
Copyright © 2024 The Author. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.058888

REVIEW

Discrete Choice Models and Artificial Intelligence Techniques for Predicting
the Determinants of Transport Mode Choice—A Systematic Review

Mujahid Ali*

Department of Transport Systems, Traffic Engineering and Logistics, Faculty of Transport and Aviation Engineering, Silesian
University of Technology, Katowice, 40019, Poland

*Corresponding Author: Mujahid Ali. Email: mali@polsl.pl

Received: 17 September 2024 Accepted: 17 October 2024 Published: 18 November 2024

ABSTRACT

Forecasting travel demand requires a grasp of individual decision-making behavior. However, transport mode
choice (TMC) is determined by personal and contextual factors that vary from person to person. Numerous
characteristics have a substantial impact on travel behavior (TB), which makes it important to take into account
while studying transport options. Traditional statistical techniques frequently presume linear correlations, but
real-world data rarely follows these presumptions, which may make it harder to grasp the complex interactions.
Thorough systematic review was conducted to examine how machine learning (ML) approaches might successfully
capture nonlinear correlations that conventional methods may ignore to overcome such challenges. An in-depth
analysis of discrete choice models (DCM) and several ML algorithms, datasets, model validation strategies, and
tuning techniques employed in previous research is carried out in the present study. Besides, the current review
also summarizes DCM and ML models to predict TMC and recognize the determinants of TB in an urban area for
different transport modes. The two primary goals of our study are to establish the present conceptual frameworks
for the factors influencing the TMC for daily activities and to pinpoint methodological issues and limitations in
previous research. With a total of 39 studies, our findings shed important light on the significance of considering
factors that influence the TMC. The adjusted kernel algorithms and hyperparameter-optimized ML algorithms
outperform the typical ML algorithms. RF (random forest), SVM (support vector machine), ANN (artificial neural
network), and interpretable ML algorithms are the most widely used ML algorithms for the prediction of TMC
where RF achieved an R2 of 0.95 and SVM achieved an accuracy of 93.18%; however, the adjusted kernel enhanced
the accuracy of SVM 99.81% which shows that the interpretable algorithms outperformed the typical algorithms.
The sensitivity analysis indicates that the most significant parameters influencing TMC are the age, total trip time,
and the number of drivers.
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DCM Discrete Choice Model
BE Built Environment
TB Travel Behavior
GBT Gradient Boosting Tress
XGB Extreme Gradient Boosting
k-NN k-Nearest Neighbors
RF Random Forest
NB Naïve Bayes
BN Bayesian Network
NN Neural Network
DT Decision Tree
SVM Support Vector Machine
FSVM Fuzzy Support Vector Machine
GE Gene Expression
GEP Gene Expression Program
SEM Structural Equation Modeling
PT Public Transport

1 Introduction

The term “transport mode choice (TMC)” refers to the different transport options, which might
include a private vehicle, a public vehicle, walking, bicycle, or other modes of transportation. TMC
is frequently expressed as a discrete choice model with options that match the various trip modes.
TMC refers to the individual choice of a specific transport mode for his/her activity participation
at a different place [1]. The choice of travel mode for a certain journey is determined by many
factors, both personal and contextual [2]. These factors can differ from one person to another and
from one location to another, but they typically include infrastructure and accessibility [3], time [4],
cost [5], and purpose of travel, as well as factors like health and physical ability [6], demographics,
personal preference [7], built environment (BE) concerns, weather conditions [8], information and
technology (IT), traffic congestion, safety, parking availability, and governmental policies. There is
a strong association between the phrase’s “connectivity” and “accessibility”. Connectivity describes
the link between areas and hubs of activity, whereas accessibility describes a person’s or a product’s
ability to travel by different modes of transportation [9].

The factors influencing people’s choice of transport mode can be greatly impacted by changes
to urban infrastructure and policies, which can change how people choose between using private
vehicles, walking, cycling, and public transportation. It becomes critical to comprehend how machine
learning (ML) models can capture these changing dynamics as these factors change over time.
Abulibdeh studied the introduction of new metro lines using ML algorithms and concluded that
urban infrastructure significantly affects TMC [10]. After comparing the urban infrastructure of
Germany and America, Buehler concluded that TMC is greatly impacted by living in lower-density
neighborhoods, further from public transportation, and with a more restricted mix of land uses [11].
Changes in the policy such as parking prices, raising fuel taxes, providing subsidies on public transport,
and employee-paid parking significantly encouraged and affected the model shift from private cars to
public transport, walking, and cycling [12–14]. Beckx et al. concluded that 64% of the car trips were
less than 8 km which can be replaced with walking and cycling that compensate for 3% of the fuel
consumption [15].
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Numerous traditional discrete choice models and statistical analyses, including the nested logit
model and linear and non-linear regression analysis, mixed logit model, binary logistic regression [16],
multinomial logistic (MNL) model [17], bivariate statistical analysis [18], and Structural Equation
Modeling (SEM) [11,19], were employed in both recent and prior studies to study the correlation
among several independent variables, mediation variables, and TMC such as PT, private vehicle, and
active transport as dependent variables [20]. The mutual information (MI) [21] test method, which
calculates the relevance of the inputs, was utilized by various researchers to determine the most
influential component and its impact on TMC [22]. Even though some regression models can estimate
interaction and quadratic effects, they are prone to outliers and have trouble reflecting the complex
interactions between various variables. Furthermore, due to the restricted tools available, spotting
abnormalities in nonlinear regression is more difficult than in linear regression [23]. Researchers use
machine learning (ML) approaches because they rarely rely on assumptions, can handle enormous
datasets, outliers, and missing values, and have advantages over traditional statistical methods [24].

ML models are emerging as an intriguing compelling substitute to multinomial logit (MNL)
models in TB research, where tree-based ensemble models—gradient boosting and random forest
(RF) have shown effectiveness in accomplishing this objective. MNL [25], k-nearest neighbors (k-NN),
neural networks (NNs), RF, decision trees (DT), gradient boosting trees (GBT) [26], support vector
machines (SVM) [22], and Naïve Bayesian (NB) [27] are the most often used machine learning (ML)
techniques used in recent studies. Comparing these models to more conventional statistical methods,
the majority of them outperformed [24,28,29]. It should be mentioned that most of these researchers
applied the ML models with default settings, which can result in less-than-ideal outcomes due to
some of the ML algorithms being capable of binary classification. Qian et al. applied an adjusted
kernel function to SVM to map complex datasets into high dimensional that makes the data point
separation easier and concluded that the SVMAK gives higher accuracy than the typical SVM [22].
Most researchers that utilized strategies for optimization to adjust the hyperparameters did so by using
random search or grid, both of which have drawbacks of their own [30]. As a tool for policy analysis,
the optimized GBT is used to investigate and assess ways to enhance the usage of more environmentally
friendly transportation options while decreasing the use of private vehicles.

To avoid the limitations of the ML-specific tools and techniques, the latest studies used inter-
pretable ML techniques in which they combine several ML techniques for a good understanding of
TMC decisions. Tamim Kashifi et al. predict the TMC using five diverse interpretable ML models
(LR, RF, DT, Multilayer Perceptron, LightGBDT) [31]. Since it is challenging to find a sufficient
description for the link between the output and input variables due to the nature of the ML black box,
Kim suggests an interpretable ML strategy to increase the interpretability of ML in TMC modeling
[32]. Zhao et al. used an interpretable ML approach to explore the heterogeneity in mode-switching
behavior and concluded that a machine-learning classifier in conjunction with interpretation tools that
are model-independent offers useful insights into the mode-switching behavior of travelers [33].

Based on sensitivity analysis and feature importance metrics, which identify the most predictive
features for the target variable, some researchers have claimed that factors such as the reason for not
walking [22], household drivers, total travel time [25], household vehicles [31], and the purpose of the
trip [34] are the most influential. Conversely, other researchers have concluded that household income,
socio-demographic factors (such as age and gender) [35], the number of stops, road infrastructure
availability [17], and accessibility (the distance between the last stop and the resident location) [36] are
the most significant contributors.
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Numerous characteristics have a substantial impact on TB, which makes it important to consider
while studying transportation decisions. Traditional statistical techniques frequently presume linear
correlations, but real-world data rarely follows these presumptions, which may make it harder to
grasp the complicated interactions. We conducted thorough systematic research to examine how ML
approaches might successfully capture nonlinear correlations that conventional methods may ignore
to get around these constraints. An in-depth analysis of several ML algorithms, datasets, model
validation strategies, and tuning techniques employed in previous research is carried out in the current
review. Besides, the current review aims to systematically review the limitations and findings of the
recent literature for the prediction of TMC and its determinants that utilize DCMs, ML algorithms,
and interpretable ML techniques and suggest the best predictive model for the prediction of TMC.
Moreover, based on the sensitivity analysis of the ML models, the most influential factors for the TMC
are investigated to help policymakers in planning and forecasting TMC demands. The two primary
goals of our study are to establish the present conceptual frameworks for the factors influencing the
TMC chosen for daily activities and to pinpoint methodological issues and limitations in previous
research. Our findings shed important light on the significance of considering factors that influence
the TMC. For accurate analysis and efficient policy creation to promote sustainable transportation
systems, it is essential to comprehend this complexity.

