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ABSTRACT

The popularity of quadrotor Unmanned Aerial Vehicles (UAVs) stems from their simple propulsion systems and
structural design. However, their complex and nonlinear dynamic behavior presents a significant challenge for
control, necessitating sophisticated algorithms to ensure stability and accuracy in flight. Various strategies have
been explored by researchers and control engineers, with learning-based methods like reinforcement learning,
deep learning, and neural networks showing promise in enhancing the robustness and adaptability of quadrotor
control systems. This paper investigates a Reinforcement Learning (RL) approach for both high and low-level
quadrotor control systems, focusing on attitude stabilization and position tracking tasks. A novel reward function
and actor-critic network structures are designed to stimulate high-order observable states, improving the agent’s
understanding of the quadrotor’s dynamics and environmental constraints. To address the challenge of RL hyper-
parameter tuning, a new framework is introduced that combines Simulated Annealing (SA) with a reinforcement
learning algorithm, specifically Simulated Annealing-Twin Delayed Deep Deterministic Policy Gradient (SA-TD3).
This approach is evaluated for path-following and stabilization tasks through comparative assessments with two
commonly used control methods: Backstepping and Sliding Mode Control (SMC). While the implementation of
the well-trained agents exhibited unexpected behavior during real-world testing, a reduced neural network used for
altitude control was successfully implemented on a Parrot Mambo mini drone. The results showcase the potential
of the proposed SA-TD3 framework for real-world applications, demonstrating improved stability and precision
across various test scenarios and highlighting its feasibility for practical deployment.
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Nomenclature

AI Artificial intelligence
CNNs Convolutional Neural Networks
DDPG Deep Deterministic Policy Gradient
DQN Deep Q Network
DRL Deep Reinforcement Learning
FRDDM Faster R-CNN model and a Data Deposit Mechanism
FFNN Feedforward Neural Network
GPS Global Positioning System
HPO Hyper-Parameter Optimization
ISE Integral square error
IoT Internet of Things
LDA Latent Dirichlet Allocation
LQR Linear Quadratic Regulator
MDP Markov Decision Process
MEMS Micro Electrical Mechanical Sensors
MEC Mobile Edge Computing
MPC Model Predictive Control
MIMO Multiple Input Multiple Output
PILCO Probabilistic Inference for Learning Control
PID Proportional Integral Derivative
PPO Proximal Policy Optimization
PWM Pulse Width Modulation
R-CNN Regions with Convolutional Neural Networks
RL Reinforcement Learning
SNR Signal to Noise Ratio
SA Simulated Annealing
SLAM Simultaneous Localization And Mapping
SMC Sliding Mode Control
SARSA State-Action-Reward-State-Action
TRPO Trust Region Policy Optimization
TD3 Twin Delayed Deep Deterministic Policy Gradient
UWA Underwater Acoustic
UAVs Unmanned Aerial Vehicles
VTOL Vertical Take-Off and Landing

1 Introduction

Quadrotors stand out as a common variety of UAVs, distinguished by features such as exceptional
maneuverability, compact dimensions, Vertical Take-Off and Landing (VTOL) capabilities, and ease of
interaction [1]. They are utilized in diverse fields, such as homeland security [2], atmospheric sampling
[3], search-and-rescue operations [4], and military applications like battlefield surveillance and airspace
patrolling [5]. Additionally, innovative uses have emerged, with quadrotors equipped with Micro
Electrical Mechanical Sensors (MEMS) for applications in Internet of Things (IoT) and Mobile Edge
Computing (MEC) architectures [6]. However, the complex dynamics of quadrotors, characterized by
non-linearity, underactuation, and coupling, pose significant challenges in control system design. To
address these challenges, researchers have developed control theories for both single and multi-agent
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systems, like consensus algorithms [7], cooperative control [8], and decentralized decision-making
[9], focusing on enhancing the maneuverability and stability of individual quadrotors and improving
collaboration among multiple UAVs.

In the field of single-agent control, quadrotors have been subjected to various methods and
control techniques. Several of these employ linear methods, including PID [10], Linear Quadratic
Regulator (LQR) [11], and Model Predictive Control (MPC) [12]. This category of controllers is
simple and relatively easy to implement but has limited operating regions. To address this limitation,
more complex controllers based on nonlinear approaches have been introduced, including SMC
[13,14], Backstepping [15,16], Adaptive control [17,18], and H∞ control [19,20], with many advanced
and hybrid versions of each. As shown in [21], the authors conducted a study that summarizes
several attitude stabilization methods, including PID, LQR, MPC, Feedback Linearization, and SMC,
offering guidance for selecting suitable quadrotor control strategies, considering both quantitative and
qualitative considerations. The effectiveness of conventional control algorithms in diverse systems
frequently hinges on subjective parameter selection informed by a comprehensive grasp of the
model and experimental surroundings. In intricate situations, achieving a balance between accuracy,
robustness, and efficiency in a single control function can be significantly challenging.

Besides the previously mentioned controllers, data-driven methods have become increasingly
prominent in robotics and control systems due to recent advancements in computing power and the
accessibility of vast amounts of data. Artificial intelligence (AI), including supervised, unsupervised,
and reinforcement learning techniques, has undergone rapid advancements over the last few years.
Various domains in robotics, including path planning [22], simultaneous localization and mapping
(SLAM) [23], perception, and control, among others, have now integrated AI techniques into their
applications. Furthermore, Deep Reinforcement Learning (DRL) has garnered significant attention
within control theory due to its ability to handle high-dimensional state and action spaces and to
learn directly from interaction with the environment without requiring an explicit model. It has shown
impressive results in terms of accuracy and robustness across a large variety of tasks and applications.
From various perspectives, DRL has the potential to offer significant advantages over traditional
control methods, along with many other data-driven approaches.

Motivated by several factors including adaptability, learning from interaction, scalability, and per-
formance, our work introduces several key innovations that differentiate it from existing approaches.
We propose a novel framework that combines the Twin-Delayed Deep Deterministic Policy Gradient,
an off-policy, model-free, actor-critic algorithm, with Simulated Annealing, a metaheuristic optimiza-
tion technique. This framework is designed to control both the position and attitude of a quadrotor
system, with the aim of overcoming the limitations of existing methods. The effectiveness of our
approach is demonstrated through a comprehensive comparison with high-performance nonlinear
controllers such as SMC and Backstepping, across various path-following scenarios. This study
contributes to the field by introducing a robust, scalable, and adaptable control solution that bridges
the gap between traditional control methods and modern AI-driven techniques.

The subsequent sections of the document are organized as follows: Section 2 furnishes relevant
techniques used in UAVs control systems, encompassing convolutional approaches and, in particular,
RL algorithms. Section 3 explores the investigated control approaches, providing a concise overview of
reinforcement learning fundamentals. The spotlight is on the SA-RL algorithm, highlighting its role in
optimizing hyperparameters for improved UAV control performance. Additionally, the section unfolds
the formulation of the reward function and the proposed network’s architecture. Finally, Section 4
summarizes the simulation results, offering an extensive comparative analysis with the SMC and
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Backstepping controllers. It also delves into the real-world implementation and outlines the identified
limitations and findings.

