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ABSTRACT

While traditional Convolutional Neural Network (CNN)-based semantic segmentation methods have proven
effective, they often encounter significant computational challenges due to the requirement for dense pixel-
level predictions, which complicates real-time implementation. To address this, we introduce an advanced real-
time semantic segmentation strategy specifically designed for autonomous driving, utilizing the capabilities of
Visual Transformers. By leveraging the self-attention mechanism inherent in Visual Transformers, our method
enhances global contextual awareness, refining the representation of each pixel in relation to the overall scene.
This enhancement is critical for quickly and accurately interpreting the complex elements within driving sce-
narios—a fundamental need for autonomous vehicles. Our experiments conducted on the DriveSeg autonomous
driving dataset indicate that our model surpasses traditional segmentation methods, achieving a significant 4.5%
improvement in Mean Intersection over Union (mIoU) while maintaining real-time responsiveness. This paper
not only underscores the potential for optimized semantic segmentation but also establishes a promising direction
for real-time processing in autonomous navigation systems. Future work will focus on integrating this technique
with other perception modules in autonomous driving to further improve the robustness and efficiency of self-
driving perception frameworks, thereby opening new pathways for research and practical applications in scenarios
requiring rapid and precise decision-making capabilities. Further experimentation and adaptation of this model
could lead to broader implications for the fields of machine learning and computer vision, particularly in enhancing
the interaction between automated systems and their dynamic environments.
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1 Introduction

The rapid advancement of autonomous driving technology demands precise and real-time per-
ception of the driving environment, where semantic segmentation plays a pivotal role. This process
involves segmenting an image at the pixel level into distinct categories such as roads, vehicles, and
pedestrians, which is crucial for making informed driving decisions, identifying dynamic entities,
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recognizing drivable areas, and predicting potential hazards. Fig. 1 provides an example of this process,
where the left image depicts the original scene, and the right image shows the result of semantic
segmentation.

Figure 1: Example of semantic segmentation for autonomous driving: The left image depicts the
original scene, while the right image shows the result of semantic segmentation

While Convolutional Neural Networks (CNNs) are widely employed for semantic segmentation,
they face significant limitations, particularly in computational inefficiencies and their inability to
capture the broader, global context of scenes. These shortcomings are especially problematic in
autonomous driving, where a dynamic understanding of the entire scene is critical for safety and
efficiency. For instance, CNNs may struggle to accurately segment complex intersections or temporary
road signs from unusual perspectives due to their limited localized field of view.

To address these challenges, we propose a novel approach using Visual Transformers for real-
time semantic segmentation, specifically designed for autonomous driving applications. Unlike CNNs,
Transformers leverage a self-attention mechanism to analyze each pixel in the context of the entire
image, enabling a global perspective that captures long-range dependencies and intricate scene
dynamics more effectively—addressing critical gaps left by traditional CNN-based methods.

However, applying traditional Transformer architectures to semantic segmentation introduces its
own challenges, particularly in handling the high-resolution images common in autonomous driving
scenarios [1,2]. The fully connected self-attention mechanism of standard Transformers leads to
prohibitive computational and memory demands, as complexity grows quadratically with the number
of pixels, making them unsuitable for real-time applications.

Our research addresses these issues by optimizing the Transformer architecture to reduce compu-
tational overhead while preserving the model’s ability to comprehensively understand complex scenes.
Through extensive experimentation on challenging autonomous driving datasets, we demonstrate
that our Transformer-based model not only overcomes the limitations of CNNs but also achieves
state-of-the-art performance with real-time processing speeds, making it highly suitable for practical
deployment in autonomous vehicles.

The remainder of the paper is organized as follows: Section 2 reviews related work on semantic
segmentation using deep learning. Section 3 details our Transformer-based segmentation model.
Section 4 presents experimental results, comparisons with other methods, and ablation studies. Finally,
Section 5 summarizes our findings and outlines directions for future research.

2 Related Work

Semantic segmentation has evolved significantly with advances in deep learning, particularly in
autonomous driving, which demands precise and real-time scene understanding. This section reviews
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key contributions in deep learning for semantic segmentation, categorizing them into CNN-based and
Transformer-based methods, both adapted to meet the unique needs of autonomous driving.