The review pattern is as follows: Section 2 provides an overview of the latest five-year studies in the
field of modern techniques used for TMC, the methodology such as the methods of reviewing recent
and past studies that are using PRISMA rules and Kitchenham and Charters Approach are discussed
in Section 3, whereas Section 4 highlights the results and discussion of the selected 39 studies, and the
conclusion is presented in Section 5 followed by the future direction in Section 6.

2 Literature Review

Using diverse transport modes has a substantial effect on individual health outcomes, subjective
well-being, and the global environment [37–39]. However, on the other side, van Wee and Ettema, and
Zhang studied that health is a capability constraint that influences transport options [40,41]. Besides,
past studies concluded that planes, ships, cars, and heavy-duty vehicles are the main contributors to
CO2 emissions from the transportation sector [42]. According to a 2023 survey, 73% of American
respondents chose the car, underscoring the car’s crucial importance in daily life in the country which
negatively contributes to GHG emissions [43], that households are responsible for 72% of global GHG
emissions in which car and plane mobility is the most dominant component. European Union and
the US aim to neutralize CO2 emissions from the transportation sector by 2050. To achieve this aim,
Zhang et al. concluded that active and public transport is encouraged in urban areas to reduce GHG
emissions [34], whereas Xu et al. claimed that electric vehicles (EVs) in Europe significantly reduce
GHG emissions [44]. Moreover, Aijaz et al. studied environmental sustainability through EVs and
concluded that EVs have the potential to drastically decrease emissions from the transport sector
and enhance sustainability [39]. However, the GHG emissions from the transportation sector are
still questionable. Therefore, it is vital to predict TMC used for daily activities to promote green and
sustainable transportation systems and a healthier society.

People are more inclined to switch modes if they are well-informed, yet mode choice behavior is
an important subject when it comes to improving the overall sustainability of transportation networks
[18]. Therefore, it is crucial to grasp and investigate what are the most effective variables for TMC
to develop a more sustainable transport system [45]. Several factors such as BE, socio-demographic
and economic variables, travel behaviors, availability, accessibility, and connectivity, time, weather
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conditions, purpose of travel, information and technology (IT), traffic congestion, safety, parking
availability, and governmental policies describe by many researchers that influence TMC. Several
studies are listed around the globe that highlight travel behavior, BE, factors, and TMC to work,
school, and daily commuting. Besides, most researchers performed the comparison between different
countries and provided interpretations about their transportation system, TMC or travel behaviors,
and determinants of TMC.

The factors influencing the TMC are greatly impacted by changes in urban infrastructure and
policies [46]. These dynamics can be well captured by ML models, particularly when temporal,
geographical, and policy data are included [47]. Through the incorporation of dynamic elements like
travel duration, expenses, and ease of use into flexible models, ML techniques can assist city planners
in forecasting how transportation patterns will change in reaction to upcoming policy changes and
infrastructure enhancements [29]. Insightful, data-driven transport planning is made possible by the
combination of sophisticated ML techniques with solid datasets, despite obstacles like data availability
and model interpretability [24,48].

Buehler conducted a comparative analysis of Germany and the USA for the determinants of TMC
and concluded that the USA is more car-dependent than Germany, whereas Germans are more prone
to cycle, walk, and use PT [11]. Besides, Bresson et al. performed a comparative analysis of England
and France and studied the determinants of demands for PT. They concluded that the fare charges
for PT are relatively sensitive and the main determinants for individuals to choose PT over a car. The
reduction (subsidization) in the fare charges played a substantial role in encouraging the individual to
choose PT, thus reducing the use of private cars [49]. Papaioannou et al. investigated how connectivity
and accessibility affected PT. They concluded that while a system’s accessibility might stimulate PT
use, a particular trip’s lack of connectivity could discourage it. Moreover, it seems that using PT
instead of a private vehicle requires greater accessibility and trip-specific connectivity [50]. In addition,
Wolday 2023 studied the effect of BE attributes on active transport in small cities and concluded that
the frequency of walk/bike trips is significantly influenced by accessibility and attitude toward active
travel [51].

Moreover, Harbering et al. studied the determinants of TMC for Mexico and concluded that
although slow modes like cycling and walking are affected by distance from the city center, mass rapid
transits are affected by infrastructure. In addition, based on their socioeconomic characteristic, women
and younger people are more inclined to use PT despite the private vehicle. Moreover, higher education
individuals are more dependent on cars and negatively influenced, whereas the availability of cars
is negatively associated with all other transport modes [17]. Using binary logistic regression models,
Szymon Wójcik studied possible factors impacting the decisions made by Łódź, Poland, citizens about
the TMC they choose to utilize for everyday travel. He concluded that respondents’ sociodemographic
traits and household car ownership had the greatest impact on TMC. Furthermore, a statistically
significant correlation was seen between geographic distances and subjective evaluations of PT. The
factors influencing the decision to choose private or PT differed [35].

Convery and Williams studied the determinants of TMC for non-commuters by considering land
use, the role of transport, and socio-demographic characteristics using bivariate statistical analysis.
They concluded that vehicle ownership and income are recognized as key influences on TB patterns.
Additionally, the comparatively low use of cars outside of the inner city core suggests initiatives
offer alternatives to driving [18]. Using Tobit regression for efficiency and data envelopment analysis,
Matulova and Tomes investigated the factors influencing urban PT efficiency in the Czech Republic.
They concluded that certain factors, such as the average vehicle age, total vehicle kilometers, the



2166 CMC, 2024, vol.81, no.2

tramlines existence in the city, percentage of drivers, and population density, increase efficiency
while other factors, such as the percentage of revenue subsidies, ticket prices, and the existence of
a two-city system, decrease efficiency [16]. Sharmin Sultana investigated the variables influencing
parents’ selection of active transportation options for their kids’ school-related commutes. He chose 13
explanatory variables and concluded the Binary Logistic Regression Model results that gender, age,
the distance between school and home, household size, home ownership status, household drivers,
household vehicle ownership, and population density all play a significant role in parents’ decisions to
send their kids to school on foot [52].

Due to the technological advancement for the Prediction of work TMC to accurately fore-
cast travel demand and achieve sustainability goals, ML techniques are interesting and are
widely used by researchers over conventional techniques such as MNL models. For instance,
Aghaabbasi et al. employed the ideal setting of the hyperparameters (which has an immediate impact
on the model’s performance). To forecast the TMC for work, ML methods utilizing a Bayesian
Optimization (BO) algorithm are investigated. These methods include SVM, k-NN, single DT,
ensemble DT, and NB. They concluded that BO is more effective than other models for enhancing
the performance of the k-NN model [30]. With a focus on GBT, RF, and MNL models, Pineda-
Jaramillo et al. analyze various logit and ML models to forecast TMC and identify the factors
that influence TB in an urban setting. They concluded that GBT models outperformed the other
models that were compared and that the factors that explain the TMC include age, gender, travel
time, household motorized vehicles (cars and motorcycles), and availability of parking type at
the destination [26]. Wang et al.’s research on TMC performance shows that when the dataset
is unbalanced, the XGB model outperforms the MNL model in terms of prediction accuracy.
Furthermore, they reported that although mode-specific travel time is the primary determinant
of TMC, people’s TMC is found to be substantially correlated with other trip characteristics,
sociodemographic factors, and BE variables [25].