2 Related Works

While recent research has primarily focused on integrating AI algorithms for autonomous
flights, questions remain regarding the performance and limitations of intelligent control strategies
compared to traditional UAVs control methods. This section offers a review of the literature from
both perspectives, complemented by related research on the optimization of reinforcement learning
hyperparameters.

Deployed to quadrotor control systems, several data-based approaches and techniques have
demonstrated promising performance, especially when combined with traditional controllers. In [24],
the authors presented a data-enabled predictive control algorithm for nano-quadcopter position
control, utilizing input/output measurements for trajectory prediction without system identification.
The proposed approach exhibited reliable performance and successful trajectory tracking compared
to MPC. Additionally, this paper [25] introduced a data-driven model-free adaptive control method
based on improved SMC to address dynamic modeling and parameter identification challenges for
quadrotor trajectory tracking. This method incorporates an adaptive update law and saturation
function to mitigate chattering and employs inner and outer loop control structures for position
and attitude control, demonstrating effectiveness, feasibility, and high accuracy in trajectory tracking
validated through simulation. Furthermore, in [26], the authors presented a data-driven approach
using the Koopman operator and extended dynamic mode decomposition for quadrotor UAV control,
utilizing rotation matrices to accurately represent nonlinear dynamics. Leveraging this model, a linear
model predictive controller operating at 100 Hz effectively tracked agile trajectories with high accuracy.

More relevant to the work presented in this paper, data-driven AI control systems, particularly
RL approaches, have been extensively explored for UAVs and quadrotor control. As reported in
[27], these algorithms are highly effective in optimizing controller parameters. In their study, the
authors introduced an RL algorithm called Learning Automata to fine-tune the parameters of the
X , Y , Z positions and the attitude PID controllers. The results obtained were notably promising
compared to other applied strategies. Referring to [28], the authors introduced a low-level RL control
framework combined with Global Positioning System (GPS) to counteract external forces. This
controller outperformed a standalone RL control algorithm in tasks involving stationary hovering
and path-following, reducing the error by 75% during outdoor experiments.

Moreover, in [29], the authors used the Deep Deterministic Policy Gradient (DDPG) algorithm
to address the trajectory tracking issue quadrotors in three distinct ways. They incorporated instan-
taneous path information, integrated a mechanism to anticipate path curves, and computed the
optimum speed based on the sloping nature of the path. Additionally, improvements were introduced
to this technique as demonstrated in [30], a novel algorithm was proposed that leverages an integral
compensator coupled with the deterministic policy gradient approach. The authors enhanced the
actor-critic structure by implementing a two-phase learning protocol, which includes both online and
offline training phases. In [31], the Recurrent Deterministic Policy Gradient method was introduced
as a unique technique crafted to adjust weights based on previous paths, rather than at the end of each
episode. It found application in obstacle avoidance agents, complementing the path-following strategy
of the DDPG agent outlined in [29].

Furthermore, in their recent work [32], the authors addressed the challenge of selecting state and
control weighting matrices for LQR control of a quadrotor. They employed DDPG to update the Q
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matrix, achieving faster response times while minimizing integral square error. The proposed controller
outperforms four commonly used methods regarding the rise time, the settling time, and the time
of flight. The authors concluded that this approach holds promise for application in other control
problems and enhancing control efficiency.

Another RL-based method was employed for autonomous agent flight training. In [33], the
off-policy Deep Q Network (DQN) algorithm was utilized to learn an agent a high-level control
policy using low-resolution images captured from a downward-facing camera. This training aimed
to achieve autonomous landing for a quadrotor. In the study presented in [34], the DQN algorithm
using mean squared error of the Euclidean distance within the reward function, and the Adadelta
optimizer, yielded the best performance in quadrotor flight when evaluated alongside Q-learning
and SARSA (State-Action-Reward-State-Action). This evaluation encompassed a combination of
optimizers (RMSProp, Adadelta, SGD, and Adam) and reward functions (Euclidean distance and
its mean square error). Furthermore, on-policy algorithms were introduced as control strategies for
quadrotors. In [35], the authors introduced a quadrotor control system at a lower level, employing the
Proximal Policy Optimization (PPO) algorithm. The subsequent presentation included the outcomes
of two practical experiments, aimed at validating the system’s proficiency in tasks such as maintaining
a stationary position and following a predefined path. Another study [36] also investigated the use
of PPO and TD3 for UAV control, comparing their performance in terms of stability, robustness,
and trajectory accuracy across various UAV designs and scenarios. The results demonstrate that both
algorithms effectively manage UAV control challenges in dynamic environments.

Additionally, RL algorithms were employed in conjunction with traditional linear and non-linear
controllers to achieve high accuracy and robustness. In [37], a hybrid RL control system for micro-
quadrotors is proposed, which combines PD-RL and LQR-RL. In terms of convergence rate and
control performance, this hybrid strategy outperforms the original Probabilistic Inference for Learning
Control (PILCO), a method recognized for being among the fastest model-based RL algorithms. In
a separate study, outlined in [38], a Feedforward Neural Network (FFNN) was trained to serve as
a predictive model for a quadrotor’s entire translational dynamics. This FFNN was subsequently
integrated into the MPC framework, resulting in a neural network-based MPC. This controller
effectively reduces the average path-following error by 40% in comparison to the performance of
classic PID controllers. Furthermore, in [39], the authors conducted experiments involving the training
of a Crazy-Fly Quadrotor using model-based RL with MPC. This approach enabled the training
of a network to directly map Pulse Width Modulation (PWM) signals from sensors, facilitating
autonomous flight based on experimental data.

While the previously discussed works employed RL algorithms as the primary control strategy or
in conjunction with traditional controllers, a benchmark between these different approaches was less
conducted in recent studies. In [40], two distinct quadrotor controllers were proposed and compared.
The nonlinear controller, based on feedback linearization learned using Fitted Value Iteration,
demonstrated superior performance when compared to an RL agent. Notably, it held the advantage
of not requiring prior mathematical knowledge of the quadrotor model. In the work presented by the
authors of [41], a method for controlling a quadrotor with a trained neural network was introduced.
This approach employed another RL technique, denoted as NN+PD, which was considered more
suitable for quadrotor control than previously employed methods. In addition to simulations, the
efficiency of the obtained policy was evaluated in comparison to the DDPG and the Trust Region
Policy Optimization (TRPO) in real-world implementations. In another study, detailed in [42], different
options for reward functions were explored, and their influence on the controller efficiency were
considered. This examination was performed while utilizing the model-free RL algorithm PPO.
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Subsequently, the results were compared to those obtained using a classic PD controller for motion
control of a quadrotor.

