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ABSTRACT

In recent years, early detection and warning of fires have posed a significant challenge to environmental protection
and human safety. Deep learning models such as Faster R-CNN (Faster Region based Convolutional Neural
Network), YOLO (You Only Look Once), and their variants have demonstrated superiority in quickly detecting
objects from images and videos, creating new opportunities to enhance automatic and efficient fire detection.
The YOLO model, especially newer versions like YOLOv10, stands out for its fast processing capability, making it
suitable for low-latency applications. However, when applied to real-world datasets, the accuracy of fire prediction
is still not high. This study improves the accuracy of YOLOv10 for real-time applications through model fine-
tuning techniques and data augmentation. The core work of the research involves creating a diverse fire image
dataset specifically suited for fire detection applications in buildings and factories, freezing the initial layers of
the model to retain general features learned from the dataset by applying the Squeeze and Excitation attention
mechanism and employing the Stochastic Gradient Descent (SGD) with a momentum optimization algorithm to
enhance accuracy while ensuring real-time fire detection. Experimental results demonstrate the effectiveness of
the proposed fire prediction approach, where the YOLOv10 small model exhibits the best balance compared to
other YOLO family models such as nano, medium, and balanced. Additionally, the study provides an experimental
evaluation to highlight the effectiveness of model fine-tuning compared to the YOLOv10 baseline, YOLOv8 and
Faster R-CNN based on two criteria: accuracy and prediction time.
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1 Introduction

The situation of fires and explosions in buildings, factories, and warehouses is becoming increas-
ingly complex and severe, causing significant damage to people and property. Therefore, early
detection and timely handling of fires are key factors in minimizing these damages. In the past,
traditional methods focused on using heat and smoke sensors, which have certain latency drawbacks
and are not suitable for some specific environments. Currently, many studies have improved and
applied deep learning models such as Faster R-CNN, VGG, and their variants, as well as the YOLO
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family. Among them, YOLOv10, the latest version of the YOLO family, has proven effective in real-
time object detection. Although it has been researched and applied in various fields, YOLOv10 is still
in the development and improvement phase.

Advanced convolutional deep learning models in object detection, such as Faster R-CNN and the
newer variants of the VGG model, have been shown to achieve high accuracy in fire detection [1–3].
However, their main drawback is relatively slow processing and prediction times, making these models
unsuitable for real-time applications. YOLO (You Only Look Once), especially the latest versions
like YOLOv10, stands out for its fast processing speed, making it a strong candidate for low-latency
applications [4]. However, YOLOv10 faces limitations in accuracy when compared to other modern
CNN models like Faster R-CNN and VGG versions.

YOLOv10 is a modern deep learning model with strong object detection capabilities and has
been widely applied in various fields. It has proven highly effective for real-time wildfire detection
under conditions where the image quality from satellites or unmanned devices is adequate. However,
when using satellite images with insufficient resolution, detecting wildfires at a very early stage can be
challenging. Factors such as low light, cloud cover, or adverse weather can affect YOLOv10’s detection
accuracy [5]. In practice, these images often have poor quality, resulting in suboptimal performance
and making practical application difficult. On the other hand, fire detection and warning in buildings
or factories are often easier to implement due to easy integration with existing cameras. In such
environments, with numerous devices, complex structures, and interference sources, YOLOv10 can
effectively detect fires based on its ability to detect multiple objects within a single frame [4,6]. However,
images obtained from cameras are also affected by environmental factors such as brightness, visual
noise, sparks from production, and flickering lights, posing significant challenges. By applying data
augmentation techniques, we created a fire image dataset specifically tailored for buildings, factories,
and warehouses suitable for the fine-tuned YOLOv10 model to enhance fire detection accuracy
while maintaining superior detection speed, thereby improving the efficiency of real-time fire warning
systems.

To leverage the advantages of YOLOv10 in real-time applications, this study focuses on enhancing
the accuracy of YOLOv10 through model fine-tuning, aiming to optimize the deep learning model
by adjusting its critical components and parameters based on a specific dataset. Additionally, this
research applies appropriate data augmentation techniques to expand and enrich the training dataset,
thereby enabling the model to learn better features and improve overall accuracy.

The main contributions of our study include: (i) creating a diverse fire image dataset with varia-
tions in size, shape, color, brightness, contrast, dimension, rotation angle, and resolution, specifically
for buildings, factories, and warehouses; (ii) modifying the attention mechanism by freezing certain
initial layers of the model to retain general features learned from the initial dataset; and (iii) changing
the optimization algorithm from Adam to Stochastic Gradient Descent (SGD) with momentum. This
adjustment is more suitable for fire detection applications in buildings, factories, and warehouses due
to the high generalization capability of the dataset, especially in the initial layers when the freezing
technique is applied using the Squeeze and Excitation (SE) attention mechanism to improve the
detection accuracy.