The performance of ML models is accessed using the classification metrics which are area under
the curve (AUC), accuracy, precisions, F1-score, and recall. The model’s actual and anticipated values
serve as the basis for the classification. As illustrated in Eq. (1), accuracy is defined as the ratio of
the correctly predicted class over all classes. Precision shows how much of a true positive class there
is compared to the total number of true positive and false positive categories. Qian et al. studied the
classification of imbalance TMC to work using an Adjustable kernel SVM model. They compared their
results with the recent and past studies using simple SVM models as shown in Table 1 and concluded
that the Adjustable kernel SVM model outperforms and enhances the model accuracy to 99.81%. From
the Sensitivity Analysis mutual information (MI) test method, they concluded that household drivers
and age are the most influential factors for TMC [22]. Aghaabbasi et al. investigated the impact of an
employee’s sociodemographic and living environment on active transportation using DT techniques,
and they came to the conclusion that the availability and coverage of bike lanes, sidewalks, and transit
stations were the most crucial factors in how frequently employees used AT modes to travel to work,
shop, and enjoy themselves [53].

Accuracy = TP + TN
TP + TN + FP + FN

× 100 (1)

where TP, TN, FP, FN are the true positive, true negative, false positive, and false negative.

Besides several ML techniques, recent studies applied interpretable ML models for the prediction
of TMC and travel behaviors. Kashifi et al. predicted the TMC using five different interpretable ML
models (LR, RF, DT, Multilayer Perceptron, LightGBDT). They used 3-years of Dutch National



CMC, 2024, vol.81, no.2 2167

Travel Survey data and concluded that LightGBDT outperformed other models. In addition, they
carried out analyses of variable importance and SHAP dependency to address the issue of ML models
being a “black box” and enhance their interpretability. The investigation revealed that factors such as
travelers’ age and annual income, trip distance, trip density, and the number of vehicles or bicycles they
possess are major determinants of their TMC [31]. Kim’s research indicates that the interpretability
of ML concerning TMC modeling is hindered by its opaque character, making it challenging to
find a plausible explanation for the relationship between input and outcome variables. Consequently,
he suggests an interpretable ML technique to address this issue. After using the XGB model, he
concluded that, when it came to variable importance, variable interaction, and accumulated local
effects (ALE), XGB performed better than the other ML models. Furthermore, he asserted that the
number of tour trips taken and age had been demonstrated to be major factors in determining the
TMC, whereas the connected trip and tour-related variables had a substantial impact on predicting
TMC [32]. Zhao et al. employed an interpretable ML technique to explore the heterogeneity in
mode-switching behavior. They first create a high-accuracy classifier that naturally captures the
individual heterogeneity included in the data to forecast mode-switching behavior under a hypothetical
Mobility-on-Demand Transit system. To study response heterogeneity, they proposed two novel
model-independent ML interpretation tools, namely conditional individual partial dependence plots
and conditional partial dependence plots. They concluded that using a machine-learning classifier in
conjunction with interpretation tools that don’t depend on a particular model might provide important
information about mode switching in travel. Besides, the existing transit users are normally willing to
share rides but unwilling to take any extra transfers, and the present drivers are more cautious about
more collections than individuals employing other means of transportation [33]. The summary of the
articles that utilize conventional techniques to study the determinants of TMC are presented in Table 2.
However, those studies which utilize modern techniques for TMC predictions are depicted in Table 3.

Table 1: Accuracy of support vector machine-based models for imbalanced data

Authors Models Accuracy (%)

Wang et al. [54] Boosting-SVM 83.29
Batuwita et al. [55] Fuzzy-SVM 93.01
Wu et al. [56] SVM 93.91
Qian et al. [22] SVMAK (adjusting kernel) 99.80

Table 2: Utilization of conventional techniques for TMC predictions

Authors Country Findings Methods Outcomes

[35] Łódź, Poland Potential factors
influencing the decisions

Binary logistic regression
models

– Socio-demographic characteristics
– Household access to a car
– Geographic distance

(Continued)
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Table 2 (continued)
Authors Country Findings Methods Outcomes

[17] Valley of Mexico Influence of transportation
supply, spatial
characteristics, and
socio-economic factors on
TMC

Multinomial logistic
regression

– Mass Rapid Transit (MRT) service
use is being encouraged by road
infrastructure rather than driving

– The likelihood of walking and
bicycling instead of driving a car
increases with distance from the
city center, which is the primary
factor influencing slow modes

[11] Germany and USA Determinants of TMC
– Bi-variate analysis
– Explanatory factors
– SEM

– Higher population density
– A greater mix of land uses
– Household proximity to public

transport
– Fewer cars per household
– (lower share of trips by

automobile)

[18] Dublin, Ireland Determinants of TMC for
non-commuters

– Bivariate analysis
– Regression modeling

– Income and car ownership
– Car use outside the inner-city core

is relatively low

[16] Czech Republic Determinants of urban
public transport efficiency

– Data envelopment analysis
– Tobit regression

– Increasing efficiency—the
proportion of drivers, average
vehicle age, the presence of
tramlines in the city, total vehicle
kilometers, and population density

– Decreasing efficiency—ticket price,
proportion of subsidies in revenues,
and presence of a two-city system

[51] Norway Influence of BE and
attitudes on active travel
behavior in small cities

– Descriptive statistics
– ANOVA test
– Negative binomial

regression

– The frequency of walk/bike trips is
greatly influenced by accessibility
and attitudes toward active travel

– Changes in the layout of small
cities have a significant impact on
active transportation, though the
impact differs depending on the
kind of facility
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Table 3: Utilization of ML techniques for determinants of TMC predictions

Authors Modeling methods Main determinants used Significance

[25] XGB and MNL models Multiple trip characteristics,
socio-demographic traits, BE variables,
and travel-specific time

− ve influence TMC

[22] SVM, NN, XGBoost,
BN, SSVM

Number of drivers in the household, age,
infrastructure, safety, traffic congestion,
and insufficient night lighting

− ve influence TMC

[53] DT Transit station conditions, sidewalk
availability and coverage, and bike path
availability

+ ve influence TMC

[52] Binary logistic
regression model

Age, gender, the distance between home
and school, home ownership status,
household size, the number of vehicles in
the household, the number of drivers in
the household, and population density

− ve influence TMC

[26] GBT, RF, and MNL Travel time, age, cars, motorcycles, trip
purpose, parking, home type, income,
workers, and geographical coordinates

+ ve influence TMC

[30] SVM, KNN, DT, NB Age, education, race, gender, workers,
house ownership, income, household size,
vehicles, travel time, urban area size,
vehicle owned

+ ve influence TMC

3 Methodology

There are two different approaches for conducting a systematic literature review which are (1)
Kitchenham and Charters (2007) and (2) the PRISMA approach. However, the current literature study
mainly used the PRISMA approach due to its established reputation and extensive usage in various
fields to conduct a systematic literature review. Both methods are briefly described.

3.1 Kitchenham and Charters Approach

This approach addresses the three stages of a systematic literature review: preparation, execution,
and reporting. It is a generally acknowledged and approved procedure for carrying out systematic
reviews, offering a strict and organized process for locating, assessing, and combining research
findings. Furthermore, the technique has complete rules and checklists that guarantee a thorough
and transparent review process. This allows for the replication of the review methodology, hence
augmenting the study’s credibility. The review mainly focuses on the methodological aspect of the
recent and past studies rather than interfering with the outcome of the study, nor do they specify the
detailed mechanisms performed in metadata [57]. Therefore, the quality of the research is not assessed
and out of ten steps, the remaining nine steps were considered for the review process as shown in Fig. 1.
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Strategy Construction
for Review

•The determination that a 
review is necessary

•Specifying the research 
question

•Building a framework for 
reviews

Conducting
Review

•Research determination
•Relavent paper selection
•Quality check of the 
selected paper

•Data gathering and 
management review

•Data's incorporation

Giving an Overview 
of the Review

•Describing
distribution methods

•Main report layout

Figure 1: Kitchenham and charters review process for a systematic literature review

3.2 PRISMA Approach

Many researchers globally perform systematic literature reviews using the PRISMA (preferred
reporting items for systematic reviews and meta-analyses) approach, which is easy to use and includes a
four-phase flow diagram and a 27-item checklist [58]. The 27-item checklist is mainly composed of title
(1), abstract (1), introduction (2), methods (12), results (7), discussion (3), and findings (1), whereas the
for-phase diagram contains identification, screening, eligibility, and final inclusion as shown in Fig. 2.
Following the 27-checklist and four-phase flow diagram makes it easier for the researchers to retrieve
the important information from the research articles to conduct a convenient systematic review.

Database (WoS and Scopus)

(n = 2941)

Title and Abstract

(n = 56)

Quality Assessement

(n = 46)

Full length article for eligibility

(n = 46)

Final articles

(n = 39)

Filter and based on 

Irrelevancy (n = 2885)

Out of Scope

(n = 17)

Inclusion

E
lig

ib
ili

ty
E

va
lu

at
io

n

Determination

Figure 2: PRISMA statement for the systematic literature review

The primary subject of the current review is to review and summarize the study that mainly focuses
on the determinants of TMC using conventional and ML techniques. The following review questions
are the focus of the review.