Recent advancements in reinforcement learning for UAV control have addressed several com-
plex challenges, including disturbance estimation, sample efficiency, collision avoidance, and multi-
objective optimization in dynamic environments. In [43], the authors introduced the Constrained
Distributional REinforced-Disturbance-estimator integrated with a Stochastic Model Predictive Con-
troller to enhance quadrotor trajectory tracking performance amidst uncertain aerodynamic effects.
This framework effectively identifies uncertainties, achieving optimal convergence rates and a 70%
improvement in accumulative tracking errors compared to recent methods. Similarly, in [44], the
authors presented a hybrid RL framework combining meta-learning (Reptile algorithm) and genera-
tive adversarial imitation learning to improve training efficiency and adaptability in UAV trajectory
planning without the need for complex reward functions. In [45], a performance-designated RL-
based enclosing control scheme was proposed to achieve target approximation while ensuring collision
avoidance by using adaptive performance functions and barrier functions. Multi-agent and coopera-
tive strategies have also been explored to extend UAVs’ operational lifecycle and enhance mission
performance; for instance, in [46], the authors formulated a multi-objective optimization problem
for UAV-based base stations using a DRL model assisted by particle swarm optimization to balance
energy efficiency, user fairness, and coverage rate. Additionally, in environments where communication
and radar are compromised, Fei et al. [47] proposed the FRDDM-DQN algorithm, integrating
a Faster R-CNN model and a Data Deposit Mechanism to enhance autonomous navigation and
collision avoidance by efficiently extracting obstacle information from images and optimizing training
procedures. Moreover, Huang et al. [48] introduced a spatial–temporal integrated framework using
a 4-D Multiple-Input–Multiple-Output (MIMO) radar to improve micro-UAV trajectory tracking
and prediction under low signal-to-noise ratio (SNR) conditions. The framework jointly optimizes
target detection and tracking, coupled with a transformer-based prediction model, achieving superior
accuracy in trajectory prediction compared to conventional methods. Together, these studies highlight
the continuous evolution of RL-based control strategies and advanced detection and prediction
frameworks for UAVs, emphasizing robust disturbance estimation, adaptive learning frameworks,
cooperative multi-agent systems, and enhanced trajectory prediction in complex environments. How-
ever, while these studies focus on integrating RL with other techniques to address specific challenges
such as disturbance estimation, navigation, or prediction accuracy, our work is distinct in developing
the SA-TD3 framework specifically for optimizing hyperparameters in quadrotor control tasks,
offering improved stability and precision in both high and low-level control scenarios through novel
reward functions and actor-critic structures.

Hyper-parameter Optimization (HPO) remains a major concern still under investigation by
researchers. The significant sources of variance and the challenges associated with fine-tuning hyper-
parameter selection for deep and reinforcement learning algorithms have been widely discussed in
recent years. In [49], the authors addressed this issue by utilizing computational complexity and
classification accuracy as competing objectives. They presented a Multi-Objective SA approach, yield-
ing superior outcomes through fine-tuning the hyperparameters for Convolutional Neural Networks
(CNNs) in object identification tasks. Similarly, in [50], the authors proposed an algorithm based on
simplified swarm optimization to tune the hyperparameters of the LeNet CNN model. This algorithm
was rigorously tested on three datasets and demonstrated superior performance when compared to
both the standard LeNet model and a variant optimized using particle swarm optimization. Another
study conducted in [51], a novel algorithm RFEPPO is presented to address the HPO issue, the authors
treat the hyper-parameters tuning as a sequential decision problem and employ an agent to sequentially
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choose hyper-parameters that are updated using a PPO-based method and a surrogate model in
which the results demonstrate the relevance of the advocated algorithm. In [52], the authors aimed
to enhance both robustness and training efficiency in comparison to Bayesian optimization. They
introduced an approach, which employed a framework employing a genetic algorithm with variable-
length distributed components to fine-tune hyper-parameters through evolution. Furthermore, they
identified appropriate RL structures that yielded higher rewards in fewer episodes across various
applications.

As far as we know, the most similar approach to the one conducted in this study is proposed in [53].
In that work, SA was employed to optimize hyperparameters for a well-known unsupervised model
called Latent Dirichlet Allocation (LDA). The experimental findings demonstrated that SA-LDA
surpasses the performance of the conventional LDA model. This practical examination was conducted
using datasets comprising clients feedback from the hotel, movie and mobile sectors. Another relevant
paper [54], presents a more efficient and practical RL-based relay selection technique for Underwater
Acoustic (UWA) networks. This technique considers both transmission delay and channel quality.
Notably, the learning process parameters are dynamically adjusted using SA to enhance convergence
speed and achieve higher performance. In contrast to the SA-RL approach described in this paper,
our objective is to automate and integrate hyperparameter tuning into the training process of RL
algorithms designed for continuous action and observation spaces. This systematic adaptation is
aimed at ensuring training convergence and stability for an RL agent. We then apply this approach
to perform complex path following and stabilization tasks, which to our best understanding, has not
been investigated in this particular manner before.

In reviewing the current landscape of UAV control approaches, a comparative analysis has been
conducted to highlight the distinctive methodologies and performance metrics associated with various
techniques. Table 1 presents an overview of selected UAV control strategies, detailing their underlying
advantages, and limitations.

Table 1: Comparative analysis of some existing UAV control approaches

Approach Pros Cons References

PID -Simple and easy to implement;
-Effective for basic control
tasks;
-Well-understood and widely
used.

-Poor performance in nonlinear
and highly dynamic
environments;
-Requires manual tuning;
-Limited adaptability.

[10]

LQR -Provides optimal control for
linear systems;
-Balances control effort and
state regulation;
-Computationally efficient.

-Limited to linear or linearized
systems;
-Not effective for handling
nonlinearities or large
disturbances.

[11]

MPC -Optimizes control actions over
a finite time horizon;
-Handles constraints explicitly;
-Adaptable to different
operating conditions.

-Computationally intensive;
-Requires an accurate
prediction model;
-May struggle with real-time
implementation for fast systems.

[12]

(Continued)



4764 CMC, 2024, vol.81, no.3

Table 1 (continued)

Approach Pros Cons References

SMC -Strong robustness to
disturbances;
-Effective for dealing with
nonlinearities;
-Provides finite-time
convergence.

-Chattering effect;
-May lead to aggressive control
actions;
-Difficult to smooth out.

[13,14]

Backstepping -Robust against model
uncertainties;
-Proven effectiveness in
nonlinear systems;
-Handles parameter variations.

-High computational
complexity;
-Requires an accurate system
model;
-Challenging to implement.

[15,16]

Adaptive control -Automatically adjusts to
changing system dynamics;
-Effective for systems with
varying parameters.

-Can be complex to design;
-May have slower response
times.

[17,18]

H∞ control -Provides robust performance in
the presence of model
uncertainties and disturbances.

-Complex design and
implementation;
-Computationally intensive.

[19,20]

DDPG -Handles continuous action
spaces;
-Suitable for high-dimensional
problems;
-Learns from direct interaction
with the environment.

-Sensitive to hyperparameter
choices;
-Requires large amounts of
training data;
-May lack stability in real-world
implementation.

[29]

DQN -Learns directly from the
environment;
-Can handle discrete action
spaces;
-Effective for low-dimensional
tasks.