The remainder of the paper is organized as follows. In Section 2, we discuss modern fire detection
methods concerning accuracy and real-time assurance. Section 3 presents the method of constructing
a fire dataset for buildings, factories and warehouses (hereafter referred to as the Fire Indoor
dataset). Section 4 presents the training results, evaluation, and discussion. Finally, conclusions and
recommendations are provided in Section 5.
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2 Related Works

The issue of fire detection in buildings and production areas using deep learning Convolutional
Neural Network (CNN) models has been extensively studied, with various approaches leveraging
models such as Faster R-CNN, VGG versions, and models of the YOLO family. In this section, we
analyze several recent notable works related to these models and similar CNN architectures to enhance
fire detection effectiveness.

The study [7] developed a real-time fire detection model using the Faster R-CNN (Faster Region-
based Convolutional Neural Network) model [8], an advanced method to improve the performance
and speed of object detection in images through the use of a Region Proposal Network (RPN). The
system is designed to operate in real-time, utilizing a webcam and a deep learning model based on
Faster R-CNN for fire detection, making it suitable for applications that require quick response, such
as automatic fire fighting systems. The research shows that the fire detection model based on Faster
R-CNN can be effectively used for real-time fire detection with high accuracy. However, this model
was trained with only 1000 images. Although it achieved high accuracy, the limited data scope could
reduce the model’s effectiveness when deployed in more diverse real-world conditions, and it might
have faced overfitting issues, given that the accuracy results reached 99%.

In [9], the authors modified the SqueezeNet architecture for energy-efficient fire detection in video
surveillance, balancing accuracy and computational efficiency. It achieves this by minimizing the use of
densely connected layers and employing smaller convolutional kernels, which reduces computational
requirements. Although the study emphasizes energy efficiency, there is a trade-off in detection speed
and accuracy in complex scenarios, which is not discussed. Study [10] focused on developing a
fire detection algorithm using a 3D CNN approach, specifically aimed at enhancing fire detection
capabilities in outdoor environments. The authors use a dataset comprising 124 videos, categorized
into three types negative videos (no fire or smoke), smoke videos, and fire videos. This classification
helps train the model to distinguish between different scenarios. The 3D CNN architecture was chosen
for its ability to analyze spatial and temporal features in video data, making it highly suitable for
detecting fires in video footage. Experimental results show the effectiveness of the 3D CNN approach
in fire detection, emphasizing the importance of longer training times to achieve higher accuracy.
However, the authors used a small dataset for training deep learning models. A limited dataset can
reduce the model’s ability to generalize well to new, unseen data. The study emphasizes that increasing
the number of epochs improves accuracy, with the model achieving 100% accuracy after 50 epochs,
indicating an overfitting problem with the proposed model. Study [11] proposed an efficient CNN for
Fire Detection (CNN-FD), specifically designed for fire detection. The model is innovative in using
multi-path convolutional layers with different filter sizes (1 × 1, 1 × 3, 3 × 1, and 3 × 3), allowing
for the capture and learning of both local and global features from images. The proposed model was
trained and tested using a custom dataset. The authors curated and developed a dataset tailored to
the specific needs of fire detection, enhancing the model’s performance and applicability in real-world
scenarios. Experiments show that the performance of the proposed CNN model surpasses that of
existing state-of-the-art algorithms such as VGG16, VGG19, Inception v3, and Xception. However,
deep convolutional neural networks typically require significant computational resources for training
and inference, and the study does not address the computational efficiency of the proposed model,
which could be a limitation for deployment in resource-constrained environments.

The study [12] provided a quantitative comparison of two deep learning methods, the YOLOv7
algorithm and CNNs, specifically for detecting hazardous fires from CCTV images. The YOLOv7
algorithm achieved a mean average precision (mAP) of 0.45, compared to a mAP of 0.32 for CNN,
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demonstrating its superior performance in this context. However, the study utilized a relatively small
dataset of 68 samples, which may limit the generalizability of the findings. The study context did not
specify the diversity of the dataset in terms of fire scenarios, environments, or different conditions
of the image. This lack of diversity could impact the algorithm’s performance in various real-world
situations. The TRA-YOLO network, proposed by Xiang et al. [13] integrated a transformer encoder
with CNN to enhance the extraction of both global and local features, thereby improving fire
detection efficiency in factories. It utilizes an improved ACK-Res2Net module and adaptive spatial
feature fusion to suppress noise and enhance critical information, thus boosting the model’s anti-
interference performance and reducing false alarms. Experimental results show that TRA-YOLO
achieves a 4.1% increase in accuracy compared to YOLOv5. However, the proposed network in
this study struggles to accurately distinguish between actual fire events and other visually similar
patterns, leading to potential false alarms. Additionally, the model may not be robust enough to
detect and accurately classify flames of varying shapes. Song et al. proposed a real-time fire detection
method based on the YOLOv9 model [14]. The study focuses on optimizing the algorithm’s principles
based on programmable gradient information and generalized ELAN, enhancing object detection
capabilities to demonstrate YOLOv9’s effectiveness in fire detection. However, the authors focus more
on its advantages and practical applications without comparative evaluation against related models.
An improved YOLOv8n model is proposed in [15] for detecting fire and smoke in factories. This
proposal combines ConNeXtV2 and other enhancements, achieving over 95% accuracy on key metrics,
thus meeting real-time monitoring requirements. Although the improved algorithm meets real-time
monitoring requirements, the increased complexity may pose challenges for deployment, especially in
resource-constrained environments.