Review Question # 1: Do machine learning algorithms outperform the conventional techniques
for predicting the determinants of TMC?

Review Question # 2: Which ML techniques have been used to determine the determinants of
TMC?
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Review Question # 3: What are the characteristics of the datasets used to determine the determi-
nants of TMC?

Review Question # 4: How are ML models’ performances evaluated?

3.3 Procedure for Review

Throughout the review process, the four phases were used. The search approach so-called the
identification, criteria for inclusion such as the screening and eligibility, and procedure for data
retrieval are utilized for the review process and are presented here.

3.3.1 Search Approach

For the search engine, several databases including Scopus and Web of Science (WoS) with the
utilization of Google Scholar are considered. Academic articles such as journals and conferences
written in English were considered. Indeed, it was a challenging task to well-structured the search
function as ML, TMC, and TBs are vast areas. To obtain specific, relevant, and up-to-date articles for
the analysis, the current systematic review adopted the following procedure; initially, the phrases or
keywords from Table 4 were used to conduct a comprehensive search in a Scopus and WoS database.
Secondly, the keys from the table combined such TMC and ML algorithms, modern and conventional
techniques, transport and environment, transport and health, DCMs, and TMC that search within
article title, abstract, and keywords through which we got 2941 articles. The final dataset of 2941
articles is narrowed down to limited studies by using the filter option in the search engine. For instance,
the filter applied to choose those articles using ML techniques, the latest five years publications,
English version only. In addition, through the physical examination, the irrelevant publications were
discarded, leaving 56 articles. The objectives, suggested methods, real contributions, findings, and
recommendations for the future of the 56 papers that were gathered via the search engine were carefully
examined by hand, going over the complete contents of the publications. In the end, after carefully
assessing of article by reading its abstract, methods, results, and conclusions, 46 most recent articles
(2017–2023) were collected for the study, whereas 39 of the articles were chosen for review after a
manual review of the publications.

Table 4: Keywords used for the search at the initial stage

Transport mode choice Travel; trip; trip purpose; travel purpose; travel mode; travel
behavior; mode choice; travel demand; mode shift; travel
distance; journey distance; travel pattern; trip distance; travel
time; trip time; journey time; commute time; commute
distance; usage; use; ridership, transport and health,
environment

Built environment Infrastructure; availability; accessibility; urban area;
neighborhood; distance from city center, CBD, school,
university, workplace, supermarket; basic amenities

Artificial intelligence ML algorithms, discrete choice models
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3.3.2 Inclusion Procedure and Requirements

Several criteria were set for the inclusion of the articles in the review process after the query search
that is (1) only articles that are published in conferences and journals with English editions from the
year 2018–2023 were considered in which one article, mostly relevant to the topic from 2017 were also
considered because of its relevancy to the scope of the study; (2) studies modeling TMC and examine
the correlation between several endogenous and exogenous variables; (3) studies that determine the
determinants of TMC; and finally (4) those studies which used ML techniques for the prediction,
modeling, and correlation of TMC. The PRISMA approach was used to choose the paper for the
final inclusion using the four phases.

To effectively compare the performance of ML models across different datasets for predicting
transport mode choice (TMC), a systematic approach should be adopted that ensures the evaluation
is consistent, transparent, and meaningful. The specific variables such as socio-demographic data (age,
income, occupation), geographic data or quantitative (distance, origin, destination), real-time data or
qualitative variables (traffic, weather, public transport availability), TMC for different purposes, and
different ML algorithms are looked in the different dataset for the model comparison. It’s common
to test all models and compare their performance using cross-validation and metrics like accuracy,
precision, recall, and F1-score to decide which model is optimal. Therefore, the performance of several
ML models is compared using performance evaluation metrics and k-fold, 2-fold, 3-fold, 5-fold, and
10-fold cross-validation metrics to suggest the best predictive model. This process ensures a fair and
thorough comparison of machine learning models across different datasets for TMC prediction.

3.3.3 Data Retrieval Approach

Based on the research questions, the data are retrieved from the articles and compiled in Table 5
to gather the information and avoid biases during the data collection that are concrete, measurable,
and well-defined. After a thorough review of the paper, it was accessed with which research question
it was allied to gather specific information.

Table 5: Collection of research articles for systematic literature review based on the review questions

Review question Description

RQ1 Where had ML techniques been used to determine the determinants of TMC?
RQ1.a Application domains
RQ2 Which ML techniques have been used to determine the determinants of TMC?
RQ2.a Utilization of ML algorithms in research
RQ2.b Interpretable ML techniques
RQ3 What are the characteristics of the datasets used to determine the determinants of

TMC?
RQ3.a Characteristics and size of the dataset
RQ3.b Data availability statements—freely available?
RQ3.c TMC variables
RQ3.d TMC dataset
RQ4 How are ML models’ performances evaluated?

(Continued)
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Table 5 (continued)

Review question Description

RQ4.a Validation approach
RQ4.b Criteria for performance evaluation

4 Results and Discussion

The summary of the particular 39 papers that are selected for the current study along with the
references and identifications are presented in Table 6. In the next subheading, the source and the
date (years of publication) are mentioned to easily assess the review process and understandable to the
readers.

Table 6: Selection of 39 articles for a systematic literature review

No. Authors No. Authors No. Authors

N1 [59] Yang et al. (2023) N2 [60] Xia et al. (2023) N3 [61]
Noorbakhsh et al. (2023)

N4 [62] Murugan (2023) N5 [63] Martín-
Baos et al. (2023)

N6 [64] Liu et al. (2023)

N7 [65]
Koushik et al. (2023)

N8 [66] Hatami et al. (2023) N9 [67] Bei et al. (2023)

N10 [10] Abulibdeh (2023) N11 [68] Barri et al. (2022) N12 [31] Kashifi et al. (2022)
N13 [69] Salas et al. (2022) N14 [26] Pineda-

Jaramillo et al. (2022)
N15 [70] Naseri et al. (2022)

N16 [71] Momin et al. (2022) N17 [72] Mohd
Ali et al. (2022)

N18 [73] Hasan et al. (2022)

N19 [74] García-
García et al. (2022)

N20 [75] Wong and Farooq
(2021)

N21 [76] Sun et al. (2021)

N22 [32] Kim (2021) N23 [77] Gao et al. (2021) N24 [78] Buijs et al. (2021)
N25 [28] Ali et al. (2021) N26 [79] Zhao et al. (2020) N27 [80] Slik et al. (2021)
N28 [81]

Koushik et al. (2020)
N29 [82] Jin et al. (2020) N30 [83] Buijs et al. (2020)

N31 [84] Yan et al. (2019) N32 [85] Haynes et al. (2019) N33 [86] Cheng et al. (2019)
N34 [87] Chang et al. (2019) N35 [88] Assi et al. (2019) N36 [89] Zhu et al. (2018)
N37 [90] Wong and Farooq

(2018)
N38 [25] Wang et al. (2018) N39 [91]

Hagenauer et al. (2017)

4.1 Articles Source

As can be seen in Table 7 the articles were included from different publishers such as Elsevier,
Springers, SAGE, Hindawi, and MDPI and conferences. Among 39 articles, 36 articles are from
different peer-reviewed journals consisting of 87% and 3 conference proceedings contributed 13%
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in total after the search engine from Scopus and WoS as shown in Fig. 3. However, after the
manual examination of the publications, the peer-reviewed journals contributed 92.30% and the
conference proceedings contributed 7.69% in total. The most prominent, prestigious, and well-known
journals; Travel Behavior and Society, IEEE Access, and Transportation Research Part C: Emerging
Technologies contributed 27.10% in total.

Table 7: The number of articles from different sources and journals included for the systematic review

Journals Publisher Type % No.