-Requires large amounts of
data;
-Struggles with continuous
action spaces;
-Training instability.

[33]

PPO -Stability in training through
clipped objectives;
-Effective in complex
environments;
-Balances exploration and
exploitation.

-Computationally expensive;
-Requires careful tuning;
-Sensitive to hyperparameters.

[35;36]

(Continued)
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Table 1 (continued)

Approach Pros Cons References

TD3 -Addresses overestimation bias;
-Suitable for continuous control
tasks;
-High sample efficiency.

-Complex implementation;
-Requires careful
hyperparameter tuning;
-Training can be
time-consuming.

[36]

SA-TD3 -Combines exploration
efficiency of SA with TD3’s
stability;
-Enhanced generalization
capabilities;
-Improved control precision and
stability;
-Real-world applicability.

-Computational complexity due
to dual optimization processes;
-Training may be
time-consuming.

Our Work

3 Methodology

This section of the paper outlines the techniques explored for controlling a quadrotor system and
explains the methodology used to train an accurate control policy. It presents the various approaches,
offering a comprehensive understanding of the research. Additionally, it discusses the process of
developing the policy, including the innovative techniques employed.

3.1 The Investigated Approaches

In this work, we explore the utilization and outcomes of an RL agent trained without expert
assistance in hyper-parameter tuning. We apply this approach to two distinct quadrotor control
configurations, as illustrated in Fig. 1.

Figure 1: Quadrotor control levels, (a) RL low-level control system, (b) RL control system

We begin with the RL low-level (attitude) controller, as shown in Fig. 1a. This phase of control
is critical for ensuring the drone’s stability and maneuverability, enabling it to perform a variety of
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tasks and missions effectively. Here, an RL agent generates four input commands based on attitude
and altitude references (ϕRef , θRef , ψRef , ZRef ).

The second controller, depicted in Fig. 1b, is an RL agent trained to execute a wide range of tasks,
from simple hovering to complex autonomous navigation. It uses desired positions and orientation
(XRef , YRef , ZRef , ψRef ) as references and addresses the challenge of coupled dynamics to take full control
of the quadrotor system without separating orientation and position control levels.

In the field of quadrotor UAV control, our work introduces several key contributions and
innovations, which are primarily reflected in:

• Presentation of a novel framework that combines Simulated Annealing with Reinforcement
Learning to address the challenges of hyperparameter tuning in reinforcement learning for
quadrotor control, ensuring stable and rapid training convergence.

• Introduction of a simple and mixed reward function that enhances the agent’s ability to
understand and adapt to the complex dynamics of the quadrotor, resulting in improved stability
and precision in attitude and position control.

• Proposal of an actor-critic network architecture that incorporates high-order observable states
to enhance the RL agent’s comprehension of the quadrotor’s complex dynamics.

• Performance comparison of the proposed approaches with two non-linear controllers under
different scenarios, with results provided and discussed.

• Finally, practical implementation of the trained RL agents to control a real quadrotor and
follow a predefined trajectory.

3.2 Quadrotor Dynamics

Training RL agents in simulation environments before deploying them in the real world offers a
safe, cost-effective, and rapid learning process. While simulations cannot fully replicate the complexity
of the real world, they serve as a crucial initial phase in the development and refinement of agents
before real-world testing.

In order to produce an accurate mathematical model of a quadrotor system, it is necessary to
assume that it possesses a symmetry and rigidity in its structure, the thrust is generated by four
motors, each connected to rigid propellers of equal size, and the aerodynamic forces (drag and lift) are
proportionate to the speed of the rotor’s rotation, where the dynamics of the quadrotor are modeled
using two frames: the body frame, and the inertial frame, with its origin located at the quadrotor’s
center of the mass, as illustrated in Fig. 2.

The appropriate lift forces (F1, F2, F3 and F4) can be generated by regulating the rotor’s speed,
which enhances the quadrotor’s various motions and rotations. The pitch motion is attained by
creating a differential thrust force between the front and rear motors, varying (Ω1 and Ω2) or (Ω3

and Ω4) leading to rotation around the yb-axis. Roll motion is generated through differential thrust
throughout the right and left propellers’ rotation speeds, adjusting (Ω1 and Ω3) or (Ω2 and Ω4) resulting
in rotation around the xb-axis. While the yaw motion occurs when either (Ω1 = Ω4) > or < (�2 = Ω3)
causing a rotation in the clockwise or anti-clockwise direction.
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Figure 2: The quadrotor inertial and body frames

One of the approaches employed for deriving the dynamic model of a quadrotor system is based
on the Euler-Lagrangian equation, and its equations of motion are summarized as follows [55]:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = U1

m
(cos (ϕ) sin (θ) cos (ψ) + sin (ϕ) sin (ψ))

ÿ = U1

m
(cos (ϕ) sin (θ) sin (ψ) + sin (ϕ) cos (ψ))

z̈ = U1

m
(cos (ϕ) cos (θ)) − g

ϕ̈ = −(Jzz − Jyy)θ̇ ψ̇ + U2

Jxx

θ̈ = −(Jzz − Jxx)ϕ̇ψ̇ + U3

Jyy

ψ̈ = −(Jyy − Jxx)ϕ̇θ̇ + U4

Jzz

(1)

This set of equations describes the motion of the quadrotor in 3D space, considering forces and
torques applied to it. The terms represent the linear accelerations in the x, y and z directions and the
angular accelerations in roll (ϕ), pitch (θ ), and yaw (ψ) axes.

where:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1 = b(�2
1 + �2

2 + �2
3 + �2

4)

U2 = l.b
(
�2

4 − �2
2

)

U3 = l.b
(
�2

3 − �2
1

)

U4 = d(�2
1 − �2

2 + �2
3 − �2

4)

(2)

The command inputs Ui(i = 1, 2, 3 and 4) denote respectively the lift force, the moments of roll,
pitch and yaw. While each rotor’s speed is represented by Ωi(i = 1, 2, 3 and 4). All of the symbols and
physical parameters applied for this model are provided in Table 2.
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Table 2: The symbols and physical parameters in the quadrotor dynamic model

Symbol Description Physical units

m The quadrotor’s mass kg
g The gravitational acceleration m.s−2

l The quadrotor’s helf length m
Ixx, Iyy, Izz The moment of inertia around x, y and z axis, respectively kg.m2

b The thrust factor N.s2

d The drag factor N.m.s

3.3 Reinforcement Learning Background

We consider the conventional RL setup (see Fig. 3), where an agent interacts with an environment
E in discrete timesteps. At each timestep t the agent takes an action at, receives an observation xt, and
obtains a scalar reward rt. We assume that the environment under investigation is entirely observable,
therefore st = xt. While the actions are real-valued, denoted as at ∈ R

N.

Figure 3: Standard RL setup

A policy, denoted as π , represents the agent’s behavior, mapping states to a probability distribution
over actions, defined as π : S −→ P(A). The environment E can also be stochastic and is typically
modeled as a Markov Decision Process (MDP). This MDP includes a state space S, an action space
A = R

N, an initial state distribution p(s1), transition dynamics p(st+1|st, at), and a reward function
r(st, at).

