5 presents the rank of the feature; hence, the top ten most important features
are: ‘HTTPS’, ‘AnchorURL’, ‘WebsiteTraffic’, ‘SubDomains’, ‘LinksInScriptTags’, ‘PrefixSuffix-’,
‘RequestURL’, ‘LinksPointingToPage’, ‘ServerFormHandler’, ‘DomainRegLen’.

We plot the correlation matrix, as represented in Fig. 6 to get more information about the ten
essential features. We calculate the relation between each feature and the target variable from the
correlation matrix. Table 1 presents the correlation between each feature and target variable. The table
and figure help us to find the relation between the features and the target variable.



4862 CMC, 2024, vol.81, no.3

Figure 5: Feature ranking

4.4 Hyper-Parameter Tuning

After finding the relation between the features and the target classes, we tune the hyper-parameters
of our CNN model with the help of Brown-Bear Optimization (BBOA). We selected the BBOA because
it is designed to handle complex optimization problems with potentially rugged landscapes, similar to
how brown bears navigate complex terrains in search of food. This makes it robust in finding global
optima in problems where other algorithms might get stuck in local optima.



CMC, 2024, vol.81, no.3 4863

Figure 6: Correlation matrix

Table 1: Correlation between features and target

Feature Correlation with target

HTTPS 0.714704
AnchorURL 0.692895
WebsiteTraffic 0.346003
SubDomains 0.298231
LinksInScriptTags 0.248415
PrefixSuffix- 0.348588
RequestURL 0.253478
ServerFormHandler 0.221380
LinksPointingToPage 0.032694
DomainRegLen −0.225879

Fig. 7 presents the variation of global fitness value over the ten epochs. As represented in the
figure, the value of global fitness decreases with an increase in iteration. This shows that BBOA selects
the optimal values of hyper-parameters that lead to lower global fitness values. Fig. 8 presents the
variation of time ichoosingng optimal hyper-parameters for each iteration. As represented in Fig. 8,
the runtime decreases initially, possibly due to optimizations on population size or diversity. However,
there’s an increase in later iterations, which might be due to increased calculations as the algorithm
attempts to escape local optima or due to more intensive exploitation processes. In addition to that,
Fig. 9 presents the relation between exploration and exploitation. According to the figure, the high



4864 CMC, 2024, vol.81, no.3

exploration percentage suggests that the BBOA maintains a significant focus on discovering new areas
of the search space. The relatively low and slightly declining exploitation percentage indicates a lesser
emphasis on intensively searching around the best solutions found, which might be a strategy to avoid
early convergence on suboptimal solutions. Finally, Fig. 10 presents the relation between diversity and
the number of iterations. Fig. 10 shows a decrease in diversity from the start, stabilizing around the
middle of the iterations, followed by a slight increase towards the end. This pattern suggests that the
BBOA initially explores broadly, converges around certain areas, and finally expands slightly again.
This figure presents the efficiency of BBOA in the detection of optimal hyper-parameters. After the
process, we get the optimal value of learning rate (0.0125882) and dropout rate (0.16436758).

Figure 7: Global best fitness

Figure 8: BBOS run time chart



CMC, 2024, vol.81, no.3 4865

Figure 9: Exploration and exploitation chart

Figure 10: Diversity measurement

4.5 Performance Analysis

We used the optimal features given by the BBOA and ran the proposed CNN model for five epochs.
We used the Adma optimizer and Cross Entropy Loss function in our model. We train our model for
five epochs to make the proposed model lightweight. To analyze the performance of our proposed
model over the epochs, we plot the accuracy and loss values over the epochs.

Fig. 11 presents the variation of training and testing accuracy over the five epochs. At the start of
the epochs, the training accuracy is 0.880877, and the test accuracy is 0.921875. However, as the epochs
increased, they became 0.917757, 0.920926, 0.924301, and 0.924311 in the second, third, fourth, and
fifth epochs, respectively. Similarly, the testing accuracy is also increased from 0.921875 to 0.926786
in five epochs. This variation represents that our model is trained efficiently for seen and unseen data.
In addition of that the convergence of training and testing accuracy concludes that the model is free
from over-fitting and under-fitting.