Travel Behavior and Society Elsevier Journal 13.51% 5
IEEE Access IEEE Journal 8.10% 3
Transportation Research Part C:
Emerging Technologies

Elsevier Journal 5.40% 2

Expert Systems with Applications Elsevier Journal 5.40% 2
Transportation Research Interdisciplinary
Perspectives

Elsevier Journal 5.40% 2

International Journal of Transportation
Science and Technology

Elsevier Journal 2.70% 1

Land MDPI Journal 2.70% 1
Environment and Planning B: Urban
Analytics and City Science

SAGE Journal 2.70% 1

Transportation Letters Taylor & Francis Journal 2.70% 1
International Journal of Environmental
Research and Public Health

MDPI Journal 2.70% 1

Journal of Transport Geography Elsevier Journal 2.70% 1
KSCE Journal of Civil Engineering Springer Journal 2.70% 1
Journal of Transport & Health Elsevier Journal 2.70% 1
Journal of Urban Planning and
Development

ASCE Journal 2.70% 1

Communications De Gruyter Journal 2.70% 1
Transportation Research Procedia Elsevier Journal 2.70% 1
Knowledge-Based Systems Elsevier Journal 2.70% 1
Open Transportation Journal Bentham Journal 2.70% 1
Journal of Advanced Transportation Hindawi Journal 2.70% 1
Transport Reviews Elsevier Journal 2.70% 1
Procedia Computer Science Elsevier Conference 8.10% 3
Transportmetrica A: Transport Science Taylor & Francis Journal 2.70% 1
International Journal of Behavioral
Nutrition and Physical Activity

Springer Journal 2.70% 1

Sustainability MDPI Journal 2.70% 1
Transportation Research Record SAGE Journal 2.70% 1
Transportation Springer Journal 2.70% 1
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4.2 Year and Country of Publication

The current systematic review considers the latest five-year articles that were published from 2018–
2023 with only one article considered from 2017 that was highly cited and most relevant to the study
as shown in Fig. 4. There was a gradual increase in the number of articles that used ML tools and
algorithms for assessing travel behavior, TMC, and the determinants of TMC. The highest number
of articles (10) were published in 2023 which shows the usage of ML algorithms for the prediction of
determinants of TMC and outperforms the conventional models. Besides, the US shows the highest
number of articles 11 articles as shown in Fig. 5 published for evaluating the determinants of TMC.
China is the second highest after the US published 9 articles, whereas the UK published 6 articles in
total of 39 articles related to the current review.
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Figure 3: Number of articles from different sources
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Figure 4: Yearly basis distribution of articles considered in the systematic review

4.3 Where Were ML Techniques Used to Determine the Determinants of TMC?

RQ1. a. ML application domains

ML techniques are used in several areas that outperform conventional statistical techniques
and enhance TMC. In the current review of 39 articles, this study identified five different areas in
which both ML and conventional techniques are used to investigate TMC as shown in Table 8. The
application domains contained (1) TMC, (2) BE, (3) active transport, (4) shared mobility, and (5)
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BE. Among five application domains, twenty-three ML-based investigations were used for the TMC
and nine were used for the TB. However, four investigations were used for active transport such as
women cyclists and travel to school by cycle, etc., two were used for BE, and two for shared mobility.
Most of the ML approaches have been utilized for the prediction and determination of determinants
of TMC and TB, that’s the motivation behind conducting this systematic review based on the high
number of studies in the field of TMC and TB utilizing ML techniques. Most of the studies claimed
that ML techniques outperformed conventional techniques, whereas hyperparameter-optimized ML
algorithms outperformed typical ML algorithms. Several ML algorithms were utilized for imbalanced
TMC to work data while others were used to classify TMC prediction and feature the importance of
input variables to investigate the most influential factors. Most of the studies claimed that total travel
time, number of household vehicles, and income are the most influential factors, while others claim
that age, gender, activity type, parking, and trip purpose were the most significant features.
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Figure 5: Number of articles distributed by Country

Table 8: Grouping of studies based on their applications and techniques

Application domain Studies

Transport mode choice N2, N5, N9, N10, N12, N13, N14, N15, N17, N18, N19, N20, N21, N23,
N24, N25, N26, N29, N30, N33, N34, N38, N39

Built environment N1, N8
Active transport N3, N17, N32, N35
Shared mobility N4, N31
Travel behavior N6, N7, N11, N16, N22, N27, N28, N36, N37

4.4 RQ2. Which ML Techniques Have Been Used to Determine the Determinants of TMC?

In the following section, the synopsis of various ML approaches used in 39 studies will be
discussed. Several different types of ML algorithms are utilized for the determination of TMC in
diverse countries either for urban or rural areas in which different determinants influence TMC.
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RQ2. a. Utilization of ML algorithms

Past studies were limited to conventional techniques such as structural equation modeling,
bivariate and multivariate analysis, and regression analysis using SPSS, AMOS, and R [92–95]. Due
to the recent development in modern techniques, recent studies utilize ML and AI techniques such
as ANN, BN, k-NN, XGBT, GBT, DT, FT, SVM, GE, and GEP [96–98]. Due to the limitation
of conventional techniques, ML algorithms, and data types such as linear or non-linear, recent
and past studies utilize integrated and interpretable ML techniques for the factors affecting TMC
and to enhance the model efficiency using deep and reinforcement learning [31,32,99]. Therefore,
based on the current literature, the ML approaches are categorized into three groups—conventional
techniques, ML algorithms, and interpretable ML as shown in Fig. 6. RF is one of the most widely
used ML algorithms in TB research for TMC, BE, AT, and shared mobility followed by the ANN
and interpretable ML algorithms. However, on the other side, conventional techniques are mostly
utilized for the prediction of TMC and TB, whereas ML algorithms and interpretable approaches
are widely utilized for the BE, active transport to promote sustainability, TB, shared mobility, and
TMC. Moreover, Table 9 depicts the summary of several utilized ML techniques for TMC, TB, active
transport, BE, and shared mobility in the selected studies. It can be seen that among all studies, only 10
studies utilized conventional techniques which contributed 25.6%, whereas 74.4% used ML algorithms
in which random forest (RF) was the most frequently employed approach (18 studies) contributed
about 47%; however, 20.5% studies applied interpretable ML algorithms. There was a gradual increase
in the number of studies in 2022/2023 that utilize ML techniques with special attention to extreme
gradient boosting trees (XGBT) and RF contributing a total of 19/39 in the scientific literature.
The outcome of all these models shows that ML techniques outperformed conventional techniques,
whereas interpretable ML algorithms outperform ML approaches due to the black box which turns
out to white-box in integrated and interpretable ML approaches and enhances TMC decisions.
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Figure 6: The number of studies used Conventional, ML, and interpretable techniques in selected
studies
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Table 9: Utilization of conventional, ML, and interpretable techniques used in selected articles

Study ML classification Study ML classification
Conventional ML Interpretable Conventional ML Interpretable

N1 √ N21 √
N2 √ N22 √
N3 √ N23 √ √
N4 √ √ N24 √
N5 √ √ N25 √ √
N6 √ N26 √
N7 √ N27 √ √
N8 √ √ N28 √
N9 √ √ N29 √
N10 √ √ N30 √
N11 √ √ N31 √
N12 √ √ N32 √
N13 √ N33 √
N14 √ N34 √
N15 √ N35 √
N16 √ N36 √
N17 √ N37 √ √
N18 √ N38 √
N19 √ N39 √
N20 √

RQ2. b. Interpretable ML techniques

Due to the nature of the dataset such as linear and non-linearity and the limitations of the ML
techniques, most of the researchers applied interpretable ML techniques to solve the issue of black-box
in the dataset and ML techniques. Interpretable ML techniques could resolve the issue of a black box
and turn it into a white box considering the nature of the dataset. RF, GBT, XGBT, and SVM were the
utmost commonly employed algorithms in the selected studies. The most popular machine learning
algorithms for evaluating the impact of many independent variables on travel time and distance,
including safety, BE, sociodemographic, and journey time, were RF and GBT. However, because GBT
is trained sequentially rather than in parallel, it is prone to overfitting and inefficiency for the huge
dataset. Nevertheless, if you use the RF technique for regression analysis, you can rely on orthogonal
decision boundaries, which can produce less-than-ideal outcomes.

4.5 RQ3. What Are the Characteristics of the Datasets Used to Determine the Determinants of TMC?

This section contains the characteristics of the dataset that are used in 39 articles such as the
description and size of the data that are gathered for the analysis and correlation between the variables.
It mainly focuses on the targeted variables such as the determinants of TMC, ML techniques, and the
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TMC in return. Besides, the unit of analysis, data size, and the data availability statement are also
discussed in this section. Several studies used separate variables for the target variables and TMC;
therefore, the data sources of the targeted variables and TMC variables are described separately.

RQ3. a. Characteristics and size of the dataset

Table 10 predicts the characteristics and the sample size of the selected 39 articles. During the
entire review process of the selected 39 articles, it was noticed that for the TMC and its influencing
variables, three types of data sources are used National, Local, and Departmental Data (NLDD),
Academic Data (AD), and Company Data (CD) for the targeted variables. Among 39 studies, 24
studies which contributed circa 61% used NLDD data source type, whereas AD used 13 studies
contributing 33.33%, and only 2 studies used CD which contributed the remaining 5.12% of the data
source.