These studies demonstrate advancements in fire detection using deep learning models based on
CNNs, highlighting improvements in accuracy, real-time processing, and resource efficiency. However,
challenges remain due to the highly diverse nature of fire scenarios in real-world applications, which
future research must address.

3 Methodology
3.1 Constructing the Dataset

This section details the process of building a dataset focused on indoor fire detection based
on publicly available fire detection datasets to train a deep learning model for fire detection. These
datasets are sourced from Roboflow’s University repository and include images captured under
various conditions, perspectives, lighting, and spatial configurations. To enhance the model’s ability to
generalize different indoor fire detection scenarios, the dataset was constructed through the following
key steps:

(1) Data Collection: Sources were gathered from publicly available fire detection datasets from the
repository of Roboflow’s University Projects [16].

(2) Preprocessing: This involved removing EXIF orientation information, performing annota-
tions, adjusting image resolution, and resizing all images to 640 × 640 pixels.

(3) Data Augmentation: Key techniques included horizontal flipping, rotating images 90 degrees
clockwise and counterclockwise, cropping with a zoom range from 0% to 20%, random
rotations between −15 to +15 degrees, and brightness adjustments from 0% to +20%.

(4) Compilation: All adjusted images were compiled into a dataset called the Fire Indoor dataset,
which is publicly available at [17].
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This comprehensive data preparation method ensures that the model can effectively recognize and
respond to fire incidents in various indoor contexts, which is crucial for practical applications. Details
about the data sources are described in Table 1. The first data source contains images of small fires
inside buildings, which can be used to train models for detecting small fires in indoor environments.
We collected 755 images of small fires with 1208 annotations, averaging 1.6 annotations per image.
The image resolutions range from 0.41 to 0.92 megapixels. The second data source includes images of
larger fires, both indoors and outdoors, useful for training models to detect large-scale fires and for
diversifying environmental recognition. We collected 568 images of large fires with 965 annotations,
averaging 1.7 annotations per image, with resolutions ranging from 0.07 to 17.92 megapixels. The third
data source contains images of fires of various sizes, both indoors, in production areas, and outdoors,
enhancing the dataset’s diversity for training models. We collected 1398 images of fires of varying sizes
with 3495 annotations, averaging 2.5 annotations per image, and image resolutions ranging from 0.05
to 1.27 megapixels. The fourth data source features a variety of fire images of different shapes and sizes,
both indoors, in production areas, and outdoors, suitable for diverse fire detection and classification
tasks. We collected 2790 images of fires of various shapes and sizes with 6138 annotations, averaging 2.2
annotations per image, with image resolutions ranging from 0.23 to 0.41 megapixels. The final data
source contains images of fires inside buildings and production areas in various hidden or hard-to-
detect locations, which can be used to train models for complex fire detection scenarios. We collected
489 images of indoor fires in various locations with 586 annotations, averaging 1.2 annotations per
image, with resolutions ranging from 0.13 to 3.69 megapixels.

Table 1: Fire image database

Number of
images

Number of
annotations
(Average per each
image)

Image aize (mp) Description

755 1208 (1.6) 0.41 to 0.92 Images of small fires inside buildings
568 965 (1.7) 0.07 to 17.92 Images of large fires inside buildings and

outdoors
1398 3495 (2.5) 0.05 to 1.27 Images of fires of various shapes and sizes,

both indoors, factories, and outdoors
2790 6138 (2.2) 0.23 to 0.41 Images of fires of various shapes and sizes,

both indoors, in factories, warehouses, and
outdoors

489 586 (1.2) 0.13 to 3.69 Images of fires in buildings, factories,
warehouses in hidden or hard-to-detect
locations

Each annotation file for an image provides five information fields: class_index, x_coordinate,
y_coordinate, width, and height, as listed in Table 2. The ‘class_index’ is an integer that represents
the class of the object corresponding to the bounding box in the image. It is used to identify the
type of object detected in the image. The ‘x_coordinate’ is a floating-point number in the range [0,
1], representing the x-coordinate of the center of the bounding box, indicating the relative horizontal
position within the image. This value is normalized from 0 to 1, where 0 represents the left edge of the
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image and 1 represents the right edge. Normalization ensures the model operates consistently across
images of different sizes. The ‘y_coordinate’ is a floating-point number in the range [0, 1], representing
the y-coordinate of the center of the bounding box, indicating the relative vertical position within the
image. This value is also normalized from 0 to 1, where 0 is the top edge of the image and 1 is the
bottom edge. Like the x-coordinate, this normalization allows the model to effectively process images
with varying scales. The ‘width’ is a floating-point number in the range [0, 1], indicating the relative
width of the bounding box in the image. This value is normalized from 0 (no width) to 1 (maximum
width equal to the width of the entire image). Normalization helps represent the bounding box size
regardless of the actual size of the image. The ‘height’ is a floating-point number in the range [0, 1],
indicating the relative height of the bounding box in the image. This value is normalized from 0 (no
height) to 1 (maximum height equal to the height of the entire image). Similar to width, normalizing
the height helps represent the bounding box size consistently across images of different sizes. These
normalized values ensure that the model can handle images of varying dimensions efficiently, providing
a uniform representation for object detection tasks.