The return from a state is calculated as the sum of discounted future rewards with a discounting
factor γ ∈ [0, 1] :

Rt =
∑T

i=t
γ i−tr(si, ai) (3)

It should be noted that the return is stochastic and depends on the chosen actions, which, in turn,
influence the policy. This return defines the cumulative reward at time t for a given sequence of actions
ai taken in states si. The discount factor γ ensures that future rewards are weighted less than immediate
rewards.

In RL, the goal is to acquire a policy that promotes the predicted return from the initial
distribution:

J = Eπ ,s0

[∑∞

t=0
γ tr (st, at, st+1) |at = π(.|st)

]
(4)
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where J represents the expected return to maximize when following a policy π from an initial state s0.
It calculates the total discounted reward that an agent can expect to accumulate over time.

Therefore, the state value function V π (s) that quantifies the expected return starting from state s
and following policy π is defined by:

V π (s) = Eπ

[∑∞

t=0
γ tr (st, at, st+1) |at ∼ π (.|st), s0 = s

]
(5)

This function mainly reflects the long-term reward achievable from state s under the given policy.

Many RL algorithms make use of the action-value function, that reflects the expected outcome of
making an action at in state st and then following policy π , it helps in evaluating the quality of specific
actions in given states as:

Qπ (s, a) = Eπ

[∑∞

t=0
γ tr (st, at, st+1) |at ∼ π (.|st), s0 = s, a0 = a

]
(6)

Given the transition dynamics and the reward function, the Bellman equation is a recursive
relationship that holds for all states and shows that the optimum Q-value can be calculated by
maximizing over the actions as:

Qπ∗
(st, at) =

∑
s′

p (s′|st, at)
[
r (st, at) + γ .maxa′Qπ∗

(s′, a′)
]

(7)

When the next state of st is represented by s′, the optimum state-value and policy are:

V π∗
(st) = max

a

∑
s′

p (s′|st, at)
[
r (st, a) + γ .V π∗

(s′)
]

(8)

This equation defines the optimal state value function V π∗
(st) as the maximum expected return

that can be obtained by taking the best action a in state st. It considers the immediate reward and the
optimal value of the next state.

3.4 SA-RL Approach

The reinforcement learning approach investigated in this work is Twin-Delayed Deep Determin-
istic Policy Gradient (TD3), developed based on the DDPG algorithm. Both algorithms support
environments with continuous observation and action spaces, which is the case for our subject.

DDPG is an off-policy, model-free, actor-critic algorithm that employs deep function approxima-
tors, allowing it to learn policies in high-dimensional and continuous action spaces. Using the same
network architecture and hyper-parameters, this technique efficiently handles over twenty simulated
applications, encompassing popular problems such as cart-pole swing-up, dexterous manipulation,
legged locomotion, and car driving [56]. It is capable of developing policies that perform comparably to
planning algorithms while having complete access to the domain’s dynamics and derivatives. However,
DDPG does have several limitations, including training instability, high variance in estimates, and
sensitivity to hyper-parameters.

To address these limitations, in [57], the authors introduced several modifications to the original
DDPG algorithm, resulting in the Twin-Delayed Deep Deterministic Policy Gradient (TD3). This
technique combines the strengths of DPG and deep reinforcement learning by employing a determin-
istic policy with twin Q-networks, rather than one. It introduces a delay and target policy smoothing
to mitigate the over-estimation of the value function and adjusts the target network update frequency
to enhance learning stability and prevent overfitting. These modifications were intended to enhance
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the stability, robustness, and performance of the algorithm, making it more suitable for addressing
challenging continuous control problems.

Nevertheless, a significant challenge in training DRL agents lies in the optimization of hyperpa-
rameters, as it significantly influences the entire learning process. This tuning process often necessitates
exhaustive trials, demanding a high level of knowledge and computing resources for every assignment
or task. While TD3 may be less sensitive to hyperparameter variations than DDPG, its performance
can still be affected, and careful tuning to find the optimal hyperparameter configuration remains
essential and a challenging task under researcher’s scopes.

To alleviate this issue, we introduce an automated framework (see Fig. 4), that initiates training
with randomly assigned parameters. It then systematically tunes four critical hyperparameters which
significantly impact the learning process, these include: the Noise Variance, the Variance Decay Rate,
the Discount Factor and the Minibatch Size. We employ the SA optimization algorithm, a suitable
technique that addresses global optimization problems. These problems involve objective functions
that are not directly provided and can only be assessed through costly computational simulations as
is often the case in reinforcement learning [58].

Figure 4: The SA-RL framework

The objective function represented below, with β a positive weight and Ar the average reward, is
designed to enhance the average reward and guarantee consistent performance throughout all training
episodes.

O (j) = −β(Ar) (9)

Initially, a random set of parameters, denoted as αrandom, serves as the current solution. From its
neighborhood, a new solution j is then produced to initiate the training using the TD3 algorithm. The
objective function’s assessment assists SA in deciding whether to accept the new solution or assign it
with an acceptance probability p determined by the degree of worsening and the current temperature
of the system ck.
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The cooling schedule employed follows a linear decay model, where the temperature decreases as
ck = c0 − λ.k. Here, c0 = 10 is the initial temperature, λ = 0.2 is the decay rate, and k is the iteration
count. This linear cooling strategy balances exploration and exploitation throughout the optimization
process. A higher initial value of ck promotes broader exploration by increasing the likelihood of
accepting suboptimal solutions in the early stages. This helps in avoiding local minima and ensures
a thorough search of the hyperparameter space. As ck decreases, the acceptance probability of
suboptimal solutions diminishes, which guides the algorithm toward convergence. The chosen linear
decay rate λ is crucial to maintaining this balance, ensuring sufficient exploration in the early stages
and efficient convergence in the later stages.

In the TD3 component, target networks are updated using a soft update mechanism to stabilize
training. The target networks, denoted as θ

target
i and φtarget are updated as follows:

θ target
i ← τθi + (1 − τ)θ target

i (10)

φtarget ← τφ + (1 − τ)φtarget (11)

where τ is the soft update parameter that controls the rate of updates. The updates occur every d = 2
steps, which reduces the variance and prevents the problem of overestimation bias common in Q-
learning algorithms. This update strategy ensures a smooth and stable learning process, promoting
more reliable convergence of the actor and critic networks.

As summarized in Algorithm 1, with j and α are two points in the solution space representing
TD3 training parameters, Lk is the number of transitions generated at iteration k, and CLevel is a pivotal
factor to select the used control strategy.