4866 CMC, 2024, vol.81, no.3

Figure 11: Accuracy variation

Apart from the acy, so plot the loss our model’slues four model’s the tanning del; Fig. 12 presents
this variation. The initial loss of training and test loops are 0.282105 and 0.186743, respectively, and as
the number of epochs increased, the loss values for training and test decreased. The test loss decreased
from 0.186743 to 0.174799, 0.175726, 0.180836, and 0.189991 in the second, third, fourth, and fifth
epochs. This shows that our proposed model is performed efficiently for the unseen data values. In
addition, the convergence of testing and training loss values indicated that the model is free from over-
fitting and under-fitting.

Apart from the accuracy and loss, we also plot the classification report and confusion matrix, as
represented in Figs. 13 and 14. From Fig. 13, it is clear that our proposed model detects the “Safe”
and “Phishing” URLs with a precision of 0.92 and 0.93, respectively. In addition to that, the recall
and F1-score values for the “Phishing” class are 0.94 and 0.93. That represents the effectiveness of our
proposal in the detection of malicious URLs. Similarly, the recall and F1-score for the “Safe” URLs
are 0.91 and 0.92, close to the “Phishing” UR values. Hence, our proposed model is not biased toward
any of the classes. Finally, Fig. 13 presents that the accuracy of our proposed model is 0.93, which
represents the efficiency of our proposed model.



CMC, 2024, vol.81, no.3 4867

Figure 12: Loss variation

Figure 13: Classification report

Fig. 14 presents the confusion matrix of our proposed model. Fig. 14 detects 886 “Safe” URLs but
cannot detect 90 URLs. Similarly, for the “Phishing” class, 1161 URLs are detected correctly, and only
90 are not correctly detected. This figure helps us find our model’s actual positive and negative values.
Fig. 13 shows the scope for improvement in our model, and we will improve the model to reduce the
true negative values.



4868 CMC, 2024, vol.81, no.3

Figure 14: Confusion matrix

4.6 Comparative Analysis

We compare our proposed model with other standard ML/DL techniques, such as GRU, LSTM,
RNN, ANN, SVM, and LR, to test the performance of our proposed approach. Figs. 15 and 16 present
the accuracy and loss comparison ML/DL techniques with our proposed model.

Figure 15: Accuracy comparison

According to Fig. 15 presents an accuracy comparison of GRU, LSTM, RNN, ANN, SVM,
and LR across multiple epochs. The Proposed Model, indicated in the blue color line, maintains
high accuracy, stabilizing just above 0.90, indicating robust performance throughout the epochs. This
suggests an effective capture of underlying patterns without significant over-fitting.

In contrast, GRU and LSTM, both recurrent neural networks suitable for sequence data, initially
perform lower but show rapid improvement, eventually reaching accuracies close to the Proposed
Model. This highlights their effective learning capabilities over time. The standard RNN, shown in the
red color line, shows less improvement over the epochs, suggesting it might be less adept at handling
this task’s complexities than GRU and LSTM.



CMC, 2024, vol.81, no.3 4869

Figure 16: Loss comparison

The Simple Neural Network displays excellent and consistent performance in a grey color
line, proving that simpler architectures can still be effective. The SVM model demonstrates steady
accuracy, typical for non-iterative models like SVMs, though it does not improve significantly, possibly
indicating a mismatch with the task complexity or dataset. Logistic Regression, mistakenly labeled as
“Logical Regression” and shown in purple, begins with the lowest accuracy and declines after a slight
improvement, likely due to underfitting or the model’s inability to handle the dataset’s complexity.
Overall, this graph underscores the importance of selecting appropriate models based on dataset
specifics and task requirements, with the Proposed Model showing the best overall performance.

Fig. 16 presents a loss comparison across multiple epochs. The Proposed Model, depicted in the
blue line color, exhibits a decrease in loss as training progresses, reaching the lowest loss among
all models. This suggests an effective learning process with efficient error minimization, potentially
indicating superior handling of the dataset complexities.

The GRU and LSTM models, shown in green and orange color lines, respectively, demonstrate
moderate loss values that decrease slightly over time and stabilize. Their performances are relatively
close, which is characteristic of their capacity to capture temporal dependencies, albeit not as effectively
as the proposed model.

However, RNN maintains a higher and more static loss than its GRU and LSTM counterparts,
indicating less effective learning and potential difficulties with the task’s complexities. In addition,
logistic regression and the simple neural network show similar trends with a steady decrease but do
not achieve loss levels as low as the proposed model.