Table 10: Description and sample size of selected studies

No. Outcome
variable

Data type Data availability Sample size Unit of
analysis

N1 BE and mobility NLDD NE 546 Individuals
N2 Modes of

transport
NLDD DUa 167,717 Household

N3 Women cyclist NLDD DUa 52 Women
N4 Electric vehicle NLDD DUa 522 Individuals
N5 TB NLDD DA 1906 Individuals

Travel modes 230,608, 69,918 Trips,
individuals

81,096, 17,616 Samples,
participants

N6 Rail transit NLDD AoR 80,000, 28,000,
11,729

Individual,
Household,
Trips

N7 Netherlands
daily travel
pattern

NLDD AoR 30,781 Travel diary

N8 BE NLDD DUa 546 Block groups
N9 Behavior

analysis
NLDD AoR 121,765, 69,208 Individuals,

Household
N10 Trip conditions-

Meto
NLDD DUa 1247 Air travelers

N11 TB-Low-income AD DUa 22,213, 61,539 Individuals,
trips

N12 Travel modes NLDD DA 230,608, 69,918 Trips,
individuals

N13 TB AD NE 1000–5000 Individuals
N14 Determinants of

TB
NLDD DA 43,160 Household

(Continued)
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Table 10 (continued)

No. Outcome
variable

Data type Data availability Sample size Unit of
analysis

N15 Child mode
choice

AD AoR 9597 Child trips

N16 Travel mode for
long-distance

NLDD NE 852 Respondents

N17 Active
commuting
behavior

AD AoR 2316 Individuals

N18 Mode detection AD NE 120 Participants
N19 TMC NLDD DA 1906, 230,608 OPTIMA,

NTS, Trips
N20 Data-driven

choice model
NLDD DA 60,365 Trips

N21 Smartphone
recommend
TMC

NLDD DA 303,436 Transport
routes

N22 Mode choice
behavior

NLDD AoR 76,190, 172,889 Individuals,
Trips

N23 Travel decision
making

NLDD NE 2316, 386 Observation,
Individuals

N24 TMC NLDD DA, DUa 106,647, 712 Trips, Users
N25 TMC AD AoR 1956 Individuals
N26 Behavioral

analysis of TMC
AD NE 8141, 1163 Observation,

individuals
N27 TB CD NE Over 1000 Employees
N28 Activity travel

behavior
NLDD NE 407 articles Review

N29 Habitual travel
modes

NLDD DA 997 Household

N30 Public
transportation

AD NE 705 Trips

N31 Employee
ridesharing

CD NE 3370 Driver and
passengers

N32 Active transport AD AoR 280 Individuals
N33 TMC AD NE 2991, 1435 Individuals,

households
N34 TMC AD NE 361, 162, 5265 Individuals,

households,
trip

N35 Travel to school
mode choice

AD NE 1484 School
students

(Continued)
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Table 10 (continued)

No. Outcome
variable

Data type Data availability Sample size Unit of
analysis

N36 Travel decision NLDD NE 5213 Individuals
N37 Travel behavior AD NE 246 Observations
N38 TMC NLDD NE 51,910 Trips
N39 TMC NLDD DA 230,608, 69,918 Trips,

Individuals

Note: DA = Data Available; DUa = Data Unavailable; AoR = Available on Request; NE = Not Exist in the article. Data Type—NLDD;
National/Local/Departmental Data; AD = Academic Data; CD = Company Data.

The analyzed research in the reviewed study made use of multiple research units. In general,
it was individuals, households, respondents, trips, travel (air, travel diary), adults, children, women,
transport routes, employees, drivers, passengers, and school students. However, these research units
are classified into individuals, households, trips, travels, and adults. Among 39 studies, 13 studies
contributed 33.33% in total used individuals as a unit of analysis, 5 studies (12.82%) utilized household
survey data as a unit of analysis, 7 studies employed trip as a sample unit, 5 studies (12.82%) used travel
data, and the rest of 9 studies circa 23% employed adults as a unit of analysis.

Regarding the data size, there was only one study that used less than 100 sample size which was
N3 (women cyclist), 4 articles that used less than 500 sample size which contained one review article,
6 studies that used less than 1000 samples, and the rest of 28 studies used over 1000 sample size.

RQ3. b. Data availability statements—freely available?

Throughout the selected articles, it was checked whether the data used in the current study is
freely available to the public and users or not; therefore, the data availability is mainly categorized
into four different sections that are data available (DA), data unavailable (Dua), available on request
for the corresponding or any authors (AoR), and the availability statement didn’t mention in the
article (NE). It was noticed that most of the research data will not be freely available due to some
institutional policies or confidentiality. Nine articles used data that are publicly available and accessible
to all researchers. Besides, there were only two studies that used CD, whereas there were 16 studies that
did not mention the data availability statement. However, eight studies mentioned that the data is AoR
from the corresponding author(s). Four studies used the NLDD data and kept it available on request,
which are:

• Chongqing Urban Resident Travel Survey from 2014.
• Onderweg in Nederland databy Centraal Bureau voor de Statistiek (CBS), Netherlands (Cen-

traal Bureau voor de Statistiek (CBS), Rijkswaterstaat (RWS-WVL) 2019 and 2020.
• Annual National Travel Survey (NTS) data of the UK from 2005 to 2016, which are publicly

provided by the Department for Transport.
• 2016 National Household Travel Survey (NHTS) dataset in Seoul, Korea.

RQ3. c. TMC variables

TMC was determined from several variables such as gender, income, distance, purpose, safety,
time, household vehicle ownership, available transport mode, accessibility to public transportation, BE
variables, and weather conditions. All these variables directly or indirectly influence TMC depending
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on the country, situation, and type of available data. For instance, safety and security have a significant
impact on women cyclists, whereas the built environment has an impact on travel behavior with a
higher degree of 5Ds such as design, density, destination accessibility, diversity, and short distance to
transit.

RQ3. d. TMC dataset

As can be seen in past studies, the source of the targeted variables and TMC are different.
25 studies explain the TMC from three different transport modes such as private vehicles, public
transport, and active transport. These studies gathered the data from public databases to determine
TMC using statistical tools and ML techniques. Almost every study used different ML techniques and
algorithms for the determination of TMC in different countries and compared the results with the
conventional techniques in which the ML techniques always outperformed and enhanced the model
efficiency which helped the policymakers to better develop the policy based on the ML outcomes. In
most models, the coefficient of determination was over 0.95 (95%) which shows the high significance
of the model.

4.6 RQ4. How Are ML Models’ Performances Evaluated?

RQ4. a. Approach for validation

For the model validation in ML algorithms, several cross-validation (CV) methods such as the k-
fold cross-validation method, 3-fold CV, 5-fold CV, 10-fold CV, and holdout validation methods are
used by the past studies. Some of the studies also used both k-fold and holdout validation methods,
whereas others used k-fold and 10-fold CV. Table 11 depicts the approach for model validation using
several CVs in which nine studies used k-fold CV, two studies used 3-fold CV, four studies used 5-
fold CV, and five studies used 10-fold CV. However, three studies used both k-fold and 10-fold CV,
whereas two studies used k-fold and 5-fold CV. Most of the studies used an 80:20 ratio of train-test
data whereas some of the studies used a 70:30 ratio and others used a 90:10 ratio of train-test data.
Only one study was found (N35) which used three different ratios of train-test data which are 60:40,
70:30, and 80:20, and concluded that the 80:20 ratio train-test data provided higher accuracy than the
rest of the train-test ratios. Out of all 39 selected studies, nineteen studies did not report their validation
approach.

Table 11: Cross-validation methods of ML algorithms

Study Cross validation Study Cross validation
k-fold 3-fold 5-fold 10-fold k-fold 3-fold 5-fold 10-fold

N3 √ √ – – N19 √ – – √
N5 – – √ – N22 – – √ –
N8 – √ – – N23 – – – √
N10 √ – – – N25 – – √ –
N11 √ – – √ N26 – – – √
N12 – – – √ N27 – – √ –
N13 √ – – – N33 – √ – –
N14 √ – – – N34 √ – √ –

(Continued)
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Table 11 (continued)

Study Cross validation Study Cross validation
k-fold 3-fold 5-fold 10-fold k-fold 3-fold 5-fold 10-fold

N15 √ – √ – N38 – – – √
N16 – – – √ N39 √ – – √

RQ4. b. Model performance evaluations

The performance of the models in 39 selected studies is accessed using several evaluation
techniques. The different performance criteria are used to assess the relationship among TB, BE, TMC,
and its determinants. Table 12 depicts the model evaluation process in each study that is used to assess
the model performance. The current review merely reviewed and considered the performance criteria
and the analysis as shown in Tables 12 and 13; however, several other important measures that could
be employed to assess ML models’ performance are not covered in the current review as it wasn’t
presented in the selected studies. Only ten studies did not show their performance criterion and ML
model performance.