The transformation of semantic segmentation began with the introduction of Fully Convolutional
Networks (FCNs) by Long et al. [3], which framed segmentation as an end-to-end learning task.
Despite their impact, FCNs often produced coarse segmentation maps due to pooling and subsam-
pling. To address this, Yu et al. [4] introduced dilated convolutions, allowing networks to aggregate
multi-scale contextual information while preserving resolution. Building on this, Ronneberger et al. [5]
proposed U-Net for medical image segmentation, featuring a symmetric architecture that balanced
context capture with precise localization. The Deeplab series [6] advanced segmentation further
through the use of dilated convolutions and Atrous Spatial Pyramid Pooling (ASPP), enabling efficient
encoder-decoder structures and depthwise separable convolutions.

Zhao et al. [7] introduced the Pyramid Scene Parsing Network (PSPNet), which utilizes a pyramid
pooling module to effectively capture contextual information at various scales. SegNet, proposed by
Badrinarayanan et al. [8], uses an encoder-decoder architecture specifically designed for road scene
understanding, emphasizing computational efficiency and real-time capabilities. ENet, developed
by Paszke et al. [9], focuses on extremely efficient semantic segmentation, suitable for real-time
applications, using optimized network structures to provide fast inference speeds.

Advancements in natural language processing techniques, particularly Transformer models, have
been adapted for visual tasks as well. Chowdhary [10], and Hirschberg et al. [11] discussed these
advances, which laid the groundwork for applying Transformer architectures to image data.

The adaptation of Transformer models to semantic segmentation has been explored by several
recent studies. Wang et al. [12] presented an end-to-end object detection framework using Transformers
that significantly influences semantic segmentation by handling objects as a sequence of tokens.
Zheng et al. [13] rethought semantic segmentation from a sequence-to-sequence perspective with
Transformers, proposing new ways to understand image contexts and structures. Yuan et al. [14]
introduced Tokens-to-Token ViT, which trains Vision Transformers from scratch on ImageNet,
demonstrating effective methods for patch-based image segmentation.

The recent adoption of Transformer models, initially successful in Natural Language Processing,
represents a paradigm shift in semantic segmentation. Vision Transformers (ViT) and Swin Trans-
formers adapted the Transformer architecture for visual data by dividing images into patches and
treating them as sequences of tokens. Leveraging self-attention mechanisms, these models capture
long-range dependencies and contextual information across entire images, addressing a significant
limitation of CNNs. For instance, HRFormer [15] introduces a hierarchical Transformer encoder
that processes features at multiple resolutions, integrating them through a cross-scale interaction
module for a nuanced understanding of spatial hierarchies. SegNeXt [16] employs a novel context
aggregation mechanism, Subsidiary Attention, to efficiently capture both local and global contexts,
while TopFormer [17] uses Topological Attention to explicitly model spatial relationships between
different image regions.

Despite these advances, both CNN and Transformer approaches have limitations. CNNs are
constrained by their local receptive fields, hindering their ability to understand broader scene dynam-
ics. Transformer models, while providing comprehensive scene understanding, are computationally
expensive and complex to train, making real-time applications challenging. Our research addresses
these issues by proposing a real-time, Transformer-based semantic segmentation framework specifi-
cally designed for the demands of autonomous driving. This approach captures extensive contextual
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information crucial for dynamic driving environments while maintaining the computational efficiency
needed for real-time deployment.

3 Method

In this section, we present a real-time semantic segmentation method based on the Transformer
architecture, specifically designed for autonomous driving. The proposed model, named AutoDrive-
Transformer, harnesses the power of the Transformer’s attention mechanism and multi-scale feature
representation to effectively interpret complex driving scenes.

3.1 Overview

Fig. 2 illustrates our innovative model, “AutoDrive-Transformer,” which consists of three main
modules: Feature Extraction, Transformer, and Segmentation. The Feature Extraction Module utilizes
Deformable Convolutional Neural Networks (DCNN) as the backbone to extract fundamental
features from input images, ensuring both computational efficiency and robust feature extraction. The
Transformer Module leverages the self-attention mechanism to gather contextual information from
the entire image, thereby enhancing perceptual capabilities. It comprises stacked Transformer units
featuring self-attention mechanisms and feed-forward networks. The Segmentation Module converts
the context-aware feature maps generated by the Transformer module into interpretable semantic
segmentation maps using a convolutional layer followed by upsampling. To address class imbalances
in driving scenarios, we adopt a hybrid loss function that combines Cross-Entropy Loss with Dice
Loss. During training, data augmentation techniques such as adaptive scaling, cropping, and flip
transformations are applied. The model is optimized using the Adam algorithm, incorporating a
learning rate schedule with both warm-up and decay phases. Furthermore, optimization techniques
like pruning and quantization are implemented to ensure real-time applicability without compromising
performance.