Algorithm 1: The SA-TD3 algorithm
1 Initialisation: k : = 0, ck = c0, Lk = L0, α = αrandom, CLevel = 0
2 Repeat
3 for l = 0, Lk do

4 produce a solution j =

⎡
⎢⎢⎣

Minibatch size
Discount factor
Noise variance

Variance decay rate

⎤
⎥⎥⎦ from the neighborhood of the state space Sα;

5 set actor network πφ and critic networks Qθ1
, Qθ2

with random weights φ, θ1, θ2, respectively;
6 set target networks φtarget ← φ, θ

target
1 ← θ1, θ

target
2 ← θ2;

7 initialize the replay buffer R;
8 for t = 1, T do
9 execute the selected control inputs: a = [U1, U2, U3, U4] ∼ πφ (s) + ε

10 If CLevel = 0 then
11 s = s1 = {Orientation rates, Orientation errors, Altitude velocity and Altitude error};
12 use Eq. (11), to calculate the reward r = rLow−Level, and observe the new state s′;
13 Else,
14 s = s2 = {Linear velocities, Position errors, Yaw rate and Yaw error};
15 use Eq. (12), to calculate the reward r = rPosition−Control, and observe the new state s′;

(Continued)
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Algorithm 1 (continued)
16 store transition (s, a, r, s′) in R;
17 sample a random mini-batch of N transitions from R;
18 ã ← πφtarget (s) + ε, ε ∼ clip (N (0, σ̃ ) , −c, c)
19 y ← r + γ · min

i=1,2
Q

θ
target
i

(s′, ã)

20 update critics: θi ← minθi

1
N

∑
(y − Qθi(s, a))2

21 If t mod d then
22 update φ using the DPG:

23 ∇φJ (φ) = 1
N

∑ ∇aQθi (s, a) |a=πφ(s)∇φπφ(s)

24 update the target networks:
25 θ

target
i ← τθi + (1 − τ)θ

target
i

26 φtarget ← τφ + (1 − τ)φtarget

27 end if
28 end for
29 calculate: O (j) = −β(Ar)

30 If O (j) < O (i) then α evolves into the current solution j;

31 Else, j will be the current solution with probability: p = e
(

O(α)−O(j)
ck

)
;

32 k : = k + 1;
33 Until ck 
 0: compute (Lk, ck).

3.5 Network Structures

The structure proposed for the critic neural network involves two paths. The action path, which
consists of a single hidden layer with 128 neurons, is then combined with the state path that comprises
three hidden layers with 256, 256, and 128 neurons, respectively. The state vector is represented with
s1 {Orientation rates, Orientation errors, Altitude velocity, and Altitude error} or s2 {Linear velocities,
Position errors, Yaw rate, and Yaw error}, depending on whether it’s for low or high control levels.
Finally, an additional hidden layer with 128 neurons to generate the Q value, as shown in Fig. 5a.

Figure 5: The proposed networks, (a) critic network, (b) actor network

The actor network is structured with four feed-forward hidden layers, as depicted in Fig. 5b. All
layers for both architectures use the Rectified Linear Unit as the activation function, except for the
action output layer, which employs the Sigmoid activation function.
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The proposed neural networks with the hyperparameters displayed in Table 3 brings the following
enhancements:

• By having a distinct action path and a more complex state path that later combine, the model
can efficiently capture the nuances in both action and state spaces, leading to more accurate Q-
value predictions. The action path is simpler, focusing on the action’s immediate impact, while
the state path is more complex, enabling a deeper understanding of the environment’s dynamics.

• The actor network’s deep hierarchical structure allows it to capture complex nonlinear relation-
ships in the state-action space, leading to more precise control policies. The use of four hidden
layers ensures that the network can model intricate dependencies between states and actions.

• The proposed structure balances model complexity and computational efficiency, which is
crucial for real-time implementation on hardware-constrained platforms like UAVs. The choice
of layer sizes and activation functions was made to optimize learning without introducing
unnecessary computational overhead.

Table 3: Neural network’s hyperparameters

Hyper-parameter Critic network Actor network

Learning rate 10−4 10−5

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Target network update rate 0.005
Regularization L2 Regularization: 10−6

3.6 Reward Function

The reward function formulation is a critical and distinctive aspect of reinforcement learning. It
should be carefully crafted to offer clear and consistent feedback on the quality of the agent’s actions,
ensuring that the optimal policy aligns with the desired behavior.

After testing various types of rewards, both continuous and discrete, we devised a mixed strategy
that guides the quadrotor’s dynamics across various states. This strategy imposes penalties on
unfavorable results while providing incentives for precise path-tracking behaviors, taking into account
the tracking error and its derivative. The reward structure is illustrated in Fig. 6, where k serves as a
positive weight, motivating the agent to minimize tracking errors in both following and performance
stages defined by a limit distance to the target position.

ri = −k · sign(ei.ėi) (12)

where i = {x, y, z, ϕ, θ , ψ}, and sign (ei.ėi) reflects the policy behaviour, whether the error is increasing
or decreasing depending on whether the product of ei and ėi is positive (bad situation) or negative
(good situation).

The total reward for each control level is calculated as follows:

rLow−Level = rϕ + rθ + rψ + rz (13)

rPosition−Control = rx + ry + rz + rψ (14)
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Figure 6: Reward function representation

4 Results and Discussion

We will use MATLAB/SIMULINK to demonstrate and discuss the results of the proposed
framework, as well as the performance of its best-trained agents in tasks such as hovering from
randomly initialized configurations and following predefined paths. Additionally, in this section, we
will evaluate the control strategy by comparing it to SMC and Backstepping controllers in various
path-following scenarios. Then, the application and testing of a trained SA-TD3 agent on altitude
control for a Parrot Mambo mini drone will be carried out to validate the adaptability and potential
real-world applicability of the proposed RL approach.

4.1 Low-Level Control System

Starting with the low-level RL controller shown in Fig. 1a, the desired state is specified using
the Euler angles ϕRef , θRef , ψRef and the altitude ZRef . An agent, trained using the algorithm detailed
in Section 3, ensures that the quadrotor follows the high-level controller’s orientation and altitude
commands by generating precise control inputs U1, U2, U3 and U4.

Fig. 7 illustrates the significant training sessions recorded from fifty iterations of the proposed
SA-TD3 approach, along with the best-trained agent’s performance in stabilizing from random
initialization and attitude following tasks. These outcomes are interpreted as follows:

• Indeed, numerous runs in the initial iterations bear a resemblance to the first one, where the
set of training parameters demonstrated subpar performance. This is a plausible outcome
considering the significance of these parameters for the learning algorithm, and the use of
random values often leads to unsatisfactory results.

• By the 10th iteration, the parameters generated by the SA displayed a slow training behavior,
requiring more than 3900 episodes to start learning the environment’s dynamics and ending up
with high reward variance in a local minimum.

• At the 25th iteration, even theses parameter values were suitable and led to a successful training,
they did not perform well in terms of balance between exploitation and exploration, stability
and learning speed. After the 4500th episode, the algorithm shifted towards exploring new
actions, leading to divergence and a loss of stability.

• The final iteration yielded the best results, achieving the highest rewards and successfully
balanced speed with stability within the training algorithm.