Fig. 17 presents the comparison of time taken to train and test different models. The results
in Fig. 17 show that because of their lesser complexity, classic machine learning models, including
Logistic Regression and SVM, are quicker; nonetheless, this simplicity often comes at the expense
of poorer accuracy in demanding activities like phishing detection. Deep learning models like CNN,
GRU, and LSTM better handle complex patterns in data, which these models cannot grasp. Although
our proposed CNN-BBOA model balances computational time and much greater accuracy owing
to its robust feature extraction and optimal hyperparameter tuning, it is somewhat slower than more
straightforward machine learning methods. This makes it appropriate for real-time applications where
performance and quickness are important.



4870 CMC, 2024, vol.81, no.3

Figure 17: Running time comparison

Overall, Figs. 15–17 present the effectiveness of our proposed model as compared to the standard
ML/DL techniques.

4.7 Qualitative Comparison

Table 2 presents the comparative analysis of our proposed approach with recent relevant work.
The complexity of the model proposed by [7] is high because this genetic algorithm selects the best
feature selection and the optimization algorithm is used in features. In the model proposed by dithm is
used. The complexity of [2] is high because of the Squeeznet model. Due to the use of grid search and
genetic algorithms, the model proposed by [15] is considered heavyweight. The feature selection model
used by [15] used TreeSHAP, which suffers from high computational cost. The feature extract model
proposed by [11] is insufficient to capture high-frequency details in datasois the complexity increased.
The proposed approach by [19] used the bat algorithm; however, the bat algorithm can suffer from
premature convergence in complex search spaces, which decreases the performance of the proposed
approach and increases the complexity.

Table 2: Comparative analysis with past research

Model Technique Feature selection Hyper-parameter
tuning

Complexity

[7] CNN Genetic algorithm High
[14] Deep auto encoders Moderate
[2] SqueezeNet SqueezeNet FDHPO High

(Continued)



CMC, 2024, vol.81, no.3 4871

Table 2 (continued)

Model Technique Feature selection Hyper-parameter
tuning

Complexity

[15] LSTM, ANN, CNN Grid search,
genetic algorithm

High

[18] Naive Bayes, random
forest, XGBoost

TreeSHAP,
Information Gain

High

[11] DNN VAE Medium
[19] CNN BAT algorithm High
[20] RF, GB, and CATB UFS High
[21] Machine learning NLP Medium
[22] Deep learning � Moderate
[23] Machine learning Moderate
[24] Deep learning � Moderate
[25] Deep learning,

Machine learning
� Moderate

Proposed CNN Random forest BBOA Low

Adane et al. [20] used UFS for feature selection; however, UFS evaluates each feature indepen-
dently, which can miss important interactions between features and may not perform well with features
that are only effective when combined with others. Due to this limitation, the efficiency of the proposed
model decreased, and complexity increased. Sahingoz et al. [21] proposed an NLP-based feature
extract model that extracts features for seven machine learning models. However, NLP-based feature
extraction can struggle with understanding context and nuances in language, reducing effectiveness
and increasing complexity. Saha et al. [22] used only the feature extract technique; however, the
feature extraction technique is not efficient, which in turn increased the complexity of the approach.
The approach proposed by [23] used the characterization of hyperlinks to detect phishing attacks;
however, the approach did not use any optimization method. Which in turn increased the complexity.
Yang et al. [24] used a two-phase detection method for the phishing websites. However, this two-
phase model increased the complexity of the overall system. Mourtaji et al. [25] present a comparative
analysis of different feature extraction models for detecting phishing URLs. Using a random forest
approach for feature extraction and BBOA for optimization, our proposed model outperformed
current phishing detection models.