Table 12: Model evaluation performance criteria used in the selected studies

Study R/R2 AUC PRE MAPE MAE MSE RMSE Study R/R2 AUC PRE MAPE MAE MSE RMSE

N3 √ – – √ – √ √ N19 – √ – – – – –
N4 √ √ √ – – – – N20 – √ – – – – –
N5 – √ √ – – – – N22 – √ – – – – –
N6 – – √ – – – – N23 – √ √ – – – –
N7 – √ √ – – – – N24 – √ – – – – –
N8 – – – – √ √ √ N25 – √ √ – – – –
N10 √ √ √ – – – – N26 – √ – – – – –
N11 √ – – – √ √ √ N27 – √ – – – – –
N12 – √ √ – – – – N33 – √ √ – – – –
N13 – – – – – – √ N34 – √ – – – – –
N14 – √ √ – – – – N35 – √ – – – – –
N15 – √ – – – – – N36 – √ – – – – –
N16 – √ – – – – – N38 – √ – – – – –
N17 – √ – – – – – N39 – √ – – – – –
N18 – √ – – – – –

The relationship between two variables was assessed using the linear correlation or coefficient of
determination (R/R2). The R2 value of 10%–20% is considered satisfactory in travel behavior research.
Furthermore, the Mean Absolute Percentage Error (MAPE) is used to quantify the deviation between
the actual and anticipated values, Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE). As the name MAPE, it is a percentage-based measure while MAE,
RMSE, and MSE are absolute measures. For the classification task, precision (PRE) and classification
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accuracy (AUC) are utilized to determine the anticipated positive cases among all actual positive cases.
Among all 39 selected studies, nine studies (N4, N5, N7, N10, N12, N14, N23, N25, N33) used AUC
and PRE, whereas fifteen studies used AUC for measuring the corrected positive predicted cases.

Besides, four studies (N3, N4, N10, N11) employed linear correlation or the coefficient of
determination (R/R2), whereas four studies (N3, N8, N11, N133) used absolute measure, RMSE,
MSE, MAE. Only one study (N3) employed a percentage-based (MAPE) performance criterion. In
addition, Table 13 presents the performance of several machine learning models employed in the
chosen research. Several studies divided the data into training and testing through which they have
different performance ML models and R2 values. Sometimes the models achieved higher values such
as 90%–99% (0.90–0.99), while in other cases, they achieved lower values ranging from 20%–30% (0.20–
0.30). Several ML models such as SVM, DT, RF, XGBT, NB, MNL, ANN, NN, KNN, AdaBoost,
XGBoost, LightGBM, etc., are used to demonstrate the accurate performance. The R2 values for both
training and testing in RF in two studies (N3 and N11) show the highest (0.91 and 0.58), whereas it
was lower in one study (N4) in which the SVM R2 values were higher than RF.

Table 13: Model performance of selected studies using ML

Study Model performance

N3 RF: MSE: 0.30, Training: R2: 0.91, RMSE: 0.08, MAPE: 5.94%, Testing: R2: 0.67,
RMSE: 0.08, MAPE: 9.74%
AdaBoost: MSE: 0.35, Training: R2: 0.66, RMSE: 0.19, MAPE: 12.45%, Testing: R2:
0.59, RMSE: 0.19, MAPE: 11.55%
XGBoost: MSE: 0.37, Training: R2: 0.88, RMSE: 0.08, MAPE: 6.14%, Testing: R2:
0.66, RMSE: 0.14, MAPE: 7.6%
LightGBM: MSE: 0.31, Training: R2: 0.86, RMSE: 0.09, MAPE: 7.14%, Testing: R2:
0.66, RMSE: 0.14, MAPE: 8.1%

N4 SVM: Prediction: 84%, R2: 0.53, AUC: 0.897, ANN: Prediction: 81%, R2: 0.51, AUC:
0.765
RF: Prediction: 78%, R2: 0.44, AUC: 0.654

N5 MNL: 0.65–0.75 (training), 0.44–0.51 (testing), SVM: 0.43–0.55 (training), 0.65–0.75
(testing), RF: 0.47–0.57(training), 0.69–0.78 (testing), XGBoost: 0.69–0.78 (training),
0.70–0.78 (testing), NN: 0.68–0.77 (training), 0.69–0.76 (testing), DNN: 0.67–0.77
(training), 0.68–0.75 (testing)

N6 RF: Precision = 0.858, AdaBoost: Precision = 0.733, XGBoost: Precision = 0.874,
DT: Precision = 0.772, LR: Precision = 0.757

N7 Nested Logit model: AUC = 0.78, ANN-based model: AUC = 0.88
N8 RF: MAE = 0.023, MSE = 0.0019, RMSE = 0.038, R2 = 0.319
N10 BL: AUC = 0.8089, PRE = 0.820, XGBoost: AUC = 0.825, PRE = 0.862, MNL:

AUC = 0.8089, PRE = 0.823
N11 DT: R2 = 0.523, RMSE = 0.694, MAE = 0.068, MSE = 0.690

RF: R2 = 0.582, RMSE = 0.650, MAE = 0.0.116, MSE = 0.646
XGB: R2 = 0.539, RMSE = 0.683, MAE = 0.121, MSE = 0.678
NN: R2 = 0.553, RMSE = 0.672, MAE = 0.098, MSE = 0.668
SVM: R2 = 0.530, RMSE = 0.689, MAE = 0.080, MSE = 0.685

(Continued)
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Table 13 (continued)

Study Model performance

LR: R2 = 0.467, RMSE = 0.734, MAE = 0.203, MSE = 0.729
N12 LR: AUC = 0.566, PRE = 0.62, DT: AUC = 0.563, PRE = 0.43, RF: AUC = 0.654,

PRE = 0.73, LightGBDT: AUC = 0.675, PRE = 0.76
N13 KNN: RMSE = 0.030, AUC = 0.634, NN: RMSE = 0.030, AUC = 0.703, RF:

RMSE = 0.027, AUC = 0.634, SVM: RMSE = 0.030, AUC = 0.652, XGB: RMSE =
0.031, AUC = 0.634

N14 GBoost: AUC = 0.953, PRE = 0.853, RF: AUC = 0.951, PRE = 0.853, ANN: AUC
= 0.943, PRE = 0.856, SVM: AUC = 0.943, PRE = 0.843, MNL: AUC = 0.940,
PRE = 0.834, k-NN: AUC = 0.912, PRE = 0.791, DT: AUC = 0.853, PRE = 0.808

N15 AUC: MOHPT = 0.765, RF = 0.728, Hyperparameter = 0.737, Grid = 0.752
N16 AUC: NB = 0.871, DT = 0.937, SVM = 0.937, KNN = 0.929, RF = 0.953
N17 AUC: LR = 0.654, NB = 0.669, DT = 0.665, SVM = 0.495, RF = 0.716
N18 AUC: RF = 0.972, XGBT = 0.969, ANN = 0.940, SVM = 0.804
N19 AUC: MNL = 0.713, SVM = 0.746, RF = 0.753, NN = 0.742, DNN = 0.757, CNN

= 0.744
N20 AUC: MNL = 0.720, ResLogit = 0.767
N22 AUC: ANN = 0.985, RF = 0.990, XGB = 0.993
N23 RF: AUC = 0.686, PRE = 0.217
N24 AUC = 0.84
N25 AUC: ANN = 0.729, LR = 0.709, RF = 0.700, DT = 0.661, SVM = 0.542
N26 AUC: MNL = 0.647, NB = 0.584, BOOST = 0.850, RF = 0.856, SVM = 0.772,

ANN = 0.646
N27 AUC: BL = 0.92, LR = 0.93, NN = 0.96, GBT = 0.91, RF = 0.96
N33 AUC: RF = 0.853, AdaBoost = 0.636, SVM = 0.834, MNL = 0.630
N34 Single Predictor: AUC: MNL = 0.637, NB = 0.539, SVM = 0.448, RF = 0.981,