Table 2: Details of annotations

Field Format/Possible
value

Description

<class_index> Integer The class index of the object corresponds to the
bounding box

<x_coordinate> [0, 1] The x-coordinate of the center point represents the
relative position of the bounding box within the image

<y_coordinate> [0, 1] The y-coordinate of the center point represents the
relative position of the bounding box within the image

<width> [0, 1] Indicates the relative width of the bounding box within
the image

<height> [0, 1] Indicates the relative height of the bounding box within
the image

Table 3 summarizes the statistics of fire images in the dataset. The total number of fire images
in the dataset is 6000, including 5075 indoor images and 925 outdoor images. The dataset contains
5899 fire objects, with 5040 indoor objects and 859 outdoor objects. The ‘disturbances’ field indicates
the number of images containing non-fire elements that complicate fire and non-fire classification,
such as lighting or objects with shapes similar to flames. There are 35 disturbance images in indoor
environments and 66 disturbance images in outdoor settings, totaling 101 disturbance images in the
dataset, which accounts for nearly 2% of the total images. For this study, the overall dataset is divided
into an 80:15:5 ratio, comprising 4800 samples in the training set, 900 samples in the validation set,
and 300 samples in the test set.

3.2 Fine-Tuning the YOLOv10

The key components impacting the YOLOv10 model in the fine-tuning approach of this study
are presented in two main blocks, as illustrated in Fig. 1. The left block represents the overall model
structure, while the right block shows the enhanced modules in the YOLOv10 model. Specifically,
these include:
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(1) Backbone: This is a convolutional neural network responsible for extracting features from
the input images, with the output being features extracted at multiple resolution levels. In
YOLOv10, this component uses the Cross Stage Partial Network (CSPNet) architecture to
improve gradient flow and reduce computational redundancy. CSPNet divides the feature
extraction process into multiple processing groups. In each group, the feature map is split
into two parts for processing and then merged back together [18]. Additionally, the Spatial-
Channel Decoupled Downsampling (SCDD) technique is applied to enhance processing by
splitting it into two stages: spatial downsampling and depth enhancement. This helps reduce
computational costs and maximize the retention of important information in the image. In
this model, after the first convolution, the SE layer is applied. This layer performs two main
operations: (1) Global average pooling is used to squeeze the spatial dimensions of each
feature map into a single number. (2) The squeezed descriptors are passed through two fully
connected layers with a non-linear activation function to generate per-channel weights. These
weights are then used to reweight the feature maps. The output from the SE block is passed
through a sequence of Residual Blocks, they use skip connections to alleviate the problem
of vanishing gradients. After the residual blocks, the feature maps pass through a depthwise
convolution layer. Depthwise convolution applies a separate convolution to each input channel
independently, as opposed to standard convolution which combines all input channels. This
layer drastically reduces the number of computations needed. The output of the depthwise
convolution is passed through a pointwise convolution layer, which is a 1 × 1 convolution.
This layer combines the feature maps from the previous depthwise convolution and allows for
learning channel-wise relationships.

(2) Neck: This is a crucial part of the overall network architecture, designed to aggregate input
features from different resolution levels and output enhanced and combined features. In
YOLOv10, the Path Aggregation Network (PAN) is an improved neural network aimed
at enhancing feature aggregation by adding shortcut connections to optimize the flow of
information from lower to higher layers.

(3) Head: This part is responsible for object detection based on the aggregated features from
the Neck. YOLOv10 leverages the advantages of two labeling methods, OneToMany and
OneToOne, to eliminate the Non-Maximum Suppression (NMS) mechanism, thereby reducing
computational costs during prediction [4]. The OneToMany network is used during training,
while the OneToOne network is used during testing. This reduces dependence on post-
processing algorithms and enhances the real-time performance of the model.

Table 3: Statistics of fire images in the dataset

Scenario Objects Images

Fire Disturbances

Indoor 5040 35 5075
Outdoor 859 66 925
Total 5899 101 6000
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Figure 1: YOLOv10 structure (left) and Improved modules (right)

These components and enhancements provide a robust structure for YOLOv10, improving feature
extraction, aggregation, and prediction efficiency, making it suitable for real-time fire detection
applications.