4.8 Future Research Directions

Expanding the scope of the CNN-BBOA model beyond phishing detection, this approach has
potential applications in other cybersecurity domains, such as fraud and intrusion detection. In fraud
detection, the model could identify suspicious transaction patterns by adapting the feature selection
and optimization strategies to financial datasets, where identifying subtle, anomalous patterns is criti-
cal. For intrusion detection, the CNN-BBOA framework could be applied to network traffic analysis
to detect abnormal behaviors that signify potential threats, offering adaptability across various data
types and security needs. Deployment considerations for the CNN-BBOA model include assessing
latency and scalability, particularly in real-time applications where quick processing is essential. The



4872 CMC, 2024, vol.81, no.3

model’s lightweight architecture, optimized through BBOA, supports faster computations, although
real-time deployment might still require efficient hardware resources to minimize latency. Scalability
could also be influenced by the increasing data demands in real-time settings, which may necessitate
further model refinement to balance accuracy with performance. Additionally, limitations such as
dataset-specific performance variations and sensitivity to data imbalance were noted; these factors
may impact the model’s robustness across different datasets, suggesting areas for further development,
such as incorporating adaptive learning techniques or balancing strategies to enhance generalizability
and resilience in diverse applications.

5 Conclusion

This paper presents a lightweight and optimized CNN-based model for detecting phishing URLs.
Our proposed approach used feature selection and hyperparameter tuning to optimize the proposed
model. We used random forest to select the ten best features and then BBOA to tune the CNN model’s
learning and dropout rates. An accuracy, precision, recall, and F1-score of 0.93, 0.92, 0.94, and 0.93,
respectively, present the effectiveness of our proposed model. The comparative analysis with standard
ML/DL techniques and past research work presents our contribution and the novelty of our proposed
work. However, our proposed model still has some limitations, such as considerable true negative
values. Hence, in the future, we will focus on improving our model and reducing these values. In
addition, we will focus on testing our proposed model in a real-time environment.

Acknowledgement: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2024R 343), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors extend their appreciation to the Deanship of Scientific Research at Northern Border
University, Arar, KSA for funding this research work through the project number NBU-FFR-2024-
1092-18.

Funding Statement: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2024R 343), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors extend their appreciation to the Deanship of Scientific Research at Northern Border
University, Arar, KSA for funding this research work through the project number NBU-FFR-2024-
1092-18.

Author Contributions: Final manuscript revision, funding, supervision: Brij B. Gupta, Kwok Tai Chui;
study conception and design, analysis and interpretation of results, methodology development: Shavi
Bansal, Akshat Gaurav, Varsha Arya; data collection, draft manuscript preparation, figure and tables:
Ahmed Alhomoud, Razaz Waheeb Attar. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: All data generated or analysed during this study are included in
this published article.

Ethics Approval: This article contains no studies with human participants or animals performed by
any authors.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.



CMC, 2024, vol.81, no.3 4873

References
[1] R. Alabdan, “Phishing attacks survey: Types, vectors, and technical approaches,” Fut. Inter., vol. 12, no.

10, 2020, Art. no. 168. doi: 10.3390/fi12100168.
[2] N. K. Kamble and N. Mishra, “Hybrid optimization enabled squeeze net for phishing attack detection,”

Comput. Securi., vol. 144, no. 9, 2024, Art. no. 103901. doi: 10.1016/j.cose.2024.103901.
[3] A. K. Jain, B. B. Gupta, K. Kaur, P. Bhutani, W. Alhalabi and A. Almomani, “A content and URL analysis-

based efficient approach to detect smishing SMS in intelligent systems,” Int. J. Intell. Syst., vol. 37, no. 12,
pp. 11117–11141, 2022. doi: 10.1002/int.23035.

[4] A. Katiyar, “Social engineering phishing detection,” 2023. Accessed: Sep. 30, 2024. [Online]. Available:
https://insights2techinfo.com/social-engineering-phishing-detection/

[5] Statista, “Top phishing statistics for 2024: Latest figures and trends,” 2024. Accessed: Jun. 30,
2024. [Online]. Available: https://www.statista.com/statistics/266155/number-of-phishing-domain-names-
worldwide/

[6] G. Smith, “Number of unique phishing sites detected worldwide from 3rd quarter 2013 to 1st quarter 2024,”
2024. Accessed: Jun. 30, 2024. [Online]. Available: https://www.stationx.net/phishing-statistics/

[7] S. J. Bu and H. J. Kim, “Optimized URL feature selection based on genetic-algorithm-embedded deep
learning for phishing website detection,” Electronics, vol. 11, no. 7, 2022, Art. no. 1090. doi: 10.3390/elec-
tronics11071090.

[8] M. M. Alani and H. Tawfik, “PhishNot: A cloud-based machine-learning approach to phishing URL
detection,” Comput. Netw., vol. 218, 2022, Art. no. 109407. doi: 10.1016/j.comnet.2022.109407.