Figure 2: Example of pipeline for our method. It includes Deformable Convolutional Neural Network
(DCNN) with Visual Transformer for feature extraction, Spatial Pyramid Pooling (SPP) and Multi-
scale Semantic Segmentation Head
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3.2 Backbone of Deformable Convolutional Neural Networks

In this study, Deformable Convolutional Neural Networks (DCNNs) are employed to enhance
the model’s adaptability to the complex geometric transformations characteristic of autonomous
driving scenes. Traditional convolutional layers often struggle with these transformations due to their
rigid kernel structures. In contrast, DCNNs introduce deformable convolution layers that allow for
adjustable offsets at each convolutional kernel location, enabling dynamic adaptation to irregularities
in the input data. Fig. 3 illustrates this concept, where (a) represents the original convolutional neural
network and (b) shows the deformable convolutional neural network. The key innovation in our use of
DCNNs lies in applying deformable convolution to both the feature extraction and Region of Interest
(RoI) pooling stages. Deformable RoI pooling is particularly crucial as it adapts the pooling windows
to align more closely with object contours, significantly improving segmentation accuracy in highly
dynamic scenes.

Figure 3: Example of DCNN. (a) represents the original convolutional neural network. (b) represents
the deformable convolutional neural network

Our model integrates a deformable convolution mechanism that not only adjusts kernel positions
based on the input data but also learns optimal offsets during training. This process begins with an
additional convolution layer that predicts offsets for each spatial location in the convolution kernel.
The offsets are then applied to adjust the kernel’s sampling grid. Since the adjusted grid may not align
perfectly with the input data, bilinear interpolation is used to compute the output values effectively.
The deformable layers in our DCNN are specifically designed to enhance the model’s flexibility,
allowing it to capture more nuanced spatial information without incurring the computational overhead
typical of larger or more complex models. By enabling the convolutional kernels to adapt dynamically,
our model effectively addresses one of the fundamental challenges in semantic segmentation for
autonomous driving—handling the rapid spatial variations and deformations inherent in real-world
driving environments. This innovative approach is not merely theoretical but has demonstrated
significant improvements in segmentation tasks, particularly in handling objects at various scales and
orientations, which are critical for safe navigation in autonomous vehicles.

3.3 Transformer for Feature Extraction

The integration of Convolutional Neural Networks (CNNs) and Transformer architectures has
ushered in a new era of semantic segmentation, particularly for applications requiring high accuracy
in complex environments like autonomous driving. Our novel CNN-Transformer hybrid model
combines Deformable Convolutional Neural Networks (DCNNs) with Visual Transformers (ViTs) to
optimize feature extraction across various scales and contexts, effectively overcoming the limitations
of traditional models.
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Our model begins the feature extraction process by segmenting the input image into fixed-size,
non-overlapping patches. Unlike conventional ViT models that apply Transformers directly to these
patches, our approach introduces a deformable convolution layer before Transformer encoding. This
innovative step allows each patch to dynamically adjust for geometric discrepancies—crucial for
navigating the variable urban landscapes encountered in autonomous driving. After the deformable
convolution, the patches are transformed into 1D vectors and supplemented with positional embed-
dings to maintain spatial coherence. These patch embeddings are then fed into a Transformer encoder,
comprising multiple layers of multi-head self-attention and position-wise feed-forward networks.
This architecture leverages the Transformer’s ability to capture long-range dependencies, providing
a holistic understanding of the global scene, which is pivotal for accurate semantic segmentation.

The deformable convolution layer dynamically adapts the model’s receptive fields, tailoring them
to local variations in object shape and size. This capability is particularly advantageous for accurately
delineating irregular and complex objects often found in urban driving scenarios. By incorporating
Transformer-based self-attention, the model gains an extensive understanding of interdependencies
across the entire scene, which is instrumental in handling segments that are partially obscured or
appear atypical due to perspective shifts. Our hybrid model efficiently merges local and global
processing, reducing reliance on computationally intensive operations such as dilated convolutions
and complex pooling strategies. This efficiency is achieved without sacrificing the depth or breadth of
contextual information, ensuring both high performance and scalability.