SE attention and Partial Self (PS) attention are mechanisms designed to enhance the performance
of neural networks by focusing on important features in the data, but they differ significantly in
their approach and application. SE attention recalibrates feature responses channel-wise by globally
aggregating spatial information and applying learned scaling factors to emphasize more relevant
features, particularly in the context of CNNs for tasks like image classification. SE Attention is
lightweight, computationally efficient, and excels at enhancing feature discrimination at the channel
level without incurring significant costs [19]. On the other hand, PS attention is a variant of the
traditional self attention mechanism that selectively attends to a subset of input elements instead
of all possible pairs. This approach aims to reduce the computational burden associated with full
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self-attention, which requires computing pairwise attention scores across all elements in a sequence.
PS Attention is particularly useful in tasks involving long sequences, such as in Natural Language
Processing (NLP), where full self-attention would be very costly. It strikes a balance between capturing
essential dependencies in the data and maintaining computational efficiency, though at the cost of
potentially missing some interactions compared to full self-attention [20]. In YOLOv10, the authors
use the PS Attention technique to replace self attention used in earlier versions of YOLO to reduce
computational costs. However, this substitution leads to a decrease in accuracy, while fire detection
applications in buildings and production areas require high accuracy to avoid errors that could result
in significant damage to people and property. To fine-tune the model,in this study, we use the SE
attention technique instead of PS attention to improve accuracy while still ensuring real-time fire
detection performance.

In fire prediction problems for indoor environments or factories, using an appropriate optimiza-
tion algorithm is crucial to ensure that the model can accurately predict rare and potentially hazardous
events. Study [21] highlights that Adam can encounter convergence problems when gradients change
unstably or when data is highly random, causing the model to get trapped in local optima. This can
be detrimental in problems like fire prediction, where data is often non-homogeneous and highly
noisy. In contrast, research shows that SGD with momentum tends to converge more stably and has a
better ability to escape local optima. The authors also demonstrate that SGD with momentum often
provides better generalization results, which is critical in applications that require high accuracy, such
as fire prediction. In the study [22], the authors point out that for some complex and noisy datasets,
SGD with momentum often achieves better generalization performance than Adam. Specifically, when
conducting experiments on the ResNet model and large image datasets like CIFAR-10 and ImageNet,
they found that SGD with momentum outperformed Adam in achieving higher accuracy on the test
set. This work also emphasizes that Adam often leads models to perform well on the training set but
may not generalize well on the test set, particularly when dealing with highly diverse data. In contrast,
although SGD with momentum converges more slowly, it is better at finding general minima, helping
the model generalize better on new data. To fine-tune the model, in this study, we use SGD with
momentum instead of Adam to improve accuracy while ensuring real-time fire detection performance.

As shown in Table 4, different YOLOv10 models vary in complexity and performance charac-
teristics. YOLOv10m has 498 layers, 16,485,286 parameters, and 16,485,270 gradients. YOLOv10n, a
lighter variant, includes 385 layers, 2,707,430 parameters, and 2,707,414 gradients. YOLOv10s, which
balances between these two, consists of 402 layers, 8,067,126 parameters, and 8,067,110 gradients. The
most complex among them is YOLOv10b, with 518 layers, 20,452,566 parameters, and 20,452,550
gradients. All these variants are optimized using the SGD with momentum (SGDM) optimizer and
the SE Attention technique. Each model variant balances layer depth and parameter count to address
different performance and efficiency requirements.

Table 4: YOLOv10 models specifications and fine-tuning

Layers Parameters Gradients Optimizer Attention

YOLOv10n 385 2,707,430 2,707,414 SGDM SE
YOLOv10s 402 8,067,126 8,067,110 SGDM SE
YOLOv10m 498 16,485,286 16,485,270 SGDM SE
YOLOv10b 518 20,452,566 20,452,550 SGDM SE
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3.3 Evaluation Metrics

To evaluate object detection performance, Average Precision (AP) is commonly used through
several metrics such as Intersection over Union (IoU), Precision, and Recall. According to [23],
these metrics are defined by Eqs. (1)–(3). According to Eq. (1), IoU assesses the overlap between the
predicted bounding box (pred) and the ground truth box (gt). Precision (P) measures the accuracy of
the predictions, while Recall (R) evaluates the detector’s ability to identify all gt instances. According
to Eqs. (2) and (3), Precision is the ratio of the number of True Positives (TP) to the total number of
positives, including TP and False Positives (FP), while Recall is the ratio of the number of True Positives
(TP) to the total number of Ground Truth Positives, including TP and False Negatives (FN). In a fire
detection system, high Precision means that most fire alerts are accurate, with few false alarms, while
high Recall means the system detects most fires, even though there may be some false positives. The
F1 score, calculated according to Eq. (4), is a combined metric of Precision and Recall that provides a
comprehensive measure of the model’s performance. The F1 score is particularly useful when there is
an imbalance between Precision and Recall, helping to balance between minimizing false alarms and
detecting true positive cases. In a fire detection system, a high F1 score indicates that the system can
both detect many fires (high Recall) and limit the number of false alarms (high Precision).

IoU = Area of Overlap
Area of Union

= Areapred ∩ Areagt

Areapred ∪ Areagt

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 − score = 2 (Precision × Recall)
Precision + Recall

(4)

Average Precision (AP) is the area under the Precision-Recall curve (PR AUC), which is a graph
that represents the relationship between Precision and Recall for different prediction thresholds. The
general formula to compute AP for an object class iii can be expressed as Eq. (5).