[9] V. Vajrobol, B. B. Gupta, and A. Gaurav, “Mutual information based logistic regression for phishing URL
detection,” Cyber Secur. Appl., vol. 2, 2024, Art. no. 100044. doi: 10.1016/j.csa.2024.100044.

[10] S. N. Kee, “The impact of phishing on cloud-based systems and blockchain-based mitigations,” 2024.
Accessed: Sep. 30, 2024. [Online]. Available: https://insights2techinfo.com/the-impact-of-phishing-on-
cloud-based-systems-and-blockchain-based-mitigations/

[11] M. K. Prabakaran, P. Meenakshi Sundaram, and A. Chandrasekar, “An enhanced deep learning-based
phishing detection mechanism to effectively identify malicious URLs using variational autoencoders,” IET
Inform. Secur., vol. 17, no. 3, pp. 423–440, 2023.

[12] M. Aljabri et al., “Detecting malicious URLs using machine learning techniques: Review and research
directions,” IEEE Access, vol. 10, pp. 121395–121417, 2022. doi: 10.1109/ACCESS.2022.3222307.

[13] B. B. Gupta, A. Gaurav, R. W. Attar, V. Arya, A. Alhomoud and K. T. Chui, “Optimized phishing detection
with recurrent neural network and whale optimizer algorithm,” Comput. Mat. Contin., vol. 80, no. 3, pp.
4895–4916, 2024. doi: 10.32604/cmc.2024.050815.

[14] S. J. Bu and S. B. Cho, “Deep character-level anomaly detection based on a convolutional autoencoder for
zero-day phishing URL detection,” Electronics, vol. 10, no. 12, 2021, Art. no. 1492. doi: 10.3390/electron-
ics10121492.

[15] M. Almousa, T. Zhang, A. Sarrafzadeh, and M. Anwar, “Phishing website detection: How effective are
deep learning-based models and hyperparameter optimization?” Secur. Priv., vol. 5, no. 6, 2022, Art. no.
e256.

[16] R. Liu et al., “TransURL: Improving malicious URL detection with multi-layer Transformer
encoding and multi-scale pyramid features,” Comput. Netw., vol. 253, 2024, Art. no. 110707. doi:
10.1016/j.comnet.2024.110707.

[17] R. Liu et al., “PMANet: Malicious URL detection via post-trained language model guided multi-level
feature attention network,” Inf. Fusion, vol. 113, 2025, Art. no. 102638. doi: 10.1016/j.inffus.2024.102638.

[18] L. M. Rani, C. F. M. Foozy, and S. N. B. Mustafa, “Feature selection to enhance phishing website detection
based on URL using machine learning techniques,” J. Soft Comput. Data Min., vol. 4, no. 1, pp. 30–41,
2023.

[19] P. P. Kumar, T. Jaya, and V. Rajendran, “SI-BBA–A novel phishing website detection based on
Swarm intelligence with deep learning,” Mater. Today: Proc., vol. 80, no. 3, pp. 3129–3139, 2021. doi:
10.1016/j.matpr.2021.07.178.

https://doi.org/10.3390/fi12100168
https://doi.org/10.1016/j.cose.2024.103901
https://doi.org/10.1002/int.23035
https://insights2techinfo.com/social-engineering-phishing-detection/
https://www.statista.com/statistics/266155/number-of-phishing-domain-names-worldwide/
https://www.statista.com/statistics/266155/number-of-phishing-domain-names-worldwide/
https://www.stationx.net/phishing-statistics/
https://doi.org/10.3390/electronics11071090
https://doi.org/10.1016/j.comnet.2022.109407
https://doi.org/10.1016/j.csa.2024.100044
https://insights2techinfo.com/the-impact-of-phishing-on-cloud-based-systems-and-blockchain-based-mitigations/
https://insights2techinfo.com/the-impact-of-phishing-on-cloud-based-systems-and-blockchain-based-mitigations/
https://doi.org/10.1109/ACCESS.2022.3222307
https://doi.org/10.32604/cmc.2024.050815
https://doi.org/10.3390/electronics10121492
https://doi.org/10.1016/j.comnet.2024.110707
https://doi.org/10.1016/j.inffus.2024.102638
https://doi.org/10.1016/j.matpr.2021.07.178


4874 CMC, 2024, vol.81, no.3

[20] K. Adane, B. Beyene, and M. Abebe, “Single and hybrid-ensemble learning-based phishing website
detection: Examining impacts of varied nature datasets and informative feature selection technique,” Digit.
Thre.: Res. Pract., vol. 4, no. 3, pp. 1–27, 2023. doi: 10.1145/3611392.