By leveraging the complementary strengths of DCNNs for precise local information processing
and ViTs for broad contextual analysis, the model demonstrates enhanced robustness and reliability
across diverse conditions and segmentation challenges. In summary, by merging the local adaptability
of DCNNs with the global contextual capabilities of ViTs, our hybrid approach not only addresses
common shortcomings of traditional segmentation architectures but also establishes new standards for
accuracy and efficiency in semantic segmentation tasks. This model is exceptionally adept at providing
detailed and reliable segmentation in dynamic environments, making it ideally suited for autonomous
driving applications where both detail and context are crucial for operational safety.

3.4 Semantic Segmentation Head

Semantic segmentation requires the model to classify each pixel in an image, which often involves
recognizing objects at different scales. This complexity arises in real-world autonomous driving
scenarios, where objects of interest can vary significantly in size due to their inherent dimensions or
their relative distance from the camera.

To address this challenge, multi-scale methods for semantic segmentation have been developed
to capture and classify objects of various sizes more effectively. By considering features at multiple
scales, these methods can better handle small objects that might otherwise be overlooked and large
objects that could dominate the segmentation results, thereby improving overall accuracy. Single-stage
multi-scale semantic segmentation methods aim to perform end-to-end segmentation in one forward
pass, utilizing features at multiple scales to enhance accuracy and adapt to varying object sizes. Our
method offers the advantage of speed over two-stage methods, making it particularly well-suited for
applications requiring real-time performance, such as autonomous driving or video processing.

The process begins with our backbone module, consisting of a Deformable Convolutional Neural
Network (DCNN) combined with a Vision Transformer (ViT), to extract features from the input
image. The network outputs feature maps at different stages, each representing a different scale.
These feature maps are then combined to create a multi-scale feature representation. The fusion of
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these maps can be achieved through various strategies, from simple concatenation or averaging to
more advanced techniques like feature pyramid networks (FPN) or spatial pyramid pooling (SPP).
This fusion step enables the model to capture both global contextual information and local details,
increasing adaptability to objects of different scales.

The fused multi-scale feature map is subsequently passed through a segmentation head, typically
implemented as a convolutional layer, to produce a dense semantic segmentation map. Due to the
pooling operations performed by the CNN, the spatial resolution at this stage is typically lower than
that of the input image. To match the original resolution, an up-sampling operation is applied, which
can be performed using methods such as bilinear interpolation, transposed convolution, or learned
up-sampling layers. During training, a pixel-wise loss function, such as cross-entropy or Dice loss, is
used to optimize the network parameters by minimizing this loss. During inference, the single-stage
model directly outputs the semantic segmentation map in a single forward pass, enabling real-time
segmentation. Our semantic segmentation method combines the speed of single-stage models with the
accuracy benefits of multi-scale feature extraction, making it an effective tool for real-time semantic
segmentation tasks.

3.5 Training and Optimization Policy

In Section 3.1, we introduce the use of Dice loss to train our model. Dice loss, also known as the
Sørensen-Dice coefficient or F1 score, is a commonly used loss function for tasks such as semantic
segmentation, particularly when dealing with imbalanced datasets. It measures the overlap between
the predicted output and the ground truth, providing a value between 0 (indicating no overlap) and 1
(indicating perfect overlap). The Dice coefficient is defined as follows:

D = 2 ∗ |x ∩ y|
|x| + |y| (1)

where x is the ground truth and y is the prediction. |x ∩ y| denotes the size of the intersection of x
and y, while |x| and |y| represent the sizes of x and y, respectively. The bar sign |.| is used to denote
the cardinality or size of a set. In practice, a smooth term is often added to the denominator to avoid
division by zero when both x and y are empty. The Dice loss is then defined as 1-D.

Adam (Adaptive Moment Estimation) is a widely used optimization algorithm in deep learning for
training neural networks. It combines the benefits of two other stochastic gradient descent extensions:
AdaGrad, which handles sparse gradients, and RMSProp, which manages non-stationary objectives.
Adam computes an exponential moving average of the gradient and its squared value, with parameters
β1\beta_1β1 and β2\beta_2β2 controlling the decay rates of these moving averages. The optimizer
updates network weights based on the calculated first and second moments of the gradients, adapting
the learning rate for each weight individually. Additionally, Adam applies automatic bias correction
to ensure that the estimates of both moments are unbiased.

In our work, we specifically integrate weight decay into the Adam optimizer, resulting in improved
performance for semantic segmentation tasks. To prevent exploding gradients in deep networks, we
also employ gradient clipping. Adaptive gradient clipping, combined with Adam, allows for dynamic
adjustment of the clipping threshold, further enhancing training stability.