APi =
∫ 1

0

Precision (r) dr (5)

where r records each Recall level from 0 to 1 at intervals of 0.1, i.e., at points {0, 0.1, 0.2, . . . , 1.0}. For
each of these points, Precision(r) represents the highest Precision value achieved for any Recall level
greater than or equal to r.

In object detection, there can be multiple classes of objects that need to be detected. The mean
Average Precision (mAP) metric is used to compute the AP value for each class and then calculate the
average of these APs. This metric provides a comprehensive assessment of the model’s performance
across all classes, accounting for the varying levels of difficulty in detecting different objects. According
to [24], mAP is described in Eq. (6).

mAP = 1
N

N∑
i=1

APi (6)

where N represents the number of object classes, and APi is the Average Precision for class i.
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In addition to evaluating the model’s accuracy metrics, this study also assesses model efficiency
through the metric of inference prediction time. This is a crucial metric for real-time applications. It
is calculated by measuring the time required for the model to read an image, process it through the
model, and generate prediction results. Typically, this time is averaged over a set of input images.

4 Results and Discussion

In addition to selecting the SGD with momentum optimization algorithm and the SE attention
technique to improve accuracy and increase generalization, in the experiment, we adjusted several
parameters to train the model for 100 epochs. These parameters include a weight decay of 0.0005,
an initial learning rate of 0.01, a warmup epoch of 5, a warmup learning rate of 0.001, a warmup
momentum of 0.8, a final learning rate of 0.01, a batch size of 16, and an image size of 640.
Additionally, we applied a mosaic parameter of 1.0 for the first 90 epochs and the close mosaic for
the last 10 epochs, with the momentum set to 0.9. These configurations were applied for training,
validation, and testing of all four YOLOv10 models (n, s, m, b) on the Fire Indoor dataset. The training
environment was set up on Google Colab, utilizing an Nvidia Tesla L4 GPU. This setup allowed for
efficient training of the models, optimizing them for accurate and real-time fire detection performance
in indoor settings.

As shown in Table 5, training different YOLOv10 models for 100 epochs reveals differences
in accuracy and inference time. In this study’s experiments, we used mAP@50 and mAP50–95
calculations according to Eq. (6), corresponding to IoU thresholds of 0.5 and from 0.5 to 0.95 with a
step of 0.05.

Table 5: Detection accuracy and prediction time of YOLOv10 model on fire indoor dataset

Fine-tuned
models

P R Inference
predict (ms)

mAP@50 mAP@50–95 F1 score

YOLOv10n 0.863 0.866 10.5 91.1% 60.6% 0.864
YOLOv10s 0.906 0.846 10.7 91.3% 62.1% 0.875
YOLOv10m 0.891 0.864 14.6 91.4% 62.9% 0.877
YOLOv10b 0.905 0.851 20.2 90.9% 62.8% 0.877

The YOLOv10n (nano) model achieved the lowest precision at 0.863, the highest overall recall at
0.866, and the lowest F1 score at 0.864. It achieved the mean average precision at an IoU threshold of
0.5 (mAP@50) of 91.1%, and the inference prediction time of 10.5 ms. The YOLOv10s (small) model
showed improved results with a precision of 0.906, recall of 0.846, and F1 score of 0.875, achieving the
mAP@50 of 91.3%, and an inference prediction time of 10.7 ms. The YOLOv10m (medium) model
recorded a precision of 0.891, recall of 0.864, and an F1 score of 0.877, leading to the highest mAP@50
of 91.4%, and an inference prediction time of 14.6 ms. The largest model, YOLOv10b (balanced),
achieved a precision of 0.905, recall of 0.851, and an F1 score of 0.877, with a mAP@50 of 90.9%,
and an inference prediction time of 20.2 ms. These findings suggest that the YOLOv10s (small) model
offers the best balance between accuracy and inference time, making it the most suitable model for real-
time fire detection. The medium and nano models also perform well, with average mAP@50 values
fairly close to each other; however, the medium model’s inference time is significantly longer than the
small and nano models (14.6 ms compared to 10.7 and 10.5 ms, respectively). Meanwhile, the balanced
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model, although it has good precision and F1 score, has a lower average mAP@50 and an inference
time nearly double that of the smaller models.

Additionally, for a more accurate evaluation when deploying deep learning models in practical
applications, the mAP@50–95 metric is often emphasized over mAP@50 because it requires the model
not only to correctly detect objects but also to precisely localize them with higher accuracy (at higher
IoU thresholds). In Table 5, the mAP@50–95 value for the YOLOv10s (small) model is 62.1%, which
is close to the medium (62.9%) and balanced (62.8%) models, while being significantly better than the
nano model (60.6%). This result indicates that the small model is very well-suited for tasks that require
high accuracy and good generalization capabilities, such as fire prediction in buildings, factories, or
warehouses.