These results effectively illustrates the progressive optimization of the TD3 algorithm’s perfor-
mance through the SA process. As the SA iteratively refines the hyperparameters, there is a noticeable
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improvement in the rewards achieved by the agent, which underscores the algorithm’s enhanced
learning efficiency. Moreover, the later iterations, especially the 45th, demonstrate not only higher
rewards but also increased stability, as indicated by the reduced variability in performance. This
consistent upward trend in both reward magnitude and reliability highlights the success of the SA-
TD3 approach in developing a robust and efficient low-level control strategy for the quadrotor UAV.

Figure 7: (a) Most significant SA-TD3 low-level training sessions, (b) best agent on attitude stabiliza-
tion task from 20 random configurations, (c) best agent on attitude tracking task

4.2 Position Control System

As displayed in Fig. 1b, an RL agent was trained to address the underactuation issue in a
quadrotor control system. In this setup, no inner and outer loops are provided to separate the position
control from the orientation control levels. Instead, the agent directly maps control commands from
the observation state space to ensure both stabilization and path following of a predefined trajectory.
The most significant training sessions recorded at this control level, along with the performance of its
best agent, are presented in Fig. 8.

For this level of control, SA-TD3 consistently yielded similar overall results, as the impact of these
parameters on the training process is likely to be similar across a majority of environments and tasks.
The sets of parameters generated by SA exhibited multiple learning features, as outlined below:
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• In the initial iterations (1st and 5th), where SA explored the random solution space of training
parameters neighborhood randomly, the training algorithm struggled to converge and learn the
environment dynamics.

• By the 20th iteration, SA had identified suitable parameter values, albeit slightly later, resulting
in a stable and coherent training process.

• At the 40th iteration, the TD3 agent achieved a high level of reward by the 4500th episode.
However, this set of parameters led to an overall unstable and variant training session.

• The last 5 iterations performed the best, showcasing stability, speed, and reaching the highest
rewards. The 50th iteration is depicted in Fig. 8a.

Figure 8: (a) Most significant SA-TD3 low-level training sessions, (b) best agent on position stabiliza-
tion task from 20 random configurations, (c) best agent on position tracking task

The results of the SA-TD3 approach for both the position stabilization and position tracking tasks
demonstrate its effectiveness and robustness in controlling quadrotor UAVs under different conditions.
In the position stabilization task (see Fig. 8b), the agent successfully stabilized the quadrotor across
all axes from 20 random initial configurations. The trajectories converge smoothly to the reference
values within approximately 3 s, indicating rapid stabilization with minimal overshoot and efficient
handling of diverse initial states. For the position tracking task (see Fig. 8c), the agent was tested on
following dynamic trajectories. The actual positions (X , Y and Z) closely follow the reference paths
over a 20 s duration, demonstrating precise tracking capabilities. The SA-TD3 approach shows strong
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adaptability and performance, achieving both stable hovering and accurate path tracking, thereby
confirming its suitability for high-precision quadrotor control tasks in dynamic environments.

In order to evaluate the efficiency of the SA-TD3 best trained agents, we conduct a comparison
with the Backstepping and the SMC using the Integral Square Error (ISE) metric for three paths:
ellipsoid, square and circular reference trajectories, as illustrated in Fig. 9 and detailed in Table 4,
where the lowest recorded metrics are highlighted in green.

Figure 9: (a) Position and orientation for the ellipsoid trajectory, (b) position and orientation tracking
errors for the ellipsoid trajectory, (c) 3D ellipsoid trajectory, (d) position and orientation for the
square trajectory, (e) position and orientation tracking errors for the square trajectory, (f) 3D square
trajectory, (g) position and orientation for the circular trajectory, (h) position and orientation tracking
errors for the circular trajectory, (i) 3D circular trajectory
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Table 4: Integral square error on the three paths displayed in Fig. 9

Trajectory Controller X Y Z ψ

Ellipsoid SA-TD3 0.0674 8.019 × 10−4 0.0013 1.1364 × 10−4

SM 0.0724 0.1226 0.0048 1.881 × 10−5

Backstepping 0.1094 0.069 6.530 × 10−5 5.498 × 10−41

Square SA-TD3 1.628 0.9598 0.5324 0.002
SM 2.11 1.829 1.093 2.407 × 10−6

Backstepping 2.623 2.569 1.551 1.542 × 10−40

Circular SA-TD3 0.0211 0.0387 3.222 0.0011
SM 0.032 0.067 2.396 1.88 × 10−5

Backstepping 0.057 0.028 3 2.741 × 10−41

For the ellipsoid trajectory, the SA-TD3 controller exhibits the lowest ISE values for the X and
Y -axes (0.0674, 8.019×10−4, respectively), indicating superior tracking accuracy compared to the SM
and Backstepping controllers. While the Z-axis ISE for SA-TD3 is slightly higher (0.0013) than that of
Backstepping (6.530 × 10−5), SA-TD3 still maintains an overall balanced performance with minimal
error accumulation.

In the square trajectory, the SA-TD3 controller significantly outperforms both SM and Back-
stepping with lower ISE values in the X , Y , and Z-axes (1.628, 0.9598, and 0.5324, respectively),
reflecting its capability to handle sharp directional changes with minimal error. In contrast, the SM
and Backstepping controllers exhibit notably higher ISE values, indicating less effective control.

For the circular trajectory, the SA-TD3 controller achieves the lowest ISE value for the X -axis
(0.0211), outperforming SM (0.032) and Backstepping (0.057), indicating more precise control. For
the Y -axis, the Backstepping controller has the best performance with the lowest ISE (0.028), followed
by SA-TD3 (0.0387) and then SM (0.067). Regarding the Z-axis, the SM controller exhibits the best
performance (2.396), followed by Backstepping (3), while the SA-TD3 controller shows higher error
accumulation (3.222).

Notably, the same control parameters were used for the SM and Backstepping controllers in all
trajectories. Further tuning could potentially improve their performance. In contrast, the SA-TD3
agent exhibited a high level of adaptability in position tracking. Minor adjustments to the reward
function could further enhance its orientation (ψ) tracking.

The optimal TD3 hyperparameters (Minibatch size, Discount factor, Noise variance, Variance
Decay Rate) that were fine-tuned using the SA algorithm for both the low-level and position control
systems are indicated in green within Table 5, alongside the other training parameters used in this
study.

As is the case with most optimization techniques, sensitivity to initial parameter choices remains
challenging. To address this issue, in this work, the hyperparameter solution space has been deliberately
restricted to reduce the overall calculation time, emphasizing efficiency in the optimization process.
Based on a combination of a literature review of recent studies and practices in reinforcement learning,
highlighted in Section 2, particularly those involving DDPG, TD3, and similar algorithms, along with
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prior knowledge in quadrotor control systems, the restricted solution space for the TD3 training
parameters are presented in Table 6.