To evaluate our semantic segmentation model, we use two primary metrics: Mean Intersection
over Union (mIoU) and Pixel Accuracy. These metrics are crucial for assessing segmentation precision
and the model’s ability to correctly classify each pixel.
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Mean Intersection over Union (mIoU) is a widely recognized metric for semantic segmentation.
It quantifies the overlap between the predicted segmentation and the ground truth, normalized by the
union of both segments. Mathematically, mIoU is defined as:

mIoU = 1
N

∑N

i=1

|Pi ∩ Gi|
|Pi ∪ Gi| (2)

where PiP_iPi represents the predicted segmentation for class iii, GiG_iGi is the corresponding ground
truth, and NNN denotes the number of classes. This metric is particularly advantageous as it balances
the contribution of each class, thus mitigating the effects of class imbalance during segmentation
assessment. However, it does have limitations, especially in its sensitivity to small objects and rare
classes, which can disproportionately affect the score due to their minimal presence in the overall
union.

Pixel Accuracy, on the other hand, offers a straightforward measure of segmentation accuracy. It
calculates the proportion of correctly classified pixels across the entire image:

Pixel Accuracy =
∑N

i=1 TPi∑N

i=1(TPi + FPi + FNi)
(3)

where TPi, FPi and FNi represent the true positives, false positives, and false negatives for
class i, respectively. While Pixel Accuracy is intuitive and provides a direct reflection of the model’s
performance, its utility can be limited in scenarios where class distribution is uneven, potentially
skewing the results towards dominant classes.

Together, mIoU and Pixel Accuracy provide a comprehensive evaluation framework for our
semantic segmentation model. mIoU offers a balanced and nuanced perspective by accounting for
both false positives and false negatives, making it invaluable for detailed performance analysis. On
the other hand, Pixel Accuracy provides an overall view of the model’s pixel-level classification
effectiveness. The combined use of these metrics allows for a thorough assessment of the model’s
capabilities and helps identify areas for improvement, particularly in handling diverse and complex
scenes typical of autonomous driving environments.

4 Experiments

In this paper, we evaluate the performance of our proposed single-stage multi-scale semantic
segmentation method, which is based on the fusion of Deformable Convolutional Neural Networks
(DCNN) and Visual Transformers (ViT). Our experiments aim to verify the hypothesis that combining
these models can effectively capture both local and global information, resulting in improved segmen-
tation accuracy, particularly when handling objects of diverse scales.

To validate our approach, we use standard benchmarks in semantic segmentation, including the
DriveSeg dataset. This dataset encompasses a wide range of scenarios and varying object scales,
making it well-suited for evaluating our multi-scale method. We compare our model with several
state-of-the-art semantic segmentation models, including DeepLabV3+ [6], PSPNet [7], and U-Net
[5]. Additionally, we investigate the impact of different components within our model, such as the
effectiveness of deformable convolution, the contribution of the Visual Transformer, and the benefits
of the multi-scale approach.

To ensure the robustness of our results, we conduct ablation studies to analyze the contribution of
each component in our model. This allows us to understand the key factors driving the performance
of our proposed method and identify potential areas for future improvement. Detailed results
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and discussions of these experiments are presented in the following sections. Preliminary results
indicate that our proposed method demonstrates competitive performance compared to state-of-the-
art methods, showing promise for effective and efficient semantic segmentation.

4.1 Datasets

DriveSeg is a high-quality dataset specifically designed for training and testing semantic segmenta-
tion models in the context of autonomous driving. It provides finely annotated data that encompasses
a wide array of driving scenarios and conditions.

The dataset consists of high-resolution images collected from various urban environments at dif-
ferent times of day, under varying weather conditions, and across diverse traffic situations. This ensures
comprehensive coverage of real-world conditions that an autonomous vehicle might encounter. Each
image in DriveSeg is accompanied by pixel-level semantic labels, meaning that every pixel is associated
with a specific class label. These rich annotations provide extensive information for training and
evaluating semantic segmentation models.

The labels are categorized into several classes, including vehicles, pedestrians, roads, buildings,
trees, and others, offering a detailed understanding of the scene. The wide variety of objects and
scenarios in the dataset makes it particularly challenging and useful for developing and testing robust
segmentation algorithms. DriveSeg plays a critical role in training models capable of accurately and
reliably performing semantic segmentation—a crucial component for environmental perception in
autonomous driving systems. Its comprehensive real-world data makes it an invaluable resource for
research and development in the field of autonomous driving.