Fig. 2 presents various metrics over 100 epochs of training the YOLOv10s (small) model. Charts
in the first row show the training loss curves for different components of the model including
train/box_om, train/cls_om, train/dfl_om, train/box_oo, and train/cls_oo. Each of these charts shows
a consistent decrease in loss values as training progresses, indicating effective learning and convergence
of the model. Charts in the second row display performance metrics including Recall, mean average
precision at an IoU threshold of 0.5 (mAP50), mean average precision across IoU thresholds from
0.5 to 0.95 (mAP50-95), and Precision. The ‘metrics/recall(B)’ and ‘metrics/precision(B)’ charts show
a steady increase in recall and precision values, reaching around 0.9, indicating improved detection
capability of the model over time. The ‘metrics/mAP50(B)’ chart shows an upward trend, approaching
0.91, while the ‘metrics/mAP50-95(B)’ chart also shows consistent growth, although at a slightly
lower value (0.62), reflecting the model’s performance across different IoU thresholds. Overall, the
YOLOv10s model is learning and improving its performance across various metrics, with a clear trend
towards better accuracy, recall, and mean average precision as training progresses. This suggests that
the model is effectively optimizing its ability to detect and accurately localize objects, which is crucial
for high-stakes applications like fire detection in buildings and factories.

Figure 2: Training results obtained on the fine-tuned YOLOv10s (SGDM optimizer) for the fire indoor
dataset
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Fig. 3 shows the results of the YOLOv10s model for fire detection in buildings and warehouses
after 100 epochs of training, with a batch of predicted output images consisting of 16 fire images in
various indoor and warehouse areas, featuring flames of different shapes and sizes. Most predictions
have an accuracy of 80% or 90%, with a few having an accuracy between 50% and 80%. This
indicates that the YOLOv10s model is capable of effectively detecting fires in diverse environments
with varying flame characteristics. The high accuracy rates (mostly around 80%–90%) suggest the
model’s strong performance in recognizing fire incidents, while the lower accuracy range (50%–80%)
in a few cases highlights areas for further refinement to ensure consistent high-quality predictions
across all scenarios.

Figure 3: Results of fire indoor detection model—A predicted output image batch
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To evaluate the fire detection capability of the fine-tuned YOLOv10s model compared to its
baseline version, fine-tuned YOLOv8s model, and Faster R-CNN, we conducted experiments with
some parameter and configuration changes. Specifically, for YOLOv10s and YOLOv8s models, we
trained for 100 epochs using the SGD with momentum optimizer and the SE attention mechanism,
with other parameters remaining the same as in the previous experiment. For the YOLOv10s baseline
version, the parameters were similar, except the optimizer was Adam, and the attention mechanism was
PS. Faster R-CNN was trained with the parameters: 5000 iterations, batch size of 16, SGD optimizer,
learning rate of 0.01, warmup_iters of 100, and warmup_factor of 0.001 (starting from 0.001). The
training environment for all models was set up on Google Colab with an Nvidia Tesla L4 GPU. The
experimental results in Table 6 show that Faster R-CNN achieved an average mAP@50 of 85.2%,
slightly better than the baseline version (82.1%), and mAP@50–95 of 48.4%, which is slightly lower
than the baseline version (48.7%). However, these values are much lower than those of the fine-tuned
YOLOv10s (91.3% and 62.1%, respectively). Moreover, the inference time for Faster R-CNN averaged
31.1 ms, which is relatively high compared to the baseline YOLOv10s and YOLOv8s and YOLOv10s
fine-tuned models (12.7, 18.5, and 10.7 ms, respectively). Thus, it is evident that the Faster R-CNN
model cannot compare in terms of performance, both in detection accuracy and prediction time,
with the YOLO models. The fine-tuned models such as YOLOv8s or YOLOv10s not only provides
significantly better accuracy metrics but also demonstrates faster inference times, making it a more
suitable choice for real-time fire detection applications.

Table 6: Detection accuracy and predict time of the fine-tuned YOLOv10 vs. other deep learning
models

Optimizer P R Inference
predict (ms)