Adaboost = 0.636, GBDT = 0.746
Fusion Model: AUC: MNL+RF+SVM = 0.974, NB+RF+SVM = 0.954,
NB+SVM+GBDT = 0.985, Adaboost+RF+SVM = 0.987, GBDT+RF+SVM =
0.975
Hybrid Model: AUC: PCA+RF = 0.943, DAE+RF = 0.982

N35 AUC: SVM = 0.895, ELM = 0.997, MLP-NN = 0.996
N36 AUC: NL = 0.447, DT = 0.454, BN = 0.47
N38 AUC: MNL = 0.949, XGB = 0.952
N39 AUC: MNL = 0.52, NB = 0.61, SVM = 0.85, ANN = 0.63, BOOST = 0.80, BAG =

0.92, RF = 0.95

5 Discussion

The classification matrix was checked through the coefficient of determinations (R2), RMSE,
MSE, MAE, and MAPE, and model performance through AUC, accuracy, precision, F1-score, recall,
and MCC for both training and testing of the data. Some of the studies used 70% training and 30%
testing data, while others used 80:20 and 90:10. Most of the studies claimed that 80% training and
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20% testing data give the best performance. Besides, several cross-validations are used such as 3-folds,
5-folds, and 10-folds during the model analysis. Moreover, some studies utilized both conventional and
modern techniques and compared the models based on statistical correlations between the variables
such as R2 and significance level. It was found that most of the conventional model R2 was below 50%,
whereas it was the opposite for modern techniques which gives sometimes over 95%.

Besides, several ML models were compared based on the classification matrix and model perfor-
mance evaluations. Some of the ML models give an accuracy of over 90% while others are below
80%. Most of the models have over 80% precision values in which the RF outperformed the rest
of the models. Besides, almost all studies claim that modern techniques outperform conventional
techniques, where interpretable ML algorithms outperform the typical ML algorithms due to the
binary classification and unable to handle imbalances or multidimensional datasets. Adjusted kernel
SVM mapping the complex dataset into high dimensions makes the data point separations easier
which simplifies the data boundaries for non-linear problems. The kernel SVM can handle optimized
problems that have multiclass and variables.

Lack of interpretability is one problem with machine learning models, especially black-box
methods like deep learning. Additionally, DCMs’ great interpretability strength stems from their utility
maximization foundation. DCMs may overlook complicated relationships between trip duration, cost,
and convenience; ML models can see these relationships. Hybrid models can combine the prediction
capacity of ML with the interpretability of traditional models by merging DCMs with ML models
such as RF or GBMs. The utility function of a DCM can then receive the output from various ML
models to improve prediction while preserving interpretability.

Moreover, the feature importance of the input variables over the output variables is studied to
check the evaluate the individual input variable effect on the targeted variables. It was concluded that
the total travel time [86], trip distance [87], income [10], waiting time [28], sociodemographic [66],
age, and car ownership [32] are the most influential variables for the prediction of TMC. However,
these factors were varying in different studies around the globe due to personal, geographical, and
contextual factors in some studies, weather conditions are the most influential factors, whereas in
other studies infrastructure availability and accessibility were the most influential factors. The primary
socioeconomic characteristics that motivate passengers to transition to more environmentally friendly
modes of transportation include age, nationality, employment, ownership of a vehicle, and income [10].

In addition to promoting environmentally friendly transportation options, reducing traffic, and
mitigating the effects of travel mode choices on the environment, long-term policy recommendations
also seek to improve community accessibility and mobility. For promoting sustainable transportation
systems including walking, public transport, and cycling, the government should prioritize the
investment of funding in infrastructure and maintenance and modernization of existing transit systems
to ensure their reliability and efficiency. Besides, health is a part of capability constraints that influence
transport options [100]; therefore, providing and enhancing accessibility for people with disabilities
helps in the reduction of private cars and the promotion of a sustainable transportation system.
Moreover, the implementation of road user charges based on factors, increment in parking fees in
urban areas, providing subsidies on public transport tickets, and introduction of pricing charges
scheme discourage private car users in peak days and hours. As one of the most significant factors
is the distance between the last stop and individual residence location; therefore, the adoption of land
use policies, and the development of affordable housing near the transit stations enhance the access to
public transportation. However, in some cases, the residential areas closer to the basic amenities and
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public transport lines are more expensive than the other way around which encourages individuals to
live far away and use private vehicles.

This study emphasizes the increasing importance of ML as a useful substitute for traditional
statistical methods in the modeling of determinants of TMC used for daily activities. Nevertheless,
a close look at the literature review indicates notable differences in the approaches used. Thus, more
investigation is required to develop reliable and consistent scientific methods for using ML to analyze
TMC and investigate its determinants. In 39 selected studies, the R2 values and even the same algorithm
values are changing, which might be due to the nature of the data and the variables used; however,
standardized methods need to be developed for the prediction of TMC and its determinants. Moreover,
in terms of data aggregation, it is crucial to assure consistency between both the input and the output
variables to prevent problems with generalization and accuracy.

The practical application of DCMs and ML models is vital for urban planners and policymakers.
By increasing prediction accuracy and result interpretability, DCMs and ML algorithms can be
integrated into transportation planning tools or policy frameworks to greatly improve decision-
making. Each approach has its own merits, and when combined, it can produce strong tools for
policy evaluation, infrastructure development, and transportation demand modeling. Large, real-time
data sets might be processed and analyzed using ML techniques in the first step of a hybrid model.
Subsequently, pertinent factors (such as transport availability and congestion levels) could be fed into
a DCM to predict how travel behavior would change in response to those conditions. This makes
the results more valuable for making policy decisions by guaranteeing that predictions are not only
accurate but also based on a solid theoretical framework. The data-driven policy that is effective in
the near term and long-term sustainable is made possible by these integrated approaches.

Several factors need to be considered when discussing the issues of reproducibility of the results
and generalizability of the ML techniques in diverse areas and countries. Transport options, urban
infrastructures, weather conditions, and geographical factors vary from country to country and
cannot be generalized. Reproducibility can be improved through open data, transparent methods,
and standardized processes. In addition, the models trained on one dataset cannot be used for other
datasets for the predictions due to cultural, behavioral, infrastructure, and policies.

ML models use real-time data from smart city infrastructure, mobility apps, and personal devices,
which is crucial to address ethical considerations related to the use of personal data. While there
are many advantages to integrating ML models into transportation planning, there are also serious
ethical concerns about data privacy, fairness, openness, and monitoring. Planners and policymakers
should implement best practices including data anonymization, bias audits, and open decision-making
frameworks to reduce these risks. The preservation of people’s privacy should come first in ethical
data governance, and it should make sure that ML models improve transportation systems without
escalating inequality or jeopardizing citizens’ rights.

6 Conclusion

The current review provides a systematic evaluation of ML techniques that are used for predicting
the determinants of TMC around the globe. The research develops four review questions that relate to
the application domains, utilization of ML algorithms, the dataset used in the studies, and performance
evaluation of the ML models. Using two main online publishing databases such as WoS and Scopus,
39 relevant studies were found related to determinants of TMC and its influence that were considered
for the review.
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This research systematically reviews the conventional (statistical tool) and modern techniques
(ML algorithms), criterion, and model performance of the past studies and concludes that in most
of the studies, RF outperforms SVM, GBT, DT, XGBT, and MNL. Besides, some studies used
interpretable ML techniques in which they combined two different algorithms such as SVM + GBT
or NB + RF + SVM as mentioned in the N34 study, and concluded that the accuracy of the model
reached 99% (0.99). However, in some other studies, the accuracy of the RF model ranges from 95%
to 99% (0.95–0.99) as shown in Table 13 studies N14, N16, N18, N22, N27, N34, and N39. Moreover,
the coefficient of determination (R2) is also found higher in RF compared to other ML models. For
instance, the value of R2 is 0.91 (91%) in study N3 is higher than Adaboost, XGBT, and LightGBM.

Several studies confirmed that socio-demographic characteristics, household vehicle ownership,
and income status in the main determinants of TMC. Besides, other studies confirm that attitude,
built environment, accessibility, and infrastructure influence TMC. Moreover, travel time, parking
type, motorized vehicles, age, and gender explain TMC.

Given the prevalence of the problems this research describes, a deeper understanding of the
methods utilized in ML modeling of nonlinear interactions between transport mode choice and
built environment is needed. Even though more research is necessary to completely comprehend the
implications of these limitations, it is already clear that some of the “matters of concern” violate
the fundamental holdout validation principle of machine learning and ought to be disregarded in
subsequent studies.
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