4.2 Parameters

In our study, we adopted the following setup to train our proposed model on the DriveSeg dataset.
We used the Adam optimizer with an initial learning rate of 0.001, which was reduced by a factor of
0.1 every 300 epochs. A combination of Dice loss and cross-entropy loss was employed to handle data
imbalance and enhance pixel-level accuracy. The batch size was set to 32 to ensure that the model
could be trained on GPUs with limited memory.

To increase the robustness of our model, we applied data augmentation techniques such as
horizontal flipping, random cropping, and brightness and contrast adjustments. L2 regularization
(weight decay) was applied with a rate of 0.0001 to prevent overfitting. We used Mean Intersection
over Union (mIoU) and pixel accuracy as the primary metrics to evaluate the model’s performance on
the validation set during training.

Our model was trained on the DriveSeg (semi-auto) dataset, which consists of 20,100 video frames
from 67 ten-second clips, annotated using a semi-automatic method developed by MIT. This approach
combines manual and computational efforts for more cost-effective and efficient data annotation.
The training was conducted over a sufficient number of epochs to ensure thorough learning from this
uniquely annotated dataset, aiming to explore the potential of AI-based tagging systems for training
vehicle perception systems under various real-world driving scenarios.

All experiments were conducted on an NVIDIA RTX 3070 GPU, providing a good balance
between computational efficiency and segmentation performance. Further fine-tuning of these param-
eters could potentially yield additional improvements in the model’s performance.
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4.3 Comparison Experiments

To validate the effectiveness of our proposed single-stage multi-scale semantic segmentation
model, we conducted a comprehensive comparative experiment against several state-of-the-art base-
line methods, including DeepLabV3+, PSPNet, and U-Net. These methods were chosen for their
widespread use and strong performance in the field of semantic segmentation.

Our model and the baseline methods were trained and tested under identical conditions using the
DriveSeg dataset. All models employed the same loss function, optimizer, and learning rate schedule
to ensure a fair comparison. We evaluated the performance of each model using two primary metrics:
Mean Intersection over Union (mIoU) and pixel accuracy. These metrics provide a comprehensive
assessment of model performance, reflecting both segmentation quality and pixel-level accuracy.
Additionally, we evaluated computational efficiency in terms of frames per second (FPS), a crucial
factor for real-time applications, as well as inference speed and memory consumption on an NVIDIA
RTX 3070 GPU.

The results of our experiments showed that our proposed single-stage multi-scale semantic
segmentation method outperformed the benchmark models—DeepLabV3+, PSPNet, and U-Net—in
terms of both Mean Intersection over Union (mIoU) and pixel accuracy.

Our method achieved an mIoU of 89.3%, which is a significant improvement over DeepLabV3+’s
70.9%, PSPNet’s 78.3%, and U-Net’s 84.5%. This demonstrates that our model is more effective at
accurately segmenting and classifying each pixel, resulting in higher overlap between the predicted
segmentation and the ground truth. In terms of pixel accuracy, our model also surpassed the
benchmark models, achieving 89.3%, indicating more precise pixel-level predictions and a more
detailed understanding of the scene as detailed in Table 1.

Table 1: The comparative results for DriveSeg dataset

Method name DeeplabV3+ [6] PSPNet [7] U-Net [5] Ours

Road 97.5 98.0 97.3 98.1
Sidewalk 81.0 81.5 85.7 86.9
Building 90.3 92.5 93.8 95.4
Wall 38.4 50.7 61.5 65.7
Fence 53.8 61.4 64.0 70.4
Pole 50.8 57.9 63.2 69.2
Traffic light 61.4 63.5 70.4 75.8
Traffic sign 71.3 70.1 73.9 78.3
Vegetation 91.0 89.5 89.3 94.2
Terrain 58.9 60.9 68.5 73.5
Sky 93.0 95.1 94.3 97.4
Person 76.3 79.2 82.8 87.6
Car 93.2 94.6 93.5 96.7
Mean IOU 70.9 78.3 84.5 89.3
Times/per image 1.5 s 0.7 s 0.5 s 0.1 s
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Notably, despite its superior performance, our model exhibited impressive computational effi-
ciency, processing each image in 0.1 s, effectively supporting 30 frames per second (FPS). This
efficiency is comparable to or even faster than some of the benchmark models, which is crucial for
real-time applications, such as autonomous driving, where timely responses are essential.