mAP@ 50 mAP@
50–95

F1 score

Faster
R-CNN

– – 31.1 85.2% 48.4% –

Baseline
YOLOv10s

ADAM 0.8 0.733 12.7 82.1% 48.7% 0.765

Fine-tuned
YOLOv8s

SGDM 0.895 0.883 18.3 92.4% 64.5% 0.862

Fine-tuned
YOLOv10s

SGDM 0.906 0.846 10.7 91.3% 62.1% 0.875

Compared to the baseline version, the inference time of the fine-tuned YOLOv10s decreased
slightly by 6.5% (10.7 vs. 12.7 ms), while the accuracy metrics improved significantly. Specifically,
the mAP@50 increased by 10% (91.3 vs. 82.1), and the F1 score increased by 12% (0.875 vs. 0.765).
Notably, the mAP@50–95, which is more stringent and comprehensive, increased significantly by
21.5% (62.1 vs. 48.7). This indicates a better trade-off achieved by the fine-tuned YOLOv10s compared
to the baseline version, considering both inference time and fire detection accuracy. This improvement
ensures that the early fire warning system is more effective in terms of providing accurate alerts and
minimizing false alarms while still maintaining real-time performance. In addition, we also apply
fine-tuning techniques to YOLOv8s and YOLOv10s. The results in Table 6 show that the mAP@50
and mAP@50–95 metrics obtained from training the YOLOv8s model are both better than those
of YOLOv10s (92.4% vs. 91.3% and 64.5% vs. 62.1%, respectively). Although the Recal metric of
YOLOv8s is slightly higher, the Precision metric is lower than that of YOLOv10s, which leads to the
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F1 score of YOLOv8s being slightly lower than that of YOLOv10s (0.862 vs. 0.875). Additionally, the
inference time of YOLOv8s is higher than both the baseline and fine-tuned versions of YOLOv10s
(18.3 vs. 12.7, and 10.7 ms). Such a model is well-suited for practical deployment in buildings and
factories, where timely and accurate fire detection is crucial.

Fig. 4 shows the performance metrics of the YOLOv10s model with the Adam optimizer when
running for 100 epochs. According to the results from the ‘train/dfl_om’ chart in Fig. 4, we can clearly
see that the convergence of YOLOv10s when using the Adam optimizer changes rapidly at first (from
2.0 to 1.8), but when approaching epoch 100, the loss value is still quite high (1.405). When compared
with the corresponding ‘train/dfl_om’ chart in Fig. 2, we can see that when using the SGDM optimizer,
the convergence changes unsteadily in the first epochs, but then the loss value decreases steadily and
reaches a very good value at epoch 100 (0.9824). The same thing happens to other loss metrics such as
‘train/box_om’, ‘train/cls_om’, ‘train/box_oo’, ‘train/cls_oo’, ‘train/dfl_oo’. In addition, to evaluate
the convergence process between the two optimizers Adam and SGDM on the fire indoor dataset, we
analyze the metrics obtained between Figs. 2 and 4 such as ‘metrics/recall(B)’, ‘metrics/precision(B)’,
‘metrics/mAP50(B)’, ‘metrics/mAP50-95(B)’. Specifically, with ‘metrics/mAP50(B)’ measured when
training with the Adam optimizer for 100 epochs in Fig. 4, the average accuracy reached 0.821 at
epoch 10. In Fig. 2, when training with the SGDM optimizer, the accuracy reached 0.9 at only epoch
52, then stabilized and increased slightly to 0.912 at epoch 100. This confirms that the change from
the Adam optimizer to the SGDM is suitable for the diverse fire indoor dataset created in this study,
creating high efficiency in the model training process.

Figure 4: Training results obtained on the baseline YOLOv10s model (Adam optimizer) for fire indoor
dataset

5 Conclusion

In this study, we created a fire dataset for buildings and production areas to train fine-tuned
deep learning models YOLOv10 (n, s, m, b) and evaluate the performance of different versions of
the YOLOv10 model, as well as comparing the YOLOv10s model with the fine-tuned YOLOv8s
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and Faster R-CNN models. The experimental results show that the YOLOv10s model is the optimal
choice for real-time fire detection applications due to its balance between accuracy and prediction
speed. The graphs for metrics such as recall, precision, mAP@50, and mAP@50–95 throughout the
training process show stable and consistently increasing trends. This indicates that the model’s ability
to accurately detect objects improves over time and performs well across different IoU thresholds.
While larger models like YOLOv10b achieve slightly higher accuracy, they face significant challenges
in prediction time, making them less suitable for systems requiring rapid response. Notably, the
mAP@50–95 accuracy metric of YOLOv10s shows very little difference compared to larger models
like medium and balanced, demonstrating its well-balanced performance.

However, it is clear that the YOLOv10s model still has some limitations in accuracy when
compared to other models like YOLOv10m and YOLOv10b. Therefore, in future research, we plan
to combine YOLOv10 and Faster R-CNN to further improve the detection accuracy. Additionally,
we will continue deploy YOLOv10 models, particularly the smaller yet effective models like small
and nano, on embedded devices and IoT systems to develop real-time fire detection solutions that
can be widely applied in practice. shortly. For outdoor environments, we will improve the fire image
dataset in different weather conditions (sunlight, rain, fog), different times of day, and different
contexts (trees, buildings, vehicles). To do this, additional factors such as smoke flow, reflections, and
changing lighting conditions due to weather and time of day need to be addressed. Data augmentation
techniques such as rotation, cropping, blurring, brightness changes, and adding environmental noise
(rain, smoke, fog) to simulate different conditions when detecting outdoor fires will also be studied.
This helps the model learn to detect fires in a variety of environmental conditions. Using outdoor
fire datasets to fine-tune the model can help it adapt to different characteristics such as changing
lighting, smoke, and weather conditions typical of outdoor spaces. Therefore, applying advanced
training techniques such as transfer learning to leverage knowledge from models trained on indoor
datasets and then fine-tuning them for outdoor conditions will also be studied.
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