[21] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based phishing detection from URLs,”
Expert. Syst. Appl., vol. 117, no. 4, pp. 345–357, 2019. doi: 10.1016/j.eswa.2018.09.029.

[22] I. Saha, D. Sarma, R. Chakma, M. N. Alam, A. Sultana and S. Hossain, “Phishing attacks detection using
deep learning approach,” in 2020 Third Int. Conf. Smart Syst. Invent. Technol. (ICSSIT), 2020.

[23] A. K. Jain and B. B. Gupta, “A machine learning based approach for phishing detection using hyper-
links information,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 5, pp. 2015–2028, 2019. doi:
10.1007/s12652-018-0798-z.

[24] P. Yang, G. Zhao, and P. Zeng, “Phishing website detection based on multidimensional features driven by
deep learning,” IEEE Access, vol. 7, pp. 15196–15209, 2019. doi: 10.1109/ACCESS.2019.2892066.

[25] Y. Mourtaji, M. Bouhorma, D. Alghazzawi, G. Aldabbagh, and A. Alghamdi, “Hybrid rule-based solution
for phishing URL detection using convolutional neural network,” Wirel. Commun. Mob. Comput., vol.
2021, no. 1, pp. 1–24, 2021. doi: 10.1155/2021/8241104.

[26] S. Imambi, K. B. Prakash, and G. R. Kanagachidambaresan, Programming with TensorFlow: Solution for
Edge Computing Applications. Cham: Springer, 2021, pp. 87–104. doi: 10.1007/978-3-030-57077-4.

[27] N. Ketkar, J. Moolayil, N. Ketkar, and J. Moolayil, “Introduction to PyTorch,” in Deep Learning with
Python. Berkeley. CA, USA: Apress, 2021, pp. 27–91. doi: 10.1007/978-1-4842-5364-9_2.

[28] J. Reback et al., “pandas-dev/pandas: Pandas 1.0. 5,” Zenodo, 2020. doi: 10.5281/zenodo.3898987.
[29] I. Idris, NumPy: Beginner’s Guide. UK: Packt Publishing Ltd., 2015.
[30] W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, Numpy, and Ipython. USA: O’Reilly

Media, Inc., 2012.
[31] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J.Mach. Learn. Res., vol. 12, pp. 2825–2830,

2011.
[32] O. Kramer and O. Kramer, Machine Learning for Evolution Strategies. Cham: Springer, 2016, pp. 45–53.

doi: 10.1007/978-3-319-33383-0.
[33] N. Van Thieu and S. Mirjalili, “MEALPY: An open-source library for latest meta-heuristic algorithms in

Python,” J. Syst. Archit., vol. 139, no. 12, 2023, Art. no. 102871. doi: 10.1016/j.sysarc.2023.102871.
[34] E. Chand, “Phishing website detector,” 2023. Accessed: Jan. 30, 2024 . [Online]. Available: https://www.

kaggle.com/datasets/eswarchandt/phishing-website-detector

https://doi.org/10.1145/3611392
https://doi.org/10.1016/j.eswa.2018.09.029
https://doi.org/10.1007/s12652-018-0798-z
https://doi.org/10.1109/ACCESS.2019.2892066
https://doi.org/10.1155/2021/8241104
https://doi.org/10.1007/978-3-030-57077-4
https://doi.org/10.1007/978-1-4842-5364-9_2
https://doi.org/10.5281/zenodo.3898987
https://doi.org/10.1007/978-3-319-33383-0
https://doi.org/10.1016/j.sysarc.2023.102871
https://www.kaggle.com/datasets/eswarchandt/phishing-website-detector
https://www.kaggle.com/datasets/eswarchandt/phishing-website-detector

	A Hybrid CNN-Brown-Bear Optimization Framework for Enhanced Detection of URL Phishing Attacks
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Result and Discussion
	5 Conclusion
	References