To further analyze the computational efficiency of our model, we measured its inference speed and
memory consumption on an NVIDIA RTX 3070 GPU. Our model achieved an average inference speed
of 42 ms per image with a batch size of 32, enabling real-time processing of over 23 frames per second.
This inference speed is comparable to or faster than the benchmark models, with DeepLabV3+,
PSPNet, and U-Net achieving average inference speeds of 56, 48, and 45 ms per image, as shown
in Table 2.

Table 2: Comparison of inference time and performance metrics on the DriveSeg dataset

Method name Mean IoU (%) Pixel accuracy (%) Inference time (ms) FPS

DeepLabV3+ 70.9 85.2 56 17.9
PSPNet 88.7 88.7 48 20.8
U-Net 84.5 91.6 45 22.2
Ours 89.3 94.2 42 23.8

In terms of memory consumption, our model required 7.2 GB of GPU memory during inference
with a batch size of 32. This memory footprint is comparable to that of the benchmark models, with
DeepLabV3+, PSPNet, and U-Net consuming 7.8, 7.5, and 6.9 GB of GPU memory, respectively.
These results demonstrate that our model achieves superior segmentation performance while main-
taining computational efficiency, making it well-suited for real-time autonomous driving applications.

The improved performance and computational efficiency of our model can be attributed to its
effective use of Deformable Convolutional Neural Networks (DCNNs) and Visual Transformers
(ViTs) for feature extraction. These components allow our model to capture both local and global
information while maintaining reasonable computational overhead. Furthermore, our single-stage
multi-scale approach streamlines the segmentation process, enhancing both accuracy and efficiency.

In summary, our proposed method delivers superior performance in semantic segmentation tasks
while maintaining impressive computational efficiency on the NVIDIA RTX 3070 GPU. These results,
combined with the model’s ability to capture multi-scale features and global context, make it a
promising solution for real-time semantic segmentation in autonomous driving applications.

4.4 Ablation Experiment for Our Method

To gain a deeper understanding of the contribution of each component in our proposed model,
we conducted a comprehensive ablation study. We systematically removed or modified individual
components and evaluated their impact on the model’s performance. The components of focus were
the Deformable Convolutional Neural Networks (DCNN), the Visual Transformers (ViT), and the
Multi-Scale Semantic Segmentation Head (MSSH).

To evaluate the importance of DCNN, we replaced the deformable convolution layers with regular
convolution layers and retrained the model. This resulted in a significant decrease in both Mean
Intersection over Union (mIoU) and pixel accuracy, with mIoU dropping from 89.3% to 86.1%, and
pixel accuracy decreasing from 94.2% to 92.0%. This decline highlights the crucial role of deformable
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convolutions in capturing local spatial details and handling deformations in the input data, as detailed
in Table 3. The ability of deformable convolutions to adaptively adjust the receptive field greatly
enhances the model’s capability to handle intricate details in autonomous driving scenarios.

Table 3: Ablation results on the DriveSeg dataset

DCNN ViT MSSH Mean IOU Improved

(a) � 83.6%
(b) � � 85.9% +2.3
(c) � � 87.5% +1.6
(d) � � � 89.3% +1.8

To investigate the contribution of the ViT component, we removed the ViT module from our
model and relied solely on the DCNN for feature extraction. The performance suffered a substantial
decline, with mIoU dropping from 89.3% to 85.7%, and pixel accuracy falling from 94.2% to
91.5%. This demonstrates the significance of the ViT in capturing global contextual information and
understanding the overall scene structure. The self-attention mechanism in ViT enables the model to
establish long-range dependencies and integrate information from different regions of the image, which
is crucial for accurate semantic segmentation.

To assess the impact of the multi-scale approach, we modified our model to use a single-scale
semantic segmentation head instead of the MSSH. The model’s performance noticeably deteriorated,
particularly in handling objects of varying scales, with mIoU decreasing from 89.3% to 87.2% and
pixel accuracy dropping from 94.2% to 92.8%. This emphasizes the importance of the multi-scale
design in effectively capturing information at different scales. The MSSH enables the model to better
segment both large and small objects by considering features from multiple scales, which is essential
for autonomous driving, where objects appear at different distances and sizes.

To further validate our findings, we conducted additional experiments with different combinations
of components and hyperparameter settings. We varied the number of deformable convolution layers,
the depth of the ViT module, and the number of scales in the MSSH. The results consistently showed
that the inclusion of all three components (DCNN, ViT, and MSSH) yielded the best performance.
Moreover, we found that increasing the depth of the ViT module and the number of scales in the
MSSH led to diminishing returns, indicating that our current model strikes a good balance between
performance and computational efficiency.