Table 5: Training parameters

Hyper-parameter Low-level control system Position control system

Replay buffer size 106

Agent time step 0.01
Minibatch size 38 100
Discount factor 0.9816 0.9799
Noise variance 0.1569 0.214
Variance decay rate 10−5 1.3 × 10−5

Table 6: Solution space for the TD3 training parameters

Hyper-parameter Solution space

Minibatch size [10−500]
Discount factor [0.6−0.9999]
Noise variance [0.1−1]
Variance decay rate [10−2−10−6]

4.3 Real-Time Implementation

This section provides the experimental findings aimed to substantiate the efficiency of the revealed
RL approach for tracking both the position and orientation of quadrotors. The chosen setup is the
Mambo mini-drone from Parrot’s low-cost quadrotors, this UAV is supplied with a gyroscope, an
accelerometer, an ultrasonic sensor and pressure sensors for both altitude and attitude measurements.
Furthermore, high-resolution vertical camera capturing images at a rate of 60 frames per second, along
with an IMU are equipped in this quadrotor.

The RL agent was trained with the SA-TD3 approach in the Matlab/Simulink environment, then
converted into C code, uploaded, and assessed on the Mambo through low energy 4.0 Bluetooth device
(see Fig. 10).

Transitioning from a simulated environment to real-world applications in the field of autonomous
quadrotor control presents multiple obstacles. While training RL agents in simulations provides a
safe and controlled environment, applying the acquired policies to actual quadrotors can be quite
complicated. When deployed in a real-world setting, even well-trained agents can exhibit surprising
behaviors, as minor disparities between the simulation and reality can have significant effects. These
challenges became evident when we attempted to deploy the trained agent to control the Parrot Mambo
mini-drone, which had demonstrated remarkable results during validation in simulation environment.

The issues encountered during the deployment of the trained agent prompted a thorough investi-
gation into the main factors contributing to the performance degradation. One plausible explanation
that emerged was the size of the trained neural network employed. In simulated environments, where
computational resources are typically abundant, training and validating large neural networks is
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feasible. Yet, real-world applications posed challenges due to the finite computing power of the
quadrotor’s onboard hardware, particularly the ARM9 microprocessor. Despite being compact and
energy-efficient, it struggled to efficiently execute the intricate computations required by the neural
network, resulting in unexpected performance issues during flight operations. To address this hardware
limitation, efforts were made to reduce the neural network size. However, achieving stable attitude and
position control with smaller neural networks remained challenging due to the nonlinear, unstable, and
coupled dynamics of quadrotor systems. The SA-TD3 framework was particularly beneficial in this
context, as the SA component allowed for more efficient tuning of the RL agent’s hyperparameters,
optimizing the agent’s performance despite the reduced computational resources.

Figure 10: The deployment framework

The video clips of all experiments conducted in this study can be found at https://drive.google.
com/file/d/1yc3TABiUxhs80G3DgiliXGGaDxZD7eBb/view?usp=sharing (accessed on 13 November
2024).

To validate these assumptions, we conducted an empirical test aimed at reducing the computa-
tional load on processor. We decided to streamline the actor neural network, focusing on training
an agent solely for the altitude control of the quadrotor while retaining PID controllers for the X
and Y position and attitude control. The neural network used in this scenario, underwent significant
simplification, featuring only two hidden layers, each comprised of five neurons, while still effectively
managing the quadrotor’s altitude control.

These experiments were based on two scenarios. The first illustration, as depicted in Fig. 11,
throughout a series of tests, the agent exhibited remarkable responsiveness in tracking various altitude
references. Whether tasked with ascending to specific heights or gracefully descending, the agent
consistently showcased its ability to maintain an accurate altitude profile.

The second test (see Fig. 12), illustrates the agent’s competence in preserving the altitude of the
Parrot Mambo mini-drone while adhering to a predefined trajectory. This experiment, which mimics
real-world scenarios where quadrotors are tasked with navigating specific paths, highlights the agent’s
adeptness in seamlessly blending altitude control with trajectory tracking. The agent’s ability to uphold
a consistent altitude throughout intricate maneuvers signifies its potential to excel in demanding
applications such as surveillance of uneven terrains, inspection of infrastructure, and precise cargo
delivery.

Despite the inherent challenges (summarized in Table 7) posed by the Parrot Mambo mini-drone’s
lower cost and less precise sensors, which can significantly affect the controller performance, the
trained agent exhibited a very acceptable level of robustness and accuracy in altitude maintaining

https://drive.google.com/file/d/1yc3TABiUxhs80G3DgiliXGGaDxZD7eBb/view?usp=sharing
https://drive.google.com/file/d/1yc3TABiUxhs80G3DgiliXGGaDxZD7eBb/view?usp=sharing


CMC, 2024, vol.81, no.3 4781

and tracking scenarios, further highlighting the potential of this approach in overcoming real-world
intricacies.

Figure 11: Altitude tracking

Figure 12: (a) Real trajectory tracking, (b) the experimental control inputs
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Table 7: Key challenges and solutions encountered during the real-world deployment

Challenge Description Solution implemented Future
considerations

Transition from
simulation to reality

Performance
degradation when
deploying the trained
RL agent from
simulation to real-world
applications.

Analyzed discrepancies
between simulated and
real-world environments
to identify performance
issues.

Incorporate more
sophisticated
simulation
environments that
better mirror
real-world
conditions.

Hardware resource
limitations

Limited computational
power of the Parrot
Mambo’s ARM9
microprocessor affects
real-time execution of
the neural networks.

Reduced the neural
network size to align
with the hardware’s
processing capabilities.

Explore more
powerful onboard
processors and edge
computing for future
deployments.

Complexity of neural
network

Large neural networks
trained in simulation
were challenging to
deploy due to hardware
constraints.

Utilized the SA-TD3
framework for efficient
hyperparameter tuning,
optimizing network
performance.

Develop algorithms
specifically tailored
to hardware-
constrained
environments.

5 Conclusion

This study presented an autonomous quadrotor control approach leveraging a Deep Reinforce-
ment Learning framework enhanced by a Simulated Annealing-Twin Delayed Deep Deterministic
Policy Gradient algorithm for efficient hyperparameter tuning. The custom-designed reward function
and the proposed SA-TD3 framework demonstrated superior performance in attitude and position
control compared to traditional non-linear controllers such as Backstepping and SMC. Empirical
validation using real-time implementations on a low-cost Parrot Mambo mini-drone showcased the
method’s precision and adaptability, even within resource-constrained environments.

Despite the promising results, the approach faces challenges related to computational intensity
and time consumption, particularly in complex tasks with high-dimensional state and action spaces.
The hyperparameter optimization process also contributes to the computational demands. Addressing
these issues may benefit from incorporating parallel and distributed computing techniques, careful
selection of SA temperature parameters, and tailored initial state space constraints specific to the
application domain.

In future work, we aim to delve into the domain of high-end, sophisticated quadrotors to
investigate potential strategies using advanced onboard processors, edge computing, and optimized
algorithmic implementations. This broadened perspective will enable us to explore diverse scenar-
ios and tasks comprehensively. Furthermore, we intend to undertake a comparative examination
encompassing a wider array of data-driven methodologies, including alternative RL algorithms, neural
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network-based control strategies, and data-enabled MPC, in conjunction with the approach presented
in this study.
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