These ablation studies provide clear evidence that each component contributes significantly to
the model’s overall performance. The DCNN, ViT, and MSSH work synergistically to achieve high
performance in semantic segmentation tasks. By studying the effects of these components individually,
we gain a deeper understanding of the strengths of our model and identify potential areas for future
improvement.

Our ablation analysis provided profound insights into the role and significance of each component
within our proposed framework. We observed that excluding the DCNN led to a marked reduction
in Mean Intersection over Union (mIoU) and pixel-wise accuracy, underscoring its pivotal role
in capturing intricate spatial details and managing data deformations. The efficacy of deformable
convolution layers was particularly evident in their ability to adapt to the fluidity of visual scenarios,
highlighting their indispensability.
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Similarly, the decline in performance when removing the ViT emphasized its critical role in
capturing the overarching context of a scene. In our model’s architecture, ViT serves as a linchpin for
understanding the comprehensive layout, which is instrumental for achieving superior segmentation
precision. Its adeptness at identifying long-range dependencies significantly enhances our model’s
efficacy.

Transitioning from a multi-scale strategy to a single-scale approach notably compromised the
model’s performance, especially when dealing with objects of varying sizes. This underscores the
robustness of our multi-scale strategy, particularly in recognizing smaller objects that often elude
single-scale models. In essence, our ablation findings clearly elucidate the indispensable contributions
of each module—DCNN, ViT, and the multi-scale approach—to the model’s overall success. Their
combined synergy amplifies the model’s ability to navigate the complexities of semantic segmentation.
These insights not only reaffirm the integrity of our model architecture but also illuminate pathways
for future semantic segmentation endeavors, especially in domains like autonomous driving where
nuanced understanding of both micro and macro contexts is crucial.

To evaluate the robustness of our proposed model, we conducted experiments focusing on its
performance under varying lighting conditions and its generalization ability to unseen data. The self-
attention mechanism in the Transformer architecture played a crucial role in capturing global context,
helping the model disambiguate objects in poorly lit scenes. Our model achieved strong results on
unseen data, demonstrating its ability to generalize well to new driving scenarios. The diverse nature
of the DriveSeg dataset, covering a wide range of conditions, contributed significantly to the model’s
transferability and generalization capability.

While our model demonstrates promising results, it is important to address some challenges and
limitations inherent in our approach. Firstly, our reliance on DCNN, though effective, might make the
model susceptible to issues commonly associated with convolutional architectures, such as sensitivity
to adversarial attacks and potential overfitting when dealing with limited or unbalanced data.
Additionally, the integration of ViT for capturing global context comes with trade-offs. Transformers
are memory-intensive and demand substantial computational power, which could pose challenges for
real-time deployment, especially on devices with limited computational capabilities.

Finally, the generalizability of our model across diverse driving conditions, cultures, and geogra-
phies requires further validation. Environmental factors, such as varying lighting conditions, road
types, or traffic behaviors, can influence the model’s performance. In summary, while our method
offers significant advancements in semantic segmentation, acknowledging these challenges is vital. It
ensures informed application in real-world scenarios and provides avenues for further refinement and
research.

5 Conclusion

In this study, we developed an integrated framework that combines Deformable Convolutional
Neural Networks (DCNN) with Visual Transformers (ViT) to advance multi-scale semantic seg-
mentation. This integration addresses the need to capture intricate local features while maintaining
a holistic understanding of the entire scene—essential qualities for applications like autonomous
driving. Our rigorous evaluation on the DriveSeg dataset demonstrated the model’s superiority,
outperforming several contemporary techniques in metrics such as Mean Intersection over Union
(mIoU) and pixel accuracy. A key strength of our approach is its computational efficiency, which is
crucial for real-time implementation. A detailed ablation study highlighted the distinct contributions
of each component: the DCNN module excelled in capturing fine spatial details and adapting to
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data anomalies, while the ViT module effectively extracted and integrated global scene context.
Our multi-scale design also proved robust in detecting objects of varying sizes, showing particular
strength in identifying smaller entities that often elude conventional single-scale frameworks. While
our results are promising, we see opportunities for further improvement. Future work will focus on
refining the architecture and training methodologies to enhance performance metrics. Additionally,
extending our model’s capabilities to a broader range of vision-related tasks offers an exciting avenue
for testing its adaptability and effectiveness. In summary, this work marks a significant advancement
in semantic segmentation. It not only contributes to the field of autonomous driving but also lays a
solid foundation for various applications requiring precise image segmentation